О чем говорят цифры. Как понимать и использовать данные

Хо Ким Джин

Дэвенпорт Томас

Глава 7

Работа с квантами

 

 

Поскольку эта книга адресована не-квантам, то мы считаем полезным описать принципы оптимальной организации совместной работы с профессионалами в области аналитики и специалистами по данным. Даже притом что вы уже многому научились, прочитав эту книгу и изучив примеры аналитического мышления из предыдущей главы, все же этого недостаточно, чтобы самостоятельно реализовать продвинутые аналитические проекты. Так или иначе, придется сотрудничать со специалистами в области количественного анализа. Количественные аналитики и специалисты по данным часто имеют ученую степень по статистике, математике или даже физике. Это косвенным образом характеризует уровень знаний и навыков квантов, необходимых для серьезной аналитической работы.

Основное внимание в этой главе мы уделим взаимоотношениям между тремя группами профессионалов, так или иначе имеющих отношение к аналитике:

• лица, принимающие коммерческие и организационные решения;

• бизнесмены или сотрудники компании;

• количественные аналитики или специалисты по данным.

Предполагаем, что большинство читателей попадает в одну из двух первых групп и должны налаживать тесное сотрудничество с представителями третьей группы. Если вы представитель третьей группы, то, возможно, тоже найдете эту главу полезной для себя, поскольку в ней содержатся рекомендации по эффективному взаимодействию с не-квантами.

В пользу того, чтобы все три группы устанавливали конструктивные взаимоотношения вместо того, чтобы перекладывать ответственность на кого-то одного, есть весомый довод. Авторы (если читатели этого еще не заметили) горячие сторонники использования аналитики в целом (и собранных данных, в частности) как основы принятия управленческих решений. Но для многих топ-менеджеров важным фактором принятия решений по-прежнему остаются интуиция и опыт. Иногда они приводят к принятию ошибочных решений, но их полезность при выборе адекватных финансовых показателей, разработке важных деловых сценариев «что… если» и выборе условий, при которых аналитические модели релевантны, не подвергается сомнению.

Таким образом, задача заключается в том, чтобы принимать решения на основе аналитики, но с учетом интуиции менеджеров. Немногие топ-менеджеры в равной мере могут полагаться и на свою аналитическую подготовку, и на интуицию. Это означает, что придется работать в тесном контакте с количественными аналитиками, если они хотят принимать эффективные решения. По сути, мы могли бы доказать, что качество сотрудничества между топ-менеджерами и их консультантами по количественному анализу – это ключевой фактор принятия эффективных управленческих решений.

Научный сотрудник Intel Карл Кемпф (эта должность в компании предусмотрена для сотрудников, имеющих заслуги в науке и получивших право на относительную независимость в работе) возглавляет группу разработки технических решений. Он считает, что эффективные количественные решения «принимаются не на основе математики, а на основе взаимоотношений». Это весьма примечательное заявление из уст Кемпфа, известного в компании под дружескими прозвищами Суперквант и Главный математик. Если кто-то, кого, пусть и в шутку, зовут Главным математиком, заявляет, что математика тут не главное, то к этому надо отнестись серьезно.

Кемпф заметил, что математические и статистические алгоритмы, применяемые количественными аналитиками, могут быть как предельно простыми, так и очень сложными. Но в любом случае это результат тщательной работы очень умных людей в течение десятилетий (или столетий, как это было в некоторых из приведенных в этой книге примеров), который проверялся, перепроверялся и анализировался снова и снова другими очень умными людьми.

Математика работает всегда, а вот человеческие аспекты принятия решений гораздо менее отработаны. Организации, создавшие группы количественных аналитиков (а в наш аналитический век это должно быть повсеместным явлением), должны представлять, какой именно тип аналитиков им нужен и какие задачи они будут решать для топ-менеджеров. Судя по всему, аналитики с необходимым набором навыков всегда в дефиците. Кроме того, топ-менеджерам придется пересмотреть свои ожидания относительно аналитиков и отношений с ними. Наконец, методы и инструменты, используемые аналитическими группами, следует пропагандировать и совершенствовать таким образом, чтобы они могли постепенно стать частью системы принятия решений.

 

Взаимоотношения квантов и предпринимателей в принятии решений в компании Intel

Карл Кемпф и его аналитическая команда из Intel на личном опыте убедились в правильности многих изложенных в этом разделе уроков. Группа интенсивно работает над формированием конструктивных взаимоотношений между менеджерами и аналитиками. Первоочередная задача – добиться взаимного уважения: чтобы, с одной стороны, те, кто принимает решения, проявляли хотя бы минимальный интерес и уважительное отношение к навыкам и опыту количественных аналитиков, а с другой – аналитики интересовались проблемами менеджеров и серьезно относились к ним. Такая асимметрия в отношениях допускается преднамеренно. В то время как для менеджеров достаточно иметь некоторый вкус к математике, для количественных аналитиков Кемпф и его группа считают абсолютно необходимым как можно глубже понимать механизм интуиции менеджеров. Это означает, что менеджеру не обязательно становиться специалистом в математическом анализе, но аналитику можно и нужно стать экспертом по проблемам бизнеса.

Хотя количественный аналитик вряд ли сможет понять происхождение и природу деловой интуиции, но он должен понимать, что это такое, и уметь говорить на языке предпринимателя. Подход компании Intel состоит в том, чтобы периодически направлять кого-то из аналитиков в коммерческие подразделения, по крайней мере для того, чтобы слушать, наблюдать, учиться, а через некоторое время задавать вопросы. В большинстве случаев этот человек проходит такое же обучение, как и только что принятый в это подразделение сотрудник. В обоих случаях главная цель обучения – добиться, чтобы человек понимал формальный и неформальный механизм функционирования организации, модели мотивации персонала, материального и морального поощрения и т. п.

Кемпф считает, что если количественный аналитик уверен в том, что разбирается в деловых проблемах, то это еще ничего не гарантирует. Шансы на успех повышаются, если менеджер уверен в том, что количественный аналитик разбирается в деловых проблемах. В этом случае тот завоевывает авторитет в глазах менеджеров и сотрудников компании («впервые кто-то пришел и потратил время, чтобы разобраться в наших проблемах, – этот парень, кажется, действительно заинтересован в том, чтобы помочь»). Менеджеры, в свою очередь, завоевывают авторитет в среде квантов своими математическими познаниями («это не так легко, как я думал, – должно быть, этот парень действительно умен»).

Можно предположить, что наглядно преимущества использования аналитики на практике видны количественному аналитику при непосредственном наблюдении или во время работы в составе коммерческого подразделения; это же помогает попутно достичь еще одной цели – выявить и привлечь к работе самых больших скептиков в группе. В худшем случае они окажутся правы и задачу решить невозможно; но в лучшем случае вы заранее будете знать, кто из наиболее влиятельных членов группы будет в первую очередь критиковать форму подачи результатов или принятые на их основе решения.

Энн Робинсон, ранее возглавлявшая группу аналитиков в Cisco Systems, а сейчас занимающая аналогичную должность в Verizon Wireless, также подчеркивает важность «перевербовки» скептиков в сторонников: «Они не дают вам соврать и стимулируют высокоэффективную работу всей команды. И если вы сумеете убедить их, значит, сумеете убедить кого угодно». (Об опыте работы Энн в Cisco Systems мы поговорим в конце этой главы.)

В Intel следующий этап на пути формирования отношений между квантами и менеджерами – это сотрудничество на этапе разработки базовой модели анализа. Ведущий аналитик проводит мозговые штурмы для принятия решения о необходимых вводных условиях (исходных данных, источниках их получения, методах выявления и исключения недоброкачественных данных), результатах (предпочтительные критерии классификации данных, какие методы демонстрации результатов будут наиболее убедительны для предполагаемой деловой аудитории), а также выборе ключевых переменных и определении базовых взаимосвязей между ними.

Повторим еще раз, что в таких ситуациях менеджеру не обязательно знать методы решения, скажем, гиперболических дифференциальных уравнений в частных производных, но по крайней мере на доске в зале совещаний должна быть представлена диаграмма с результатами и решениями, отвечающими на вопросы вроде следующих:

• Поскольку А и Х взаимосвязаны, то какова будет динамика Х в случае роста А?

• Каковы максимальные и минимальные значения, которые может принимать переменная В?

• Если между причиной (фактор Y) и наступлением следствия (фактор Q) существует временной лаг, то какова его возможная продолжительность?

Как и в случае с любым другим типом моделей, несколько конкретных примеров (из жизни или теоретических) будут очень полезны для объяснения принципов построения базовой модели. В этом случае квант должен внимательно слушать, задавать уточняющие вопросы и стараться усвоить как можно больше деловой информации, имеющей отношение к принимаемому решению. Налаживание взаимоотношений между людьми тут так же важно, как и построение самой модели.

К этому моменту группа квантов должна быть готова выйти на сцену. Требуется выбрать правильный математический метод, формализовать модель таким образом, чтобы можно было передать ее решение компьютеру: собрать данные и ввести их в него. Затем аналитик должен протестировать модель, выполнив анализ чувствительности переменных и взаимосвязей, а также рассмотрев возможные альтернативы. Если присутствующий менеджер указывает на какие-либо погрешности в функционировании модели, то аналитик должен развеять его сомнения или внести в модель необходимые коррективы. Наиболее важно на этом этапе как можно быстрее получить работающую модель и продемонстрировать ее потенциальным пользователям для получения замечаний. Обычно хороший результат дает проведение нескольких демонстраций модели для групп пользователей, представляющих разные подразделения и службы. Это помогает оценить степень завершенности модели и ее восприятие менеджерами и сотрудниками компании.

Затем модель усовершенствуется на основе полученных откликов и представляется еще раз. Иными словами, важно получить как можно больше критических замечаний на возможно более ранней стадии разработки модели. Ведь каждый раз всплывают нюансы, о которых квант забыл, неправильно интерпретировал или просто оценил ошибочно, а также обстоятельства, о которых менеджеры забыли предупредить, о чем предупреждали, но им не нравится, как это было реализовано, и тому подобное. Независимо от того, посвящен ли аналитический проект решению какой-либо уникальной задачи или периодически повторяется, успех его реализации, как правило, способствует формированию конструктивных отношений в коллективе. Менеджер, принимающий решения, вначале нуждается в некоем авансе доверия со стороны коллег, но если дела идут хорошо, то вместо аванса возникает настоящее доверие, основанное на опыте совместной успешной работы. Возникновение взаимного доверия, уважения и взаимопонимания требует усилий и времени, особенно со стороны количественных аналитиков, поскольку у менеджеров на это отпущено времени, как правило, гораздо меньше. Часто случается так, что хорошо сложившиеся взаимоотношения позволяют реализовать несколько последовательных успешных аналитических проектов, что, в свою очередь, ведет к углублению доверия и взаимопонимания.

 

Окупаемость сочетания искусства и науки в Intel

В Intel описанный выше подход разрабатывался и совершенствовался в течение более чем двадцати лет, в процессе реализации самых разных аналитических проектов. Он доказал свою продуктивность. Сначала проекты касались, прежде всего, производства, в том числе проектирования производственных мощностей, строительства, модернизации и текущих операций компании. Анализируемые проблемы и внедряемые управленческие решения охватывали широкий спектр проблем, начиная с расчета количества необходимого оборудования и его планировки до управления объемом незавершенного производства и ремонтом оборудования.

Второе ведущее направление аналитической работы касается комплексного планирования запасов, производства и логистики во всей сети заводов компании. Ее производственные мощности расположены в США, Коста-Рике, Ирландии, Израиле, Китае, Малайзии, а в последнее время и во Вьетнаме, причем все они работают 24 часа в сутки и 365 дней в году. При этом аналитика должна учитывать не только часовые пояса, но и культурные и языковые отличия.

Следующие аналитические проекты касались движения запасов в цепи поставок. Проекты анализа структуры контрактов на оборудование нацелены на обеспечение взаимовыгодного сотрудничества с поставщиками и гибкости производства. Прогнозирование спроса на продукты, позиционирование новых продуктов ориентированы на обслуживание потребителей и оптимизацию затрат, требуемых цепочкой поставок. Эти системы по-прежнему активно используются или совершенствуются на основе аналитических систем и процедур принятия решений второго и третьего поколения. В последнее время такие проекты распространились и на многочисленные подразделения Intel, занимающиеся разработкой новых продуктов. Специалисты по техническим решениям устанавливают отношения со старшими менеджерами, наделенными интуицией и имеющими опыт разработки инновационных продуктов. Последние аналитические проекты включают разработку отдельных потребительских свойств будущих продуктов, проигрывание сценариев внедрения продуктов с учетом распределения технических ресурсов между отдельными проектами.

Эти проекты и их результаты в 2009 году принесли Intel премию Института исследования операций и менеджмента за «последовательное применение принципов исследования операций и менеджмента лидерским, инновационным, нестандартным образом и на постоянной основе». Принимая награду, тогдашний председатель совета директоров Крейг Барретт назвал применение прогрессивной аналитики причиной роста конкурентоспособности компании в течение предшествовавших двух десятилетий, что обеспечило миллиарды долларов прибыли.

 

Ваши аналитические обязанности

Успешное решение аналитической проблемы требует соблюдения определенных обязанностей как количественными аналитиками, так и лицами, принимающими решения (то есть вами). Большая часть глав этой книги посвящена описанию того, чем занимаются кванты и как вам лучше разобраться в их данных и отчетах. Сейчас пришло время обрисовать роль тех, кто принимает решения, в аналитических разработках – независимо от уровня их математической подготовки.

Чего количественные аналитики могут ожидать от тех, кто принимает решения

Принимая решения, вы должны:

• уделить аналитикам достаточно времени и внимания, чтобы удостовериться в том, что они способны увидеть проблему с вашей точки зрения;

• выделить в их распоряжение время и внимание людей из вашей организации, способных помочь в понимании деталей деловой ситуации;

• иметь четкое представление о времени и средствах, необходимых для выработки решения, и достичь согласия с коллегами по этому вопросу;

• в достаточной степени изучить математику и статистику, чтобы в общих чертах понимать принцип работы модели и возможные причины того, что она неадекватна реальной ситуации;

• вежливо, но твердо требовать объяснить вещи, которые вам непонятны;

• посещать все брифинги, совещания и демонстрации, имеющие отношение к аналитике;

• проинформировать сотрудников о том, что эффективное использование модели необходимо как для успеха компании, так и для их собственного успеха.

 

Изучить основы математики и статистики

В мы предложили несколько способов изучения основ статистики людьми, принимающими решения. Мы считаем, что это непременная обязанность менеджеров любого уровня, включая топ-менеджеров. Почему? В нашем насыщенном информацией обществе и деловой культуре просто невозможно представить применение данных и аналитики для решения управленческих проблем без достаточно сложного математического инструментария.

Те менеджеры, которым недостает математической подготовки, легко могут попасть в неприятные ситуации, что наглядно подтверждает пример Джо Кассано из AIG Financial Products, приведенный в . Многие компании все в большей степени используют статистические и математические модели для ведения бизнеса. Отсюда логически следует вывод о том, что менеджер, не понимающий принципов построения математических моделей, не может успешно внедрить их в практику. Как говорит выпускник Йельского университета Роберт Шиллер (обосновывая причины финансового кризиса 2008–2009 годов, который ему удалось предсказать), «если вы руководите компанией, то должны уметь обращаться с цифрами. Количественная информация действительно имеет значение».

Некоторые компании настаивают на том, чтобы их менеджеры имели базовые знания в математике и построении моделей. Например, генеральный директор TD Bank Group Эд Кларк, получивший степень по экономике в Гарвардской школе бизнеса, сумел избежать многих проблем, с которыми столкнулись другие американские банки в период финансового кризиса. Он так описывал эти проблемы в интервью газете Toronto Star: «Общаясь с коллегами по сфере операций со структурированными финансовыми продуктами, я столкнулся с весьма опасным фактом: они просто не понимали сути этих инструментов. Им никогда не приходило в голову самостоятельно провести математические расчеты, положенные в основу каждого такого продукта. Отчасти это следствие того, что они делегировали их разработку и понимание на слишком низкие уровни организационной иерархии».

По мере того как во всех отраслях находят все более широкое применение аналитика и базы данных, топ-менеджерам вменяется в обязанность овладеть более или менее сложными аналитическими приемами. Иначе они просто не смогут вмешаться, когда какой-нибудь трейдер ввяжется в операции, связанные с чрезмерным и неосознаваемым риском, или когда маркетолог предложит предсказательную модель, требующую сбора слишком большого объема аналитических данных. В результате их компании и потребители оказываются в весьма опасном положении.

В частности, топ-менеджеры должны разбираться в таких концепциях:

• показатели общей тенденции (среднее значение, мода, медиана);

• вероятности и распределение;

• выборка;

• основы корреляционного и регрессионного анализа;

• основы постановки экспериментов;

• интерпретация визуальной аналитики.

Топ-менеджеры могут освоить эти концепции теми же способами, что и их подчиненные; кроме того, топ-менеджеры располагают достаточными средствами для того, чтобы пригласить профессоров или консультантов провести занятия для группы старших менеджеров или даже индивидуальные.

 

Понимание и тестирование исходных предположений

Мы уже приводили знаменитое высказывание статистика Джорджа Бокса: «Все модели некорректны, но некоторые при этом полезны». Тогда же мы заметили, что очень важно уловить тот момент, когда некорректная модель перестает быть полезной. Чаще всего это происходит тогда, когда заложенные в модель исходные предположения оказываются неверными или недействующими. Мир постоянно меняется, и обязанность скептически настроенного топ-менеджера в том, чтобы определить, не привели ли эти изменения к недостоверности модели. Далее приведены некоторые примеры исходных предположений для количественных моделей, на практике используемых организациями.

• Готовность покупателя купить продукт по определенной цене (известной под названием модели эластичности цены) не изменилась, хотя общеэкономические условия ухудшаются.

• Предпочтения покупателей сегодня не отличаются от таковых по выборке покупателей, на которой мы тестировали различные версии дизайна веб-страниц несколько лет назад.

• Разработанная нами предсказательная модель вероятности банкротства ипотечных банков в период роста цен на недвижимость продолжает действовать и в период снижения цен (видимо, это несколько проблематично).

• Вероятность мощного урагана в Южной Флориде не исчезла, несмотря на то что, похоже, постепенно происходят глобальные климатические изменения на планете.

• Формирование выборки приверженцев политического деятеля из владельцев стационарных телефонных номеров по-прежнему удовлетворяет требованиям репрезентативности, несмотря на то что многие избиратели не имеют стационарных телефонов (как мы и предполагали, это тоже проблематично).

Не все из этих исходных предположений оказались необоснованными. По сути, поскольку практически все модели разрабатываются на основе данных за прошлые периоды (как мы помним, получить надежные данные о будущем трудно), они по умолчанию базируются на том предположении, что будущее в основных чертах будет повторять прошлое. Такие модели часто оказываются адекватными в долговременной перспективе. Как отметил Чарльз Дахигг в книге The Power of Habit: Why We Do What We Do in Life and Business, установившись, поведение человека остается на удивление постоянным в течение долгого времени. Это позволяет нам предсказывать будущее на основе информации о прошлом.

Некоторые организации платят немалые деньги талантливым прогнозистам только за тестирование исходных предположений. Взять, к примеру, Ларри Саммерса. Бывший консультант по экономике в администрации Клинтона и Обамы, экс-президент Гарвардского университета работал в качестве консультанта хеджевого фонда D.E. Shaw. Том встретился с Саммерсом на каком-то общественном мероприятии и поинтересовался его функциями в этом фонде. Тот ответил: «Я прихожу на работу раз в неделю и брожу по кабинетам квантов, разрабатывающих математические модели торговли ценными бумагами. Я задаю им вопросы относительно исходных предположений, лежащих в основе этих моделей, а также ситуаций, когда они могут оказаться нерелевантными. Вы удивитесь, если узнаете, как часто мне не могут дать внятного ответа». Говорят, за эту работу Саммерс получал пять миллионов долларов в год, так что, надо думать, руководство фонда считало ее важной.

Вы тоже можете последовать примеру Саммерса. Если кто-то представляет математическую модель, весьма умно с вашей стороны было бы поинтересоваться, на каких исходных предположениях она основана и при каких условиях выдаст недостоверные результаты. Если ответ перегружен математической терминологией, попытайтесь еще раз поставить вопрос о том, что должно измениться в мире, чтобы модель утратила адекватность.

 

Не стесняйтесь переспрашивать

Последнюю мысль предыдущего пункта можно сформулировать несколько иначе: очень важно попросить о дополнительных объяснениях, если что-то непонятно. Особенно важно просить дополнительных объяснений, если вместо данных и анализа вам предлагается чье-то мнение или истории из жизни. Как говорит СEO Caesars Entertainment Гэри Лавмен, «я не обязан получить сто процентов ответов, но моя работа состоит в том, чтобы задавать массу неприятных, глубоких, а иногда почти оскорбительных вопросов, поскольку они являются частью аналитического процесса, приводящего к точному и глубокому знанию».

Чтобы стимулировать собеседника к использованию аналитики, можно поставить такие вопросы:

• Вы помните ваши данные?

• Как вы думаете, можно ли протестировать эту гипотезу с помощью конкретных данных?

• Задумывались ли вы над возможностью эмпирического анализа этой идеи?

• У нас примерно… покупателей. Проверяли ли вы вашу идею хотя бы на ком-то из них?

• Может быть, вам стоит рассмотреть возможность проведения небольшого, но научно строгого эксперимента для проверки этой концепции?

Думаем, вам понятна основная идея. Если в организации найдется достаточно людей, постоянно задающих такие вопросы, корпоративная культура быстро и существенно изменится к лучшему.

Количественные аналитики зачастую пытаются описывать модели и проблемы на математическом жаргоне. Это не значит, что вам остается только молча слушать или самим осваивать их терминологию. В качестве удачной иллюстрации этого тезиса можно привести фильм «Предел риска», где рассказывается о драматических событиях, приведших к финансовому кризису 2008–2009 годов. Место действия – инвестиционный банк, весьма напоминающий Lehman Brothers. Главный герой – специалист по двигателестроению и техническим наукам. Он разработал новую методику оценки кредитного риска и демонстрирует ее директору отдела торговых операций банка (его играет Кевин Спейси). Этот некоронованный король кредитования заявляет: «Вы же знаете, что я ничего в этих формулах не понимаю. Объясните простым английским языком, что это означает».

На его месте любой менеджер заявил бы то же самое.

Профессор по маркетинговым стратегиям Лиам Фахи опубликовал в журнале Strategy and Leadership статью, посвященную выявлению роли топ-менеджеров в организации аналитических исследований путем специального опроса. Они станут хорошим завершением раздела о том, чего можно ожидать квантам от топ-менеджеров. Приведем полный список этих вопросов:

• Какой деловой проблеме или необходимости посвящен аналитический проект?

• Какая новая информация, аспекты деловой проблемы или условия ее возникновения проанализированы?

• Каким образом я могу использовать новую информацию в своей работе?

• Каким образом новая информация повлияет на решения, которые нам предстоит принять?

• Каким образом новая информация повлияет на решения, находящиеся на этапе разработки и предполагаемые в будущем?

Когда появляются предварительные результаты, топ-менеджерам стоит спросить:

• Чем нас удивили предварительные результаты?

• Можете ли вы провести дальнейший анализ, чтобы подтвердить или опровергнуть предварительные выводы?

• Следует ли нам привлечь других сотрудников для дальнейших исследований?

• Можно ли считать, что мы далеко продвинулись в решении проблемы?

• Если предварительные результаты подтвердятся, как это повлияет на мое мнение об этой проблеме или каких-либо других?

При получении каждого нового результата топ-менеджер должен задать вопросы:

• Что нового мы узнали?

• Что мы думали об этом до получения результата?

• Насколько существенна разница?

• Чем обоснована связь между исходным массивом данных и полученным результатом?

После получения окончательных результатов стоит уточнить следующие моменты:

• Кто принимал/принимает участие в формировании нового взгляда на проблему?

• Как исполнители повлияли на результат?

• В чем может заключаться принципиальная разница между людьми или подразделениями?

Если вы как топ-менеджер задаете эти вопросы, то будете гораздо глубже вовлечены в аналитическую работу и аналитики будут считать вас заинтересованным и компетентным пользователем. Ну а если аналитики сумеют ответить на ваши вопросы, то можно считать, что и они неплохо поработали!

 

Чего можно ожидать от количественных аналитиков

Поскольку мы достаточно подробно рассмотрели обязанности людей, принимающих решения, по организации аналитической работы, логично поставить вопрос о том, чего менеджеры могут ожидать от количественных аналитиков, чтобы их сотрудничество было продуктивным.

Чего можно ожидать от количественных аналитиков

Если вы топ-менеджер, работающий с количественными аналитиками, то вы с полным основанием можете ожидать от них следующего:

• Хорошего понимания закономерностей бизнеса и отдельных бизнес-процессов, в частности тех, для которых формулируются аналитические проблемы.

• Понимания логики вашего мышления, знания видов и методов анализа вкупе с их результатами, которые способны повлиять на ваше мнение.

• Способности устанавливать конструктивные взаимоотношения с ключевыми сотрудниками в вашей организации.

• Объяснения преимуществ и усовершенствований, которые способна обеспечить аналитика, исходя из интересов бизнеса.

• Предоставления точных оценок времени и затрат, необходимых для разработки модели и связанных с ней инструментов.

• Терпения и умения объяснить иначе или с других позиций в том случае, если вы не понимаете сути их предложений или не верите в реальность прогнозируемых преимуществ.

• Умения построить структурированный процесс сбора информации и внедрения правил, необходимых для разработки и эксплуатации модели.

• Помощи в осмыслении аналитической проблемы в широком контексте, в том числе формулировки предполагаемого решения, определения лиц, заинтересованных в ее решении, организационных ресурсов, необходимых для ее решения.

• Умения быстро разработать демоверсию новой модели и набора аналитических процедур (если только нет причин поступить иначе), чтобы представить пользователям наглядное подтверждение работоспособности модели и получить на нее отзывы.

• Настойчивого поэтапного совершенствования модели до тех пор, пока она не будет удовлетворять конкретным требованиям пользователей.

• Понимания того, что для освоения модели менеджерам требуется определенное время, в течение которого следует терпеливо отвечать на возможные вопросы и развеивать недоверие к рабочим свойствам модели.

 

Стремление изучать особенности бизнеса и заинтересованность в разрешении его проблем

Некоторые количественные аналитики интересуются не столько деловой проблемой, которую следует решить, сколько методами количественного анализа и самой процедурой анализа. Отчасти это результат особенностей нашей системы образования, в которой принято изучение математики и статистики вне привязки к практике их применения. Но если кванты не сосредотачивают внимание на проблемах бизнеса, то вряд ли смогут эффективно решить их и дать полезную информацию для принятия решения.

Лучше всего убедиться в заинтересованности аналитика в решении проблем бизнеса еще на этапе подбора кандидатур и найма на работу. Если человек уже принят в штат, то изменить что-либо бывает очень сложно. Например, руководитель группы аналитиков из компании Verizon Wireless Энн Робинсон просит любого претендента на вакансию описать конкретную деловую проблему, которую тому приходилось решать в прошлом, а также выделить ее наиболее интересные особенности. Примерно такие же вопросы задает соискателям Карл Кемпф из Intel. Если соискатели затрудняются ответить на эти вопросы, то их кандидатуры отклоняются – Робинсон и Кемпф утверждают, что, к несчастью, это происходит довольно часто.

 

Умение говорить на языке бизнеса

Мы уже несколько раз говорили об этом на протяжении предшествующих глав, и это оправданно, поскольку проблема действительно сложная. Но количественные аналитики должны научиться излагать аналитические подходы и результаты языком бизнеса. Во многих случаях это означает использование терминологии, знакомой бизнесменам и менеджерам: доходность инвестиций, поведение потребителей, экономия средств и полученная прибыль. Постоянные разговоры о деньгах могут показаться несколько торгашескими, но это язык бизнеса. В государственном учреждении или некоммерческой организации своя терминология, включающая, например, слова «граждане», «избиратели» или «бюджеты».

Патрик Мур, возглавляющий группу коммерческой аналитики в компании Merck (в конце этой главы приводится пример работы его группы), говорит, что пытается следовать трем простым правилам, продиктованным здравым смыслом, когда объясняет клиенту результаты анализа, стремясь помочь ему принимать более эффективные управленческие решения.

• Не представлять процедуру анализа как своего рода «черный ящик», поскольку в этом случае клиент пытается уклониться от его проведения. Поэтому Мур старается говорить предельно прозрачно и доступно.

• Доводить до деловых клиентов ту мысль, что для получения соответствующих целям данных следует пользоваться соответствующими методами; иными словами, он и его аналитики стараются демонстрировать уверенность в правильности применяемых аналитических методов.

• Предоставлять клиенту краткие и емкие выводы, основанные на результатах анализа, которые тот мог бы использовать для убеждения своего руководства.

Группа Мура также широко использует графические методы представления данных, например для того, чтобы наглядно показать относительную значимость отдельных переменных в модели. Даже если клиент не вполне понимает суть используемых в анализе показателей или статистических данных, он, глядя на столбиковую диаграмму, способен понять, какие из них максимально повлияли на результат.

 

Способность объяснять специальные термины

Иногда квантам все же приходится прибегать к специальной терминологии, чтобы объяснить суть проведенных процедур. Но даже если без этого не обойтись, кванты должны быть готовы к «переводу» специальных терминов на понятный язык, и это не должно заставать их врасплох. Если речь идет об аналитической процедуре или методе, который используется часто, то кванты в вашей организации могут организовать совещание с коллегами и совместно решить, как понятно и просто объяснить его суть. Конечно, для относительно простых видов анализа, включающих одну-две переменные, визуальная аналитика представляет собой наиболее эффективный способ объяснить взаимосвязи между показателями.

 

Стремление налаживать отношения

Как уже упоминалось в этой главе, оптимальные решения принимаются не столько благодаря математике, сколько благодаря налаженным взаимоотношениям между квантами и менеджерами. Если ваши кванты не стремятся к установлению таких отношений, то им, возможно, стоит переквалифицироваться в астрофизики, лесники или поискать профессию, предполагающую работу в одиночестве, вместо того чтобы пытаться делать карьеру в бизнесе.

Конечно, легче сказать, чем сделать; однако действительно большинство квантов исторически предпочитали цифры людям. Если вы ищете и проводите интервью с ориентированными на командную работу квантами или отбираете кандидатов в аналитическую программу для нужд бизнеса (вроде той, которая проводится в Университете Северной Каролины и описана в ), то так или иначе вам придется решать эту проблему.

 

Не заставлять менеджеров чувствовать себя дураками

Нам приходилось видеть не одну организацию, в которой кванты прямо-таки получали удовольствие от того, что «нормальные» предприниматели чувствуют себя дураками. Они могли заявить что-нибудь вроде: «Конечно, вам приходилось слышать о регрессионном анализе!», «Извините, но показатель R-квадрат – это настолько элементарная вещь, что у меня нет времени ее объяснять». Некоторые «суперкванты» (как одна организация называла своих наиболее продвинутых в количественном анализе сотрудников) даже позволяли себе смотреть сверху вниз на рядовых квантов, занимавших аналогичные должности в соседней компании.

Конечно, подобное поведение неприемлемо и крайне вредно для эффективного решения проблем. Как и во многих других случаях, оно говорит о том, что человек не чувствует достаточного уважения к себе. В организациях, где кванты глубоко вовлечены в предпринимательские аспекты деятельности и пользуются искренним уважением людей, принимающих решения, каждый из них оказывается прекрасным человеком и приятным в общении коллегой. В организациях, которые зачем-то пригласили их на работу, но при этом игнорируют каждый раз, когда дело доходит до принятия важных решений, отношения с ними складываются весьма непросто. Как и большинство других людей, кванты уважают тех, кто с уважением относится к ним.

 

Пример аналитического мышления: прогноз спроса в Cisco

Прогнозирование потребительского спроса представляет серьезную проблему для многих компаний, особенно в машиностроительной отрасли. Для Cisco Systems, лидера на рынке телекоммуникационного оборудования, это особенно важно. Компания имеет очень сложную глобальную цепь поставок и не производит большинство продуктов, которые продает. Вице-президент по глобальным операциям в Отделении управления цепочками ценности Cisco Кевин Харрингтон говорит: «Прогнозирование потребительского спроса, конечно же, центральное звено управления цепью поставок и ключевой фактор гибкого производства. Это приобретает особое значение в такие времена, как сейчас, когда в макроэкономике происходят быстрые изменения, сопровождаемые хаотичными колебаниями спроса и предложения. По сути, возникшая у Cisco необходимость списать некоторое количество неиспользуемых запасов (стоимостью около 2,25 миллиарда долларов) после краха доткомов в 2001 году стала своего рода толчком к глобальной трансформации нашей цепи поставок».

Этот проект стал удачной иллюстрацией не только аналитического мышления, но и конструктивных взаимоотношений между менеджерами, принимающими решения, и количественными аналитиками.

Определение и формулирование проблемы. Проблема Cisco состояла в том, чтобы разработать надежную методику прогнозирования спроса по каждому из более чем десяти тысяч продуктов. Менеджеры из разных подразделений компании, включая отделы продаж, маркетинга и финансов, уже разработали «согласованный прогноз» на основе некоего сочетания интуиции и экстраполирования тенденций спроса за предыдущие периоды. Но вице-президент Cisco по управлению спросом и планированию Карл Брейтберг понимал, что статистический прогноз, основанный на данных, вполне может стать полезной альтернативой интуитивной разработке сотрудников, ведь в последнем случае на показатели спроса мог повлиять избыточный оптимизм разработчиков. Он поручил старшему менеджеру отдела планирования и прогнозирования спроса Энн Робинсон и ее команде из шести человек попытаться разработать методику статистического прогноза. Робинсон поняла, что для успеха этого проекта ей надо не только разработать надежную модель, но и заставить менеджеров компании поверить в нее и использовать при принятии решений. Она определила ключевых сотрудников, заинтересованных в получении надежной методики прогнозирования, и составила план проекта, согласно которому надежные результаты ожидались через восемнадцать месяцев после начала эксплуатации предложенной модели. На каждом этапе разработки она демонстрировала результаты заинтересованным лицам, учила их использовать модель и, как она надеялась, получила поддержку на будущее.

Изучение предыдущих поисков решения. Существует несколько подходов к статистическому прогнозированию. На основе изучения имеющегося опыта таких исследований можно утверждать, что наилучшие результаты достигались в результате одновременного применения разных подходов – так называемого сборного прогноза. Робинсон знала из опыта предыдущих исследований, что сборный прогноз представляет собой достаточно мощный и универсальный инструмент исследования, поэтому она удостоверилась, что все рассмотренные на этом этапе аналитические инструменты обладают аналогичными качествами.

Моделирование (выбор переменных). Ключевыми переменными модели, по всей видимости, должны стать объем заказов и объем продаж в прошлые периоды. Эти переменные достаточно широко используются для прогнозирования спроса в целом ряде отраслей.

Сбор данных (измерение). Притом что выбор переменных с самого начала был очевиден, источники информации об объеме текущих заказов достаточно разнообразны и каждый из них следовало оценить с точки зрения соответствия потребностям модели. Например, Cisco группирует заказы потребителей по отраслям, емкости потребительских сегментов, регионам и фактическому объему поставок отдельным потребителям. Эти показатели не всегда соответствуют друг другу. К счастью, группировка продаж по всем возможным критериям уже содержалась в имеющейся базе данных компании. Тем не менее группе аналитиков под руководством Робинсон предстояло разработать несколько новых показателей удовлетворения спроса по категориям потребителей, что могло бы стимулировать ориентацию на потребителя во всей цепи поставок Cisco.

Анализ данных. Статистическое прогнозирование на выходе дает прогнозируемый уровень спроса с доверительным интервалом для каждого уровня. Например, спрос на конкретную модель роутера в месяц по прогнозу составит от 3 до 3,5 тысячи единиц с 95-процентной вероятностью попадания в этот интервал. Гибкий подход к разработке модели включает ряд шагов, на выполнение каждого из которых требуется два-три месяца, чтобы удостовериться в работоспособности модели и в том, что ее можно масштабировать в соответствии с количеством и разнообразием продуктов Cisco. Некоторые из этих шагов включают выполнение следующих операций:

• выбор программного продукта, удовлетворяющего требованиям (Cisco выбрала SAS Forecast Server с поддержкой функции сборного прогноза);

• оценка вероятности того, что статистическая модель представит более надежный результат, чем согласованный прогноз аналитиков, и проверка этого утверждения;

• настройка моделей с целью повышения точности прогнозов;

• оценка возможности охвата номенклатуры с тысячами позиций, относящихся к трем сотням линий, в рамках данного метода прогнозирования (это возможно);

• автоматизация модели (процедура ручного расчета будет слишком трудоемкой, но в случае необходимости менеджеры и эксперты смогут это сделать).

На каждом шаге предусмотрен контроль со стороны сотрудников, заинтересованных в результатах анализа, что увеличивает их вовлеченность в реализацию нового подхода.

Результаты и необходимые меры. В настоящее время методом статистического прогнозирования еженедельно готовится прогноз спроса по более чем 18 тысячам позиций номенклатуры на 24 месяца вперед. В результате сочетания статистического и согласованного прогноза его точность повысилась в среднем на 12 процентов. По словам Кевина Харрингтона, проект оказался очень успешным:

Результатами проекта стали повышение точности прогноза, рост оборачиваемости запасов и общее повышение согласованности спроса на продукты и их поставки, что привело к сокращению избыточных складских запасов и более быстрому, надежному обслуживанию как Cisco, так и ее потребителей. В худшие времена недавнего финансового кризиса Cisco получила возможность сократить объем складских запасов в сбытовой цепи, не прибегая к их уценке или ухудшению качества обслуживания. В настоящее время наши эксперты по статистическому прогнозированию работают над дальнейшим совершенствованием модели в условиях роста спроса в результате глобального экономического оживления [117] .

В дополнение к результатам, описанным Харрингтоном, Энн Робинсон отмечает, что теперь менеджеры компании уверенно используют показатели уровня спроса и вероятности для характеристики спроса. Они привыкли использовать интервалы возможных значений спроса в противоположность одному прогнозному показателю и упоминают о них на любом важном совещании. Коротко говоря, культура прогнозирования в Cisco резко изменилась в направлении перехода на аналитическую основу.

На всем протяжении проекта Робинсон пыталась вовлечь всех занимающихся прогнозированием сотрудников в новый аналитический процесс. Она провела интенсивный мозговой штурм с участием заинтересованных в получении прогноза, чтобы идентифицировать новые показатели, ориентированные на потребителя. Она устраивала панельные дискуссии с более широкой аудиторией, разрабатывала «дорожные карты» реализации проекта для отдельных групп, а также много раз проводила презентацию «Прогнозирование 101» (Forecasting 101). Для нее разрабатывалось визуальное представление результатов, полученных благодаря функционирующей модели, а сотрудникам предлагалось на их основе «рассказать их собственную историю» о данных. Робинсон наладила тесное сотрудничество с IT-отделением Cisco и отметила, что иногда сложно было найти отличия в заданиях ее группы и IT-отделения.

 

Пример аналитического мышления: оптимизация сбытового персонала в компании Merck

Определение оптимальной численности сбытового персонала в ведущей фармацевтической компании наподобие Merck – сложная аналитическая задача. Регулярно появляются новые продукты, стимулируя спрос и одновременно потребность в сбытовом персонале; столь же регулярно заканчивается срок действия патентов на выпускаемые продукты, что приводит к сокращению потребности в сбытовом персонале. Для новых продуктов данных об объемах продаж за прошлые периоды не существует, поэтому методов надежного прогнозирования будущей потребности в сбытовом персонале нет.

Многие фармацевтические компании нанимают внешних консультантов для решения этой задачи. Однако когда количественный аналитик Пол Каллукаран, имеющий опыт анализа данных по объемам продаж в фармацевтических компаниях, пришел на работу в отдел коммерческой аналитики, топ-менеджеры компании решили, что пора провести анализ численности сбытового персонала собственными силами.

Определение и формулирование проблемы. Какой должна быть оптимальная численность сбытового персонала при наличии лекарств с истекшим сроком действия патента и новых лекарств, только что выведенных на рынок? Сбытовой персонал сгруппирован по регионам и брендам продуктов. Поэтому задача усложняется тем, что нужно определить его численность не в целом, а в разрезе регионов и брендов.

Изучение предыдущих поисков решения. Если вспомнить о предлагаемых консалтинговыми фирмами услугах, то понятно, что кое-какая литература по теме исследования имеется. На предыдущей работе Каллукаран занимался немного иными проблемами, но интересовался тем, как разные компании решают этот вопрос. Однако по большей части методика анализа оставалась за кулисами презентаций, поскольку последние были рассчитаны на восприятие маркетологов и специалистов по продажам. Каллукарану и начальнику отдела коммерческой аналитики Патрику Муру такой подход категорически не нравился. В прошлом разные отделения Merck приглашали консультантов, а те использовали свои методы прогнозирования численности сбытового персонала; на этот раз впервые предпринималась попытка выработать централизованный подход к решению этой проблемы.

Моделирование (выбор переменных). Каллукаран решил использовать несколько методов для расчета оптимальной численности сбытового персонала. В дополнение к традиционному использованию статистических моделей он и его команда решили внимательнее присмотреться к процессу обслуживания отдельного покупателя. Они расспрашивали сбытовых агентов об их работе с покупателями-врачами, пытаясь оценить объем нагрузки для одного такого потребителя. Они также рассчитывали прогнозы по различным продуктам и разрабатывали нелинейные модели откликов продвижения сбытового персонала и возможных изменений в составе прописываемых врачами лекарств. Они анализировали воздействие связанных со сбытовым персоналом факторов, способных повлиять на модель поведения врачей в отношении выписываемых лекарств в противоположность всем остальным факторам (привычки, бренд лекарственных средств, давление со стороны пациентов). Аналитики рассматривали данные на уровне пациентов, чтобы понять причины их приверженности тем или иным лекарствам. Эти данные говорили и о том, что многие пациенты с течением времени прекращают или уменьшают прием прописанных лекарств, что существенно влияет на объем их продаж в долгосрочной перспективе. Наконец, они разработали комплексную оптимизационную модель, способную оптимизировать ресурсы на обслуживание отдельного врача, продукта и каждого из сотен регионов, где продавались лекарства.

Сбор данных. Обычно фармацевтические компании получают данные о выписываемых врачами лекарствах от третьих лиц: от компаний, распространяющих базы данных. У Merck эти данные были. Но для разработки модели функционирования сбытовых агентов требовалось провести анкетирование о моделях их рабочего поведения и затратах времени на потребителя. Для этого следовало завоевать доверие сбытовых агентов, то есть так провести анкетирование, чтобы это не выглядело прелюдией к сокращению персонала. Агенты сообщат достоверные данные только в том случае, если не будут чувствовать угрозу для себя.

Анализ данных. Как мы отмечали, решение этой сложной задачи включало несколько аналитических подходов, в том числе целочисленную оптимизацию и непараметрическую (не предполагающую определенный тип распределения данных) модель, которые рассчитывали характеристики для каждого продуктового сегмента на основе данных за прошлые периоды. Поскольку проект предполагал разработку моделей для каждого бренда и региона, первоначально на это потребовалось 16 часов. Но группа Каллукарана стремилась получать результат быстрее, поэтому ее сотрудники распределили расчетные задания между сотнями дополнительных компьютеров. На каждом из них рассчитывались показатели для определенного региона. Мобилизовав столь мощный компьютерный парк, Каллукаран добился проведения расчетов за 20 минут.

Результаты и необходимые меры. Хотя это был совершенно новый подход к проблеме расчета численности сбытового персонала в Merck, но сама проблема отнюдь не отличалась новизной. Это помогло привлечь сотрудников к внедрению модели и обучить их принимать решения на основе расчетов. Со стороны отдела продаж вице-президент по стратегическому планированию владел аналитическим мышлением и также интересовался наработками прежних консультантов в этой области. В отделе маркетинга уже предпринимались попытки разработать модель для решения этой задачи, но до внедрения дело не дошло. Всегда находился кто-то недовольный тем, что модель не дает ответа то на один, то на другой вопрос; это классический пример того, что лучшее – враг хорошего. В процессе внедрения своей модели расчета численности сбытового персонала Каллукарану удалось убедить маркетологов «использовать то, что уже есть». Сначала он поработал с небольшой командой маркетологов одного из брендов и показал им преимущества новой модели перед интуитивным подходом. Он сопоставил интуитивный подход с основанным на данных аналитическим; но не пытался навязать им использование модели: «Рассматривайте ее как еще один аргумент при принятии решения». Разъяснение преимуществ новой модели группам и отделам опиралось на системное внедрение аналитического подхода на уровне компании.

К этому времени президенту Merck понравилась возможность сравнивать группы агентов, отвечавшие за различные бренды, поскольку это позволяло объективно оценить подаваемые ими заявки на ресурсы. Постепенно почти все отделы в Merck внедрили модель Каллукарана. Его группа аналитиков получала заявки на повторный расчет численности агентов, когда в каком-либо регионе открывались вакансии. Региональные менеджеры получили больше свободы действия одновременно с повышением ответственности за финансовые результаты. Исходя из этих требований, аналитическая группа, включавшая системных разработчиков, создала специальное «аналитическое приложение», подсказывавшее менеджеру, стоит ли брать кого-то на освободившееся место. Приложение получило широкое распространение, поскольку освобождало группу Каллукарана от многочисленных заявок на расчеты.