Попытки понять, как работает мозг, подобны решению гигантской головоломки из кусочков картинки. Вы можете подходить к ее решению двумя способами. Используя подход «сверху вниз», вы начинаете с того, что берете цельную картинку, и, пользуясь ей, решаете, какие кусочки игнорировать, а какие искать. Другой подход, «снизу вверх», когда вы фокусируетесь непосредственно на самих кусочках. Вы изучаете их на наличие особенностей и ищите наиболее подходящие среди других кусочков. Если у вас нет цельной картинки-решения, метод «снизу вверх» является иногда единственным путем.

Головоломка «познай мозг» особенно устрашающая. В отсутствии хорошего теоретического обоснования для понимания интеллекта ученые стараются придерживаться подхода «снизу вверх». Но задача очень трудна, если вообще не неосуществима, если головоломка такая сложная, как мозг. Чтобы ощутить трудность, вообразите головоломку с несколькими тысячами кусочков. Большинство кусочков могут быть интерпретированы различными путями, как если бы у каждого была подходящая картинка на обоих сторонах, но только одна из них правильная. Все кусочки почти одинаковы по форме, так что вы не смогли бы определенно сказать, подходят два кусочка или нет. Большинство из них не будет использовано в конечном решении, но вы не знаете, какие и сколько. Каждый месяц новые кусочки приходят по почте. Некоторые из этих новых кусочков заменяли бы более старые, как если бы разработчик головоломки сказал, «Я знаю, что вы работали с этими старыми кусочками несколько лет, но оказалось, что они не годятся. Извините. Вместо них используйте эти новые кусочки до будущих извещений». К сожалению, у вас нет идей, на что будет похож конечный результат; еще хуже, если у вас были идеи, но они оказались неправильными.

Эта аналогия с головоломкой является великолепным описанием сложности, с которой мы сталкиваемся при создании новой теории кортекса и интеллекта. Кусочки головоломки — это биологические и поведенческие данные, которые ученые собрали за сотни лет. Каждый месяц публикуются новые документы, создающие дополнительные кусочки головоломки. Иногда данные одного ученого противоречат данным другого. Поскольку данные могут быть интерпретированы различными способами, практически во всем есть разногласия. Без теоретических оснований «сверху вниз» не будет консенсуса в том, что искать, что наиболее важно или как интерпретировать горы накопленной информации. Наше понимание мозга застряло на подходе «снизу вверх». Все, что нам нужно — это теоретические обоснования для подхода «сверху вниз».

Модель «память-предсказание» может выступить в этой роли. Она может показать нам, как начинать складывать вместе кусочки головоломки. Чтобы делать предсказания, вашему кортексу нужен способ помнить и хранить знания о последовательностях событий. Чтобы делать предсказания новых событий, кортекс должен сформировать инвариантные представления. Вашему мозгу нужно создавать и хранить модель мира такого, какой он есть, независимо от того, как вы видите его в различных обстоятельствах. Зная, что должен делать кортекс, ведет нас к пониманию его архитектуры, особенно его иерархического дизайна и шестислойной формы.

Когда мы изучим эти теоретические основы, представленные здесь впервые, я перейду на детальный уровень, который может быть многообещающим для некоторых читателей. Большинство концепций, с которыми вы сейчас встретитесь, непривычны даже для экспертов в нейронауках. Но я верю, с небольшим усилием каждый сможет понять фундамент этих теоретических основ. Главы 7 и 8 этой книги гораздо менее технические и более широко исследуют следствия теории.

Наше решение головоломки может теперь обернуться к поиску биологических деталей, которые подтверждают гипотезу «память-предсказание»; это подобно тому, что мы оставим в стороне большой процент кусочков головоломки, зная, что относительно небольшой процент оставшихся кусочков приоткроет решение. Как только мы обнаружим, что ищем, задача станет управляемой.

В то же время я хочу заметить, что эти теоретические основания еще не завершены. Есть множество вещей, которые мне еще непонятны. Но многое я уже сделал, основываясь на дедуктивном выводе, экспериментах, выполненных во множестве различных лабораторий, и знании анатомии. Последние 5 — 10 лет исследователи из множества подобластей нейронаук исследовали идеи, подобные моим, хотя использовали другую терминологию и, насколько мне известно, не пытались сложить эти идеи в одну общую теорию. Они говорят об обработке «сверху вниз» и «снизу вверх», как паттерны распространяются через сенсорные области мозга и как важно инвариантное представление. Например, Габриэль Крейман и Кристоф Кох, нейрофизиологи из Кальтеха, совместно с нейрохирургом Ицхаком Фрейдом из UCLA, обнаружили клетки, которые возбуждаются, когда человек видит изображение Билла Клинтона. Одна из моих целей — объяснить, как образуются эти клетки Билла Клинтона. Конечно, все теории должны делать предсказания, которые могут быть протестированы в лаборатории. Я укажу несколько таких предсказаний в приложении. Сейчас мы знаем, что искать, и очень сложная система больше не выглядит такой сложной.

В следующих разделах этой главы мы глубже и глубже будем зондировать то, как работает модель «память-предсказание». Мы начнем с широкомасштабной структуры и широкомасштабных функций неокортекса, и будем двигаться к предстоящему пониманию более мелких кусочков и того, как они складываются в картинку.

Рисунок 1. Первые четыре области визуального распознавания объектов.

6.1. Инвариантное представление

Ранее я изобразил кортекс как слой клеток размером с обеденную салфетку, такой же толщины, как шесть визиток, где соединения между различными областями задают в целом иерархическую структуру. Сейчас я хочу нарисовать другую картину кортекса, которая высветит ее иерархические соединения. Вообразите, что мы разрезали обеденную салфетку на функциональные области — секции кортекса, которые специализируются на определенных задачах — и сложили эти области одна на другую подобно блинчикам. Если вы разрежете эту стопку и посмотрите со стороны, вы увидите рисунок1. Кортекс на самом деле не похож на это, как вы могли бы подумать, но картинка поможет вам увидеть, как проходит информация. Я показал четыре кортикальных области, в которые снизу поступает сенсорная информация и течет вверх от области к области. Заметьте, информация ходит в обоих направлениях.

Рисунок 1 представляет четыре визуальных области, задействованных в распознавании объектов — то, как вы видите и узнаете кошку, храм, вашу маму, Великую Китайскую Стену. Биологи обозначают их V1, V2, V4 и IT. Визуальная информация, представленная направленными вверх стрелками внизу рисунка 1, возникает в сетчатке обоих глаз и идет в V1. эта информация может рассматриваться как постоянно меняющиеся паттерны, распределенные приблизительно по миллиону аксонов, связанных вместе в оптический нерв.

Мы говорили ранее о пространственных и временных паттернах, но имеет смысл освежить вашу память, поскольку мы будем ссылаться на них очень часто. Вспомните, что ваш кортекс — это большой слой нервной ткани, который содержит функциональные области, специализированные на определенных задачах. Эти области соединяются большими связками аксонов или волокон, которые передают информацию от одного региона к другому, все одновременно. В любой момент времени некоторое множество волокон возбуждается электрическим импульсом, называемым потенциалом действия или спайком, тогда как другие остаются неактивными. Коллективная активность связки волокон и есть то, что обозначает паттерн. Паттерн, поступающий в V1, может быть пространственным, когда ваш взгляд задерживается на объекте, и временными, когда ваш взгляд движется по объекту.

Как отмечалось ранее, примерно три раза в секунду ваши глаза совершают быстрое движение, называемое саккадой, и остановку, называемую фиксацией. Если ученый подключит устройство, отслеживающее движение глаз, вы будете удивлены, какими отрывистыми являются саккады, хотя ваше визуальное ощущение непрерывно и стабильно. Рисунок 2 показывает, как у некоторого человека движутся глаза, когда он смотрит на лицо. Заметьте, что фиксации не произвольны. Теперь вообразите, что вы могли бы видеть паттерн активности, поступающие в V1 от глаз этого человека. Он меняется постоянно с каждой саккадой. Несколько раз в секунду кортекс видит совершенно новый паттерн.

Вы могли бы подумать, «хорошо, но это все еще то же самое лицо, просто смещающееся». В этом есть доля правды, но не так много, как вы думаете. Светочувствительные рецепторы в вашей сетчатке распределены неравномерно. Они плотно сконцентрированы в фовеальной области в центре, и постепенно редеют к периферии. В отличие от этого клетки кортекса распределены равномерно. В результате изображение с сетчатки, отображаемое в первичную визуальную область V1, сильно искажено. Когда ваши глаза фиксируются на носу, а не на глазу того же самого лица, картинка значительно отличается, как если бы ее рассматривали через искажающие линзы, которые постоянно дергаются туда-сюда. Но когда вы видите лицо, оно не кажется вам искаженным, и не кажется прыгающим. Большую часть времени вы даже не осознаете, что паттерны с сетчатки полностью изменяются. Вы видите «просто лицо». (Рисунок 2б показывает этот эффект на примере берегового ландшафта). Это подтверждение загадки инвариантного представления, о котором мы говорили в главе 4. То, что вы воспринимаете — это не то, что видит V1. Как же все таки ваш мозг узнает, что он видит одно и то же лицо, и почему вы не знаете, что поступающая информация изменяющаяся и искаженная?

Рисунок 2а. Как глаза совершают саккады по человеческому лицу.

Рисунок 2б. Искажение, вызванное неравномерным распределением рецепторов по сетчатке.

Если мы поместим электроды в V1 и будем наблюдать, как отвечают отдельные клетки, мы обнаружим, что каждая конкретная клетка возбуждается только в ответ на визуальную информацию от крошечной части сетчатки. Этот эксперимент был проделан много раз и является опорным в исследовании зрения. Каждый нейрон в области V1 имеет так называемое рецептивное поле, которое сильно специфично для каждой мельчайшей части общего поля зрения — то есть, цельного мира перед вашими глазами. Представляется, что клетки в V1 совсем не знают о лицах, машинах, книгах или других значительных объектах, которые вы видите все время; они «знают» о крошечных, с игольное ушко, порциях визуального мира.

Каждая клетка в V1 также настроены на специфические виды поступающих паттернов. Например, конкретная клетка может активно пульсировать, когда она видит линию или край, наклоненный под углом в 30 градусов. Эти края сами по себе имеют небольшое значение. Они могли бы быть частью любого объекта — половицы, стволом отдаленного пальмового дерева, стороной буквы М или одной из почти бесконечного числа возможностей. При каждой новой фиксации, рецептивное поле клетки попадает на новую и совершенно отличную порцию визуального пространства. При некоторых фиксациях клетка будет сильно возбуждаться, на других будет возбуждаться слабо или вообще не будет. Таким образом, каждый раз, когда вы совершаете саккаду, множество клеток в V1 вероятнее всего изменяет свою активность.

Однако, нечто волшебное происходит, если вы помещаете электрод в верхнюю область, показанную на рисунке 1, область IT. Здесь мы обнаруживаем некоторые клетки, которые становятся и остаются активными, когда объект полностью появляется где-нибудь в поле зрения. Например, мы могли бы найти клетки, которые возбуждаются только тогда, когда видно лицо. Эти клетки остаются активными до тех пор, пока ваши глаза видят лицо где-нибудь в поле вашего зрения. Они не включаются и не выключаются при каждой саккаде, как это делают клетки в V1. Рецептивное поле этих клеток в IT покрывает большую часть визуального пространства и настроено на возбуждение, когда видно лицо.

Давайте откроем тайну. Походу охвата четырех кортикальных этапов от сетчатки до IT, клетки изменяются от быстро изменяющихся, пространственно специфичных, распознающих крошечные кусочки ячеек, до постоянно возбужденных, пространственно неспецифичных, распознающих объекты. Клетки в IT говорят нам, что мы видим лицо где-то в поле нашего зрения. Эти клетки, называемые обычно нейронами лица, будут возбуждаться независимо от того, наклонено ли лицо, повернуто ли, или частично загорожено. Это часть инвариантного представления для «лиц».

Написать эти слова кажется так просто. Четыре коротких этапа, и Вуаля, мы узнали лицо. Ни одна компьютерная программа или математическая формула не решает эту задачу с надежностью и общностью, близкой к человеческому мозгу. Но мы знаем, что мозг решает ее за несколько шагов, так что ответ не может быть сложным. Одна из основных целей этой главы объяснить, как получаются нейроны лица, нейроны Билла Клинтона или другие. Мы доберемся до этого, но мы должны охватить сначала много другого.

Взглянем на рисунок 1 по-другому. Вы видите, что информация также течет от высших областей к низшим через сеть обратных связей. Эти связки аксонов, которые идут от областей вроде IT к низшим областям вроде V4, V2 и V1. Более того, обратных связей много, если не больше, чем прямых.

Много лет ученые игнорировали обратные связи. Если ваше понимание мозга сфокусировано на том, как кортекс принимает информацию, обрабатывает ее и затем действует на ее основе, вам не нужны обратные связи. Все что вам нужно — это прямые соединения, ведущие от сенсорных областей кортекса к моторным. Но когда вы начинаете понимать, что функция кортекса — предсказание, то вам необходимо ввести в модель обратные связи; мозг должен посылать поступающую информацию обратно к областям, которые получили информацию первыми. Предсказание требует сравнения того, что происходит и того, что вы ожидаете. То, что действительно происходит идет вверх, то, что вы ожидаете идет вниз.

Те же самые прямые и обратные процессы возникают во всех областях кортекса, задействованных во всех органах чувств. На рисунке 3 рядом с визуальной стопкой блинчиков изображены похожие стопки для слуха и осязания. Там также изображена чуть более высшая кортикальная область, ассоциативная, которая получает и интегрирует информацию от нескольких различных органов чувств. Тогда как рисунок 1 основан на знании соединений между четырьмя известными областями кортекса, рисунок 3 чисто концептуальная диаграмма, не пытающаяся охватить действительные кортикальные области. В реальном мозгу человека масса кортикальных областей соединены различными способами. Фактически, большая часть человеческого кортекса состоит из ассоциативных областей. Анимированная характеристика, показанная здесь и на следующих рисунках, предназначена для того, чтобы помочь вам понять, что происходит, не вводя сильно в заблуждение.

Рисунок 3. Формирование инвариантного представления для слуха, зрения и осязания.

Трансформация — от быстро изменяющихся к медленно меняющимся и от пространственно специфичных к пространственно инвариантным — очень хорошо изучена для зрения. И хотя это не так очевидно и требует доказательств, многие нейрофизиологи верят, что то же самое происходит во всех сенсорных областях кортекса, не только в визуальных.

Возьмем слух. Когда кто-то разговаривает с вами, изменения в звуковом давлении происходят очень быстро; паттерны, поступающие в первичную слуховую область, называемую A1, изменяются очень быстро. Но если мы могли бы поместить электроды чуть выше по слуховому потоку, мы нашли бы инвариантные клетки, которые отвечают на слова или даже на фразы. Ваш слуховой кортекс мог бы иметь группу клеток, которые возбуждаются, когда вы слышите «спасибо» и другую группу клеток, возбуждающуюся на фразу «доброе утро». Такие клетки должны оставались бы активными, в течение всего высказывания, полагая, что вы распознали фразу.

Паттерны, получаемые первой слуховой областью могут изменяться очень широко. Слово может быть произнесено с различным акцентом, на различной высоте или с различной скоростью. Но чем выше по кортикальной иерархии, тем менее значимыми становятся низкоуровневые особенности; слово есть слово, несмотря на акустические детали. То же самое верно и для музыки. Вы можете услышать «Three Blind Mice», сыгранное на пианино, на кларнете или спетое ребенком, и ваш A1 будет получать совершенно различные паттерны в каждом случае. Но электрод, помещенный в высшие слуховые области, должен обнаружить клетки, которые монотонно возбуждаются каждый раз, когда играют «Three Blind Mice», не зависимо от инструмента, темпа или других деталей. Такой конкретный эксперимент не был проведен, конечно, потому что он требует слишком больших вмешательств для человека, но если вы согласны, что должен существовать общий кортикальный алгоритм, вы можете быть уверены, что такие клетки существуют. Мы видим, что в слуховом кортексе тот же самый вид обратных связей, предсказания и инвариантного вспоминания, что и в визуальном.

Наконец, осязание должно вести себя точно также. Опять же, конкретные эксперименты не были проведены, хотя полным ходом идут исследования на обезьянах с помощью аппаратуры, отображающей мозг с высоким разрешением. Поскольку сейчас я сижу и пишу, у меня в руке авторучка. Я трогаю колпачок авторучки, и мои пальцы поглаживают его металлический держатель. Паттерны, поступающие в мой соматосенсорный кортекс от сенсорных рецепторов моей кожи, постоянно изменяются, пока мои пальцы двигаются, но у меня постоянное ощущение авторучки. В один момент я могу согнуть металлический держатель пальцами, в другой момент я это сделаю другим набором пальцев или вообще губами. Много информации, поступающей из различных в соматосенсорный кортекс. Однако, наш электрод снова должен найти клетки в областях, удаленных на несколько шагов от первичной, которые инвариантно отвечают на «авторучку». Они должны оставаться активными, пока я поглаживаю авторучку, и им должно быть все равно, от каких именно пальцев или частей моего тела я дотрагиваюсь до нее.

Подумайте над этим. Слухом или осязанием вы не можете опознать объект с одномоментного сенсорного потока. Паттерны, поступающие от ушей или рецепторов кожи содержат недостаточно информации в каждый конкретный момент времени, чтоб сказать вам, что вы слышите или чувствуете. Когда вы воспринимаете серию слуховых паттернов, такую как мелодия, произнесенное слово или хлопающую дверь, или когда вы тактильно ощущаете объект, такой как авторучка, единственный способ сделать это — использовать поток информации во времени. Вы не можете узнать мелодию, услышав одну ноту, вы не можете узнать ощущение авторучки одним прикосновением. Таким образом, нейронная активность, соответствующая ментальному восприятию объекта, такого как произнесенное слово, должно длиться по времени дольше, чем отдельный паттерн. Это просто другой способ прийти к тому же самому выводу, что чем выше область кортекса в иерархии, тем меньше изменений по времени вы должны видеть.

Зрение также базируется на потоках информации во времени и работает тем же самым общим образом, как слух или осязание, но поскольку мы способны узнавать индивидуальный объект за одну фиксацию, оно портит общую картину. Несомненно, эта способность распознавать пространственные паттерны за короткое время фиксации многие годы сбивала с пути исследователей, работавших над машинным зрением. Они в основном игнорировали критическое значение времени. Хотя можно в лабораторных условиях заставить человека узнавать объекты без движения глаз, это не является нормой. Нормальное зрение, такое как чтение этой книги, требует постоянного движения глаз.

6.2. Интеграция чувств

Что же насчет ассоциативных областей? До сих пор мы видели, как информационные потоки идут вверх и вниз по конкретной сенсорной области кортекса. Потоки, идущие вниз, замещают поступающую информацию и делают предсказание о том, что мы ощутим далее. Те же самые процессы возникают между различными чувствами — то есть, между зрением, слухом и осязанием. Например, что-то, что я слышу, может привести к предсказанию того, что я должен увидеть или почувствовать. Сейчас я пишу в моей спальне. У нашей кошки Кео есть ошейник, который позвякивает, когда она ходит. Я слышу ее приближающееся позвякивание из коридора. По этой звуковой информации я узнаю мою кошку, поворачиваю голову к коридору и входящей Кео. Я ожидаю увидеть ее на основании ее звука. Если Кео не войдет или появится другое животное, я буду удивлен. В этом примере, звуковая информация сначала привела к слуховому узнаванию Кео. Информация поднялась по слуховой иерархии к ассоциативной области и соединила зрение и слух. Затем образ спустился обратно по слуховой и зрительной иерархии, ведя и к слуховому, и к зрительному предсказанию. Рисунок 4 иллюстрирует это.

Такого рода мультисенсорные предсказания возникают все время. Я сгибаю держатель моей ручки, я чувствую, как держатель соскальзывает с пальцев и я ожидаю услышать щелкающий звук, когда держатель ударится о корпус ручки. Если я не слышу щелчка, следующего за отпусканием держателя, я буду удивлен. Мой мозг точно предсказывает, когда я услышу звук и на что он должен быть похож. Чтоб происходило такое предсказание, информация поднимается через соматосенсорный кортекс и спускается обратно и в соматосенсорный, и в слуховой кортекс, ведя к предсказанию звука и ощущения щелчка.

Другой пример: несколько дней я ездил на работу на велосипеде. В то утро я шел в гараж, брал велосипед и выкатывал его на подъездную дорожку. В процессе этого, я получал множество визуальных, тактильных и слуховых ощущений. Велосипед ударялся о дверной косяк, цепь трещала, педали ударяли по моим ногам, и колеса вращались, когда терлись об пол. В процессе выноса велосипеда из гаража мой мозг встречался с плотиной зрительных, слуховых и тактильных ощущений. Каждый сенсорный поток делает предсказания для других весьма скоординированным образом. То, что я вижу, ведет к точному предсказанию того, что я почувствую и услышу, другие чувства примерно также. Вид велосипеда, ударяющегося об косяк заставляет меня ожидать услышать определенный звук и почувствовать подскакивание велосипеда. Ощущение педалей, ударяющихся о мои ноги, заставляет меня взглянуть вниз и увидеть педали там, где я их почувствовал. Предсказания настолько точны, что я должен сразу заметить, если одно из этих ощущений будет немного не скоординированным или необычным. Информация одновременно течет вверх и вниз по сенсорной иерархии, чтобы создать единый сенсорный опыт, включающий предсказание по всем органам чувств.

Рисунок 4. Информация течет вверх и вниз по сенсорной иерархии, чтобы сформировать предсказания и создать единый сенсорный опыт.

Проведите такой эксперимент. Прекратите читать и сделайте что-нибудь, любое движение, которое включает движение вашего тела и манипулирование объектами. Например, подойдите к раковине и откройте кран. Теперь, когда вы сделали это, попробуйте заметить каждый звук, прикосновение и изменение в визуальной информации. Вы должны сконцентрироваться. Каждое действие глубоко связано со зрением, слухом и тактильными ощущениями. Поднимите или поверните кран, и ваш мозг будет ожидать почувствовать давление на вашу кожу и сопротивление ваших мышц. Вы ожидаете увидеть и почувствовать движение рукоятки крана и услышать звук воды в кране. Когда вода ударится о раковину, вы ожидаете услышать другой звук и увидеть и почувствовать брызги.

Каждый шаг создает звук, который вы предвидите осознанно или нет. Даже простейшее действие — держание книги — ведет к многочисленным сенсорным предсказаниям. Вообразите, что вы почувствовали и услышали закрытую книгу, но визуально она остается открытой. Вы должны быть шокированы и сбиты с толку. Как мы видели в эксперименте с измененной дверью в главе 5, вы постоянно делаете предсказания о мире, которые скоординированы по всем вашим чувствам. Когда я концентрируюсь на всех мелких ощущениях, я поражаюсь, как сильно интегрированы наши сенсорные предсказания. Хотя эти предсказания могут показаться простыми или тривиальными, обратите внимание, какие они всепроникающие и как только они могут происходить с такой координацией паттернов, следующих вверх и вниз по кортикальной иерархии.

Когда вы поймете, как взаимосвязаны чувства, вы придете к выводу, что неокортекс, все сенсорные и ассоциативные области работают как одно целое. Да, у нас есть визуальный кортекс, но он просто один из компонентов одной общей сенсорной системы — изображения, звуки, прикосновения и другие чувства, скомбинированные, текут вверх и вниз по единой иерархии со многими ветвями.

Следующий факт: все предсказания обретаются на опыте. Мы ожидаем в настоящем и в будущем, что держатель авторучки будет издавать щелкающий звук, потому что он так делал в прошлом. Велосипеды, ударяющиеся в гаражах, выглядят, чувствуются и звучат для нас предсказуемым образом. Вы не родились с этими знаниями; вы обрели их благодаря невероятной способности вашего кортекса помнить паттерны. Если для поступающего в ваш мозг паттерна есть соответствующий паттерн, ваш мозг использует его, чтобы предсказать будущие события.

Хотя рисунки 3 и 4 не отображают моторный кортекс, вы можете вообразить его как еще одну стопку блинчиков, также как и сенсорную стопку, подсоединенную к сенсорной системе через ассоциативные области (хотя с более тесными соединениями с соматосенсорным кортексом для выполнения движений тела). В этом смысле моторный кортекс ведет себя почти так же, как и сенсорные области. Информация из любой сенсорной области может подниматься к ассоциативным областям, что может вызвать паттерн, попадающий в моторный кортекс и приводящий к поведению. Точно так же, как визуальная информация может вызвать паттерны, идущие к слуховым и сенсорным областям, она может вызвать и паттерны, идущие к моторному кортексу. В первом случае мы интерпретируем эти потоки вверх-вниз как предсказание. В случае с моторным кортексом — как моторные команды. Как указал Монткастл, моторный кортекс выглядит точно так же, как и сенсорный. Следовательно, как кортекс обрабатывает возвращающиеся сенсорные предсказания, похожим образом обрабатывает и моторные команды.

Вскоре мы увидим, что в кортексе нет чисто моторных или чисто сенсорных областей. Сенсорные паттерны одновременно текут и там и там — и затем возвращаются по всем областям иерархии, ведя к предсказанию или моторному поведению. Хотя у моторного кортекса есть некоторые специальные атрибуты, о нем можно думать всего лишь как о части одной большой системы «память-предсказание». Он практически похож на другие органы чувств. Зрение, слух, осязание и поведение глубоко переплетены.

6.3. Новая точка зрения на v1

Следующий шаг в понимании архитектуры кортекса требует взглянуть на кортикальные области по-другому. Мы знаем, что высшие области кортикальной иерархии формируют инвариантное представление. Но почему эта важная функция должна возникать только наверху? Держа на задворках мысли замечание Монткастла о симметрии, я начал изучать различные способы, которыми могли бы соединяться кортикальные области.

Рисунок 1 изображает четыре классических области визуального пути, V1, V2, V4 и IT, где V1 внизу, на нем V2, V4 и на самом верху IT. Каждый из них условно рассматривается и изображен как единая, непрерывная область. Таким образом все клетки V1 предположительно делают одно и то же, хотя в различных частях визуального поля. Все клетки V2 решают задачу подобного типа. Все клетки V4 специализированы подобным же образом.

С традиционной точки зрения, когда изображение лица поступает в область V1, клетки в нем создают грубый набросок лица в терминах простых линейных сегментов и других элементарных деталей. Этот набросок поступает в V2. Затем V2 делает свое дело с изображением, производя более сложный анализ черт лица, и передает результат в V4, и т. д. Инвариантность и распознавание объекта достигается только тогда, когда информация достигает верхней точки, IT.

К несчастью, с такой точкой зрения на V1, V2 и V4 есть некоторые проблемы. Почему инвариантное представление должно возникать только в IT? Если все кортикальные области выполняют одну и ту же функцию, почему IT Должна быть особенной?

Во-вторых, лицо может появиться на левой стороне вашего V1 или на правой, и вы должны узнать его. Но эксперименты ясно показывают, что несмежные колонки V1 не имеют прямого соединения; левая сторона V1 не может знать, что видит правая. Отступите и подумайте над этим. Различные части V1 явно занимаются похожими вещами, так как все они участвуют в распознавании лица, но в то же время они физически независимы. Подобласти или кластеры V1 физически разъединены, но делают одно и то же.

В конечном счете эксперименты показывают, что все высшие области кортекса получают информацию, сходящуюся от двух или более сенсорных областей ниже по иерархии (рисунок 3). В настоящем мозге десятки областей могут сходиться к ассоциативной области. Но в традиционных интерпретациях нижние сенсорные области, наподобие V1, V2 и V4 имеют различные виды соединений. Каждая рассматривается, как если бы у нее был только один вход — только одна стрелка, идущая снизу — без явного схождения информации от других регионов. V2 получает информацию только от V1 и только. Почему некоторые кортикальные области получают сходящуюся информацию, а другие — нет? Это также несовместимо с идеей Монткастла о едином кортикальном алгоритме.

По этим и другим причинам я пришел к уверенности, что V1, V2 и V4 не должны рассматриваться как единые кортикальные области. Наоборот, каждая является набором множества мелких подобластей. Давайте вернемся к аналогии с обеденной салфеткой — плоской версией кортекса. Давайте воспользуемся авторучкой для разметки всех функциональных областей кортекса на нашей кортикальной салфетке. Наибольшей областью безоговорочно является V1, первичная визуальная область. Следующей была бы V2. Они огромны по сравнению с большинством других областей. Я полагаю, что V1 в действительности должна рассматриваться как множество очень маленьких областей. Вместо одной большой области на салфетке мы нарисовали бы множество маленьких областей, которые все вместе занимали бы область, предназначенную для V1. Другими словами, V1 состоит из нескольких отдельных маленьких кортикальных областей, которые не соединяются со своими соседями напрямую, а только через выше или ниже по иерархии. V1 имела бы наибольшее количество подобластей из всех визуальных областей. V2 также состояла бы из меньшего количества подобластей чуть большего размера. Это же было бы верным и для V4. Но со временем, когда вы доберетесь до области IT, это будет действительно единая область, вот почему у клеток в IT «птицеглазое» видение целого визуального мира.

В этом есть привлекательная симметрия. Давайте взглянем на рисунок 5, на котором показана та же самая иерархия, что и на рисунке 3, за исключением того, что там сенсорная иерархия изображена, как я описал выше. Заметьте, что теперь кортекс везде выглядит одинаковым образом. Возьмите любую область, и вы найдете множество нижних областей, обеспечивающих схождение информации. Принимающие области посылают проекции обратно к входным областям, говоря им, какие паттерны они должны ожидать увидеть далее. Высшие ассоциативные области объединяют информацию от нескольких чувств, таких как зрение или осязание. Нижние области, подобные подобластям V2 объединяют информацию от отдельных подобластей в V1. Области не знают — и, конечно же, не могут знать — что обозначает любой из их входов. Подобластям V2 не нужно знать, что они обрабатывают информацию от нескольких частей V1. Ассоциативным областям не нужно знать, что они обрабатывают информацию от зрения и слуха. Наоборот, цель любой кортикальной области — найти, как соотносятся ее входы, запомнить последовательности корреляций между ними и использовать эту память для предсказания того, как входы поведут себя в будущем. Кортекс есть кортекс. Везде происходит один и тот же процесс: общий кортикальный алгоритм.

Рисунок 5. Альтернативный взгляд на кортикальную иерархию.

Это новое иерархическое описание помогает нам понять процесс создания инвариантного представления. Давайте поближе взглянем на то, как это работает в зрительном канале. На первом уровне обработки левая сторона зрительного поля отличается от правой стороны таким же образом, как зрение отличается от слуха. Левый V1 и правый V1 формируют один и тот же вид представления только потому, что на них отображаются подобные паттерны в течение жизни. Как слух и зрение, они могут рассматриваться как отдельные сенсорные потоки, которые объединяются выше.

Подобный образом маленькие области в V2 и V4 являются ассоциативными областями зрения. (подобласти могут перекрываться, но это фундаментально не изменило бы способ работы этих областей). Интерпретация визуального кортекса подобным образом не противоречит и не изменяет что-либо, что нам известно о его анатомии. Информация течет вверх и вниз по всем ветвям иерархического дерева памяти. Паттерны в левом поле зрения могут привести к предсказанию в правом поле зрения тем же путем, как звон колокольчиков моей кошки ведет к визуальному предсказанию того, что она входит в мою спальню.

Наиболее важным результатом этой новой картины кортикальной иерархии является то, что теперь мы можем сказать, что каждая область кортекса формирует инвариантное представление. По-старому у нас не было завершенной картины инвариантного представления — такого, как лица — до тех пор, пока информация не достигала верхнего слоя, IT, который видит цельную картину мира. Теперь мы можем сказать, что инвариантное представление вездесуще. Инвариантное представление формируется в каждой кортикальной области. Инвариантность не является чем то магически проявляющимся, когда мы достигаем верхних областей кортекса, таких как IT. Каждая область формирует инвариантное представление из информации от областей ниже по иерархии. Таким образом, подобласти V4, V2 и V1 создают инвариантное представление на основе того, что поступает в них. Они могут видеть только крошечную часть мира, и словарь сенсорных объектов, с которыми они оперируют, является более простым, но они выполняют ту же самую функцию, что и IT. Также, ассоциативные области выше IT формируют инвариантное представление паттернов от нескольких органов чувств. Таким образом, все области кортекса формируют инвариантное представление мира в изображении нижестоящих областей. В этом есть определенная красота.

Наша головоломка стронулась с места. Мы больше не задаемся вопросом, как формируется инвариантное представление за четыре шага от верха до низа. Вместо этого мы задаемся вопросом, как инвариантное представление формируется в каждой кортикальной области. Это создает ощущение совершенства, если мы всерьез принимаем существование общего кортикального алгоритма. Если одна область хранит последовательность паттернов, то каждая область должна хранить последовательности. Если одна область создает инвариантное представление, но все области создают инвариантное представление. Переосознание кортикальной иерархии подобно тому, как изображено на рисунке 5, делает возможным такую интерпретацию.

6.4. Модель мира

Почему неокортекс построен иерархически?

Вы можете думать о мире, перемещаться в нем, делать предсказания будущего, потому что ваш кортекс строит модель мира. Одна из важнейших концепций этой книги — это то, что иерархическая структура кортекса хранит модель иерархической структуры мира. Вложенная структура реального мира отражается вложенной структурой кортекса.

Что я имел в виду под вложенной или иерархической структурой? Подумайте о музыке. Ноты комбинируются, формируя интервалы. Интервалы комбинируются, формируя мелодические фразы. Фразы комбинируются, формируя мелодии или песни. Песни комбинируются в сборники. Подумайте о письменном языке. Буквы комбинируются, формируя слоги. Слоги комбинируются, формируя слова. Слова комбинируются, формируя словосочетания и предложения. Глядя по-другому, подумайте о вашем окружении. Оно возможно состоит из дорог, домов. В домах есть комнаты. В каждой комнате есть стены, потолок, пол, дверь и одно или несколько окон. Каждая из этих частей состоит из еще более мелких объектов. Окна сделаны из стекла, рам, защелок и жалюзи. Защелки сделаны из еще более мелких частей, вроде шурупов.

На минуту взгляните на то, что вас окружает. Паттерны с сетчатки поступают в ваш первичный визуальный кортекс и комбинируются, чтоб сформировать линейные сегменты. Линейные сегменты комбинируются, чтоб сформировать формы. Эти сложные формы комбинируются, чтоб сформировать объекты, такие как нос. Нос комбинируется с глазами и ртом, чтоб сформировать лицо. Лицо комбинируется с другими частями тела, чтоб сформировать человека, который сидит в комнате напротив вас.

Все объекты в мире состоят из субобъектов, которые появляются вместе согласованно; это то самое определение объекта. Когда мы даем чему-то название, мы делаем это, потому что набор свойств согласованно движется вместе. Лицо является лицом именно потому, что два глаза, нос и рот всегда появляются вместе. Глаз является глазом именно потому, что зрачок, радужка, веки и остальное всегда появляются вместе. То же самое может быть сказано о стульях, машинах, деревьях, парках и ландшафте. И, наконец, песня есть песня, потому что серии интервалов всегда появляются вместе в последовательности.

В этом отношении мир похож на песню. Каждый объект в мире состоит из набора мелких объектов, и большинство объектов являются частями больших объектов. Это то, что я называю вложенной структурой. Поняв ее, вы увидите вложенную структуру во всем. В полной аналогии с этим, ваша память о вещах и способ, которым мозг представляет их, сохранены в иерархической структуре кортекса. Ваша память о вашем доме состоит не из одной области кортекса. Она хранится в иерархии кортикальных областей, которые отражают иерархическую структуру дома. Широкомасштабные отношения сохраняются в верхней части иерархии, а мелкомасштабные — в нижней.

Дизайн кортекса и метод, с помощью которого обучается, естественным путем раскрывают иерархические отношения в мире. Вы не родились со знанием языка, домов или музыки. У кортекса хитрый алгоритм обучения, который естественным путем обнаруживает любую существующую иерархическую структуру и захватывает ее. Когда структура отсутствует, мы впадаем в замешательство, даже в хаос.

В один момент времени вы можете ощущать только с подмножеством мира. Вы можете быть только в одной комнате дом, смотреть только в одном направлении. По причине иерархии кортекса, вы способны знать, что вы в доме, в комнате, смотрите в окно, даже хотя в этот момент ваши глаза фиксируются на защелке окна. Высшие области кортекса обрабатывают представление о вашем доме, тогда как нижние области представляют комнату, еще более нижние смотрят на окно. Аналогично, иерархия позволяет вам знать, что вы слушаете и песню и сборник, хотя в любой момент времени вы слышите только одну ноту, которая сама по себе говорит, какая нота будет следующей. Она позволяет вам знать, что вы с вашей лучшей подругой, хотя ваши глаза фиксируются на ее руках. Высшие области кортекса отслеживают большую картинку, тогда как низшие области активно работают с быстро изменяющимися маленькими деталями.

Поскольку мы можем трогать, слышать и видеть только очень маленькую часть мира в любой момент времени, информация, поступающая в мозг, является последовательностями паттернов. Кортексу необходимо изучать эти последовательности, которые возникают снова и снова. В некоторых случаях, таких как мелодия, последовательности паттернов приходят в жестком порядке, порядке интервалов. Большинство из нас знакомо с таким видом последовательностей. Но я собираюсь использовать слово последовательность в более общем смысле, ближе к значению математического термина множество. Последовательность это множество паттернов, которые обычно следуют один за другим, но не всегда в фиксированном порядке. Что важно, так это то, что паттерны в последовательности следуют один за другим во времени, даже если не в фиксированном порядке.

Некоторые примерны должны прояснить это. Когда я гляжу на лицо, последовательность входных паттернов, которую я вижу, не фиксирована, но определяется моими саккадами. В один момент времени я могу фиксировать в порядке «глаз глаз нос рот», а в другой момент — в порядке «рот глаз нос глаз». Компоненты лица — это последовательность. Они статистически соотносятся и обычно возникают во времени вместе, хотя порядок может меняться. Если вы воспринимаете «лицо», когда фиксируетесь на «нос», то вероятнее всего следующим паттерном будет «глаз» или «рот», но не «авторучка» или «автомобиль».

Каждая область кортекса видит потоки таких паттернов. Если паттерны соотносятся таким образом, что область может научиться предсказывать, какой паттерн будет следующим, кортикальная область формирует постоянное представление, или память для последовательности. Изучение последовательностей это наиболее базовый ингредиент для инвариантного представления объектов реального мира.

Объекты реального мира могут быть конкретными, вроде ящерицы, лица или двери, или они могут быть абстрактными, как слово или теория. Мозг обрабатывает абстрактные и конкретные объекты одинаковым образом. И те и другие просто последовательности паттернов, возникающих вместе во времени предсказуемым образом. Фактически, определенные входные паттерны повторяются, что позволяет кортикальной области знать, что эти образы вызваны реальными объектами мира.

Предсказуемость это определение реальности. Если область кортекса обнаруживает, что она может надежно и предсказуемо двигаться по этим паттернам, используя серии физических движений (таких как саккады глаз или скольжение пальца) и может аккуратно предсказывать их, когда они развертываются во времени (как звуки, составляющие песню или произнесенные слова), мозг интерпретирует их, как имеющие причинно-следственные отношения. Разногласия в многочисленных входных паттернах, возникающие в одном и том же отношении снова и снова без очевидной причинной связи, исчезающе малы. Предсказуемые последовательности паттернов должны быть частью большего реально существующего объекта. Таким образом, надежная предсказуемость является надежным способом узнать, что различные события мира физически связаны вместе. У каждого лица есть глаза, уши, рот и нос. Если мозг видит глаза, затем делает саккаду и видит другой глаз, затем еще одну саккаду и видит рот, он определенно чувствует, что видит лицо.

Если бы кортикальные области могли говорить, они могли бы сказать: «Я ощущаю множество различны паттернов. Иногда я могу предсказать, какой паттерн будет следующим. Но эти паттерны определенно соотносятся один с другим. Они всегда возникают вместе, и я могу надежно перепрыгивать между ними. Таким образом, когда я вижу любое из этих событий, я ссылаюсь на них общим названием. Именно это групповое имя, а не индивидуальные паттерны я передаю в высшие области кортекса».

Таким образом, можно было бы сказать, что мозг хранит последовательности последовательностей. Каждая область кортекса изучает последовательности, вырабатывает то, что я назвал «именами» для последовательностей, которые она знает, и передает эти имена в следующие области выше по кортикальной иерархии.

6.5. Последовательности последовательностей

Когда информация движется вверх от первичных сенсорных областей к высшим уровням, мы видим, что они все меньше и меньше изменяются во времени. В первичной визуальной области, типа V1, множество активных клеток быстро изменяется, поскольку новые паттерны падают на сетчатку несколько раз в секунду. В визуальной области IT клетки, возбуждающиеся на паттерны, более стабильны. Что там происходит? Каждая область кортекса имеет репертуар последовательностей, которые ей известны, аналогичные репертуару песен. Области хранят эти песнеподобные последовательности обо всем: звук прибоя, разбивающегося о пляж, лицо вашей матери, путь от дома до ближайшего магазина, как произносить слово «попкорн», как тасовать колоду карт.

У нас есть названия для песен, и подобным образом каждая кортикальная область имеет названия для каждой из последовательностей, которые она знает. Это «имя» — группа клеток, совместное возбуждение которых представляет набор объектов в последовательности. (Не задумывайтесь сейчас о том, как выбираются эти группы клеток; мы придем к этому позже). Эти клетки остаются активными, пока идет последовательность, и именно ее «имя» передается в следующую область по иерархии. Пока поступающие паттерны являются частью предсказуемой последовательности, область выдает постоянно «имя» для следующей области выше по иерархии.

Это как если бы области сказали: «Вот имя последовательности, которую я слышу, вижу или ощущаю. Вам не нужно знать о конкретных нотах, краях или текстурах. Я вам дам знать, если произойдет что-то новое или непредсказуемое». Более конкретно мы можем вообразить область IT на верхушке визуальной иерархии, передающую эстафету ассоциативным областям выше нее: «Я вижу лицо. Да, с каждой саккадой глаза фиксируются на различных частях лица; я вижу различные части лица там, где они должны быть. Но это все еще то же самое лицо. Я дам вам знать, когда увижу что-то другое». Подобным образом предсказуемые последовательности событий становятся идентифицированными «именем» — постоянным паттерном возбужденных клеток. Это происходит снова и снова по мере продвижения по иерархической пирамиде. Одна область могла бы распознать последовательность звуков, которые составляют фонемы, и передает паттерны, представляющие фонемы, вышестоящей области. Вышестоящая область распознает последовательность фонем, чтоб составлять слова. Следующая вышестоящая область распознает последовательности слов, чтоб составить фразы, и т. д. Примите во внимание, что «последовательности» в нижних областях кортекса могут быть очень простыми, такими как визуальное пространственное движение края чего-либо.

Свертыванием предсказуемой последовательности в «именованный объект» в каждой кортикальной области по иерархии мы достигаем все большей и большей стабильности, чем выше мы находимся. Это создает инвариантное представление.

Обратный эффект возникает, когда паттерн движется обратно вниз по иерархии: стабильный паттерн «раскрывается» в последовательность. Предположим, когда вы учились в седьмом классе, вы заучивали Геттисбергское послание, и сейчас вы хотите повторить его. В высших речевых областях кортекса хранится паттерн, представляющий известную речь Линкольна. Во-первых, этот паттерн разворачивается в воспоминание о последовательности фраз и предложений. В следующей области ниже по иерархии каждая фраза разворачивается в воспоминание о последовательности слов. В этом месте разворачивающийся паттерн раздваивается и идет вниз и по слуховой части кортекса, и по моторной. Следуя по моторному пути, каждое слово разворачивается в воспоминание о последовательности фонем. И, наконец, в нижней области каждая фонема развертывается в последовательность мышечных команд для произнесения звуков. Чем ниже по иерархии вы смотрите, тем быстрее сменяются паттерны. Единый, неизменный паттерн на вершине моторной иерархии в конечном счете приводит к сложной и длинной последовательности звуков речи.

Инвариантность также работает в нашу пользу, когда информация идет вниз по иерархии. Если вы хотите напечатать Геттисбергское послание вместо того, чтоб произнести, все начинается с того же самого паттерна на вершине иерархии. В следующей области ниже по иерархии паттерн разворачивается в фразы. Еще ниже фразы разворачиваются в слова. До сих пор нет разницы между тем, произносится Геттисбергское послание или печатается. Но в следующей области ниже по иерархии моторный кортекс выбирает другой путь. Слова разворачиваются в буквы, буквы разворачиваются в мышечные команды для того, чтоб ваши пальцы печатали. "Four score and seven years ago our fathers brought forth…" — воспоминание об этих словах обрабатывается как инвариантное представление; не имеет значения, произносите ли вы, печатаете или пишете их от руки. Заметьте, вам не нужно запоминать речь дважды, один раз для произнесения, один — для написания. Единое воспоминание об этой речи может принимать различные формы поведения. В любой области инвариантный паттерн может разветвиться и следовать различными путями.

Как дополнительная эффективность, представление о простых объектах на нижних уровнях иерархии может быть многократно использовано для различных высокоуровневых последовательностей. К примеру, нет необходимости изучать одну последовательность слов для Геттисбергского послания и совершенно другую — для речи "I Have a Dream" Мартина Лютера Кинга, даже если только некоторые слова в двух высказываниях совпадают. Иерархия вложенных последовательностей позволяет разделять и многократно использовать низкоуровневые объекты — слова, фонемы и буквы — всего лишь отдельные примеры. Это замечательный эффективный способ хранить информацию о мире и его структуре, и он сильно отличается от того, как работает компьютер.

Та же самая развертываемая последовательность возникает как в сенсорных, так и в моторных областях. Этот процесс позволяет воспринимать и понимать объекты с различных точек зрения. Если вы идете к холодильнику, чтоб взять мороженого, ваш визуальный кортекс активен на множестве уровней. На высшем уровне вы постоянно воспринимаете «холодильник». В областях ниже эти визуальные ожидания разбиваются на серию более локализованных визуальных паттернов. Взгляд на холодильник состоит из фиксаций на дверной ручке, на дозаторе мороженого, на магнитах двери, на детских рисунках и так далее. За несколько миллисекунд, когда вы производите саккаду с одной черты холодильника на другую, предсказание о результате каждой саккады идет вниз по визуальной иерархии. Пока эти предсказания подтверждаются от саккады к саккаде, ваши высшие визуальные области остаются удовлетворенными тем, что вы фактически смотрите на холодильник. Заметьте, что в этом случае, в отличие от фиксированного порядка слов в Геттисбергском послании, последовательность, которую вы видите, когда смотрите на холодильник, не фиксирована; поток информации и паттерны воспоминаний зависят от ваших действий. Таким образом, в случае, подобном этому, развертывание паттерна не является жесткой последовательностью, но результат тот же самый; медленно меняющийся, высокоуровневый паттерн развертывается в более быстро меняющиеся, низкоуровневые паттерны.

Способ, которым вы запоминаете последовательности и представляете их именами, когда информация течет вверх и вниз по кортикальной иерархии, может напомнить вам иерархию военных команд. Генералы на армейской верхушке говорят: «Выдвинуть войска во Флориду на зиму». Простая высокоуровневая команда разворачивается в более детальные последовательности команд, когда она просачивается вниз по уровням иерархии. Нижестоящее командование понимает, что команда требует последовательности таких шагов, как подготовка к покиданию старой позиции, транспортировки во Флориду и подготовки к прибытию на новое место. Каждый из этих шагов разбивается на еще более подробные, чтоб быть выполненными подчиненными. Внизу иерархии тысячи отдельных структур выполняют десятки тысяч действий, приводящих в результате к перемещению войск. Отчеты о том, что происходит, генерируются на каждом уровне. Когда они просачиваются вверх по иерархии, они снова и снова суммируются, до тех пор, пока генерал на верхнем уровне иерархи не получит краткий отчет: «Перемещение во Флориду произошло успешно». Генерал не вникает в детали.

Из этого правила есть исключение. Если что-то идет не так и не может быть выполнено на подчиненных уровнях по цепочке команд, то отчет идет вверх по иерархии до тех пор, пока кто-то не будет знать, что делать далее. Офицер, который знает, как разрешить ситуацию, не видит исключения. Что было непредвиденной проблемой для подчиненных, всего лишь следующая задача в его списке. Офицер затем дает новую команду подчиненным. Неокортекс ведет себя подобным образом. Как мы увидим вскоре, когда возникающие события (другими словами — паттерны) не ожидаемы, информация о них поступает наверх по кортикальной иерархии до тех пор, пока какая-нибудь область не сможет обработать ее. Если нижние области кортекса не смогут предсказать, какой паттерн они видят, они рассматривают это как ошибку и передают ошибку вверх по иерархии. Это повторяется до тех пор, пока какая-то область не предскажет паттерн.

* * *

В силу своей конструкции, каждая кортикальная область пытается хранить и вспоминать последовательности. Но это все еще простое описание мозга. Необходимо добавить немного усложнения в эту модель.

Информация, идущая снизу вверх к областям кортекса — это входные паттерны, распределенные по тысячам и миллионам аксонов. Эти аксоны приходят из различных областей и содержат все виды паттернов. Количество паттернов, которое возможно даже на тысяче аксонов, больше, чем количество молекул во вселенной. За время жизни область кортекса видят только крошечную долю этих возможных паттернов.

Здесь возникает вопрос: Когда отдельная область хранит последовательность, то последовательность чего именно она хранит? Ответ в том, что область сначала классифицирует информацию, как одну из ограниченного количества возможностей, и только потом ищет последовательность. Вообразите, что вы — отдельная кортикальная область. Ваша задача — сортировать кусочки цветной бумаги. Вам предоставили десять корзин, каждая из которых помечена образцом цвета. Одна корзина для зеленых, другая для желтых, третья для красных и так далее. Вам дают кусочки цветной бумаги, один за другим, и велят сортировать их по цветам. Каждая полученная вами бумажка слегка отличается. Поскольку в мире бесконечное количество цветов, вы никогда не получите двух бумажек в точности одного и того же цвета. Иногда легко сказать, в какую корзину должна быть помещена цветная бумажка, но иногда это сложно. Бумажка, которая наполовину красная, а наполовину оранжевая, может быть помещена в любую корзину, но вы должны поместить только в одну из низ, либо в красную, либо в оранжевую, даже если придется выбирать произвольно. (Цель данного упражнения — показать, что мозг должен классифицировать паттерны. Области кортекса делают это, но нет ничего подобного корзинам, в которые клались бы паттерны.)

Теперь вам дали дополнительное задание найти последовательность. Вы замечаете, что часто возникает последовательность «красный красный зеленый пурпурный оранжевый зеленый». Вы называете это «ККЗПОЗ» — последовательностью. Заметьте, что ни одну последовательность невозможно распознать, если вы не классифицируете каждый кусочек бумаги. Без предварительной классификации каждого кусочка бумаги к одной из десяти категорий вы не сможете сказать, что две последовательности являются одинаковыми.

И так, вы поняли задачу и выполняете ее. Вы собираетесь просматривать все входные паттерны — кусочки цветной бумаги, поступающие из низших кортикальных областей — классифицировать их и искать последовательности. Оба шага, классификация и формирование последовательности необходимы для создания инвариантного представления, и каждая область кортекса делает это.

Процесс формирования последовательности окупается, когда информация неоднозначна, как в случае с кусочком бумаги, который попадает иногда между красным и оранжевым. Вы должны выбрать корзину для бумажки, даже если вы не уверены, более красная она или более оранжевая. Если вы знаете наиболее подходящую последовательность для этой серии входных паттернов, вы используете это знание для того, чтоб решить, как классифицировать неоднозначную информацию. Если вы уверены, что вы в «ККЗПОЗ» последовательности, потому что вы только что получили две красных, зеленую и пурпурную, вы ожидаете, что следующая бумажка будет оранжевой. Но следующий кусок бумаги оказывается не оранжевым. Наоборот, он совершенно не там между красным и синим. Он может быть даже слегка красным, чем оранжевым. Но вы знакомы с ожиданием «ККЗПОЗ»-последовательности, и следовательно, вы помещаете бумажку в оранжевую корзину. Вы используете контекст знания последовательности для разрешения неоднозначности.

Мы видим, что этот феномен происходит постоянно в каждодневном опыте. Когда человек говорит, его конкретные слова очень часто не могут быть поняты без контекста. Но когда вы слышите неоднозначное слово в предложении, вы не заморачиваетесь на неоднозначности слова. Вы понимаете его. Аналогично рукописные слова часто неясны без контекста, но часто читаемы внутри целого предложения. Большую часть времени вы не осведомлены, что вы ощущаете неоднозначность или неполноту информации. Вы слышите то, что ожидаете услышать, и видите то, что ожидаете увидеть — по крайней мере, когда то, что вы видите и слышите, удовлетворяет вашему прошлому опыту.

Заметьте, память о последовательностях позволяет вам не только разрешать неоднозначности в полученной информации, но также предсказывать, какая информация должна поступить далее. Пока ваш кортекс сортирует цветную бумагу, вы можете сказать человеку, подающему вам бумагу: «Эй, если ты сомневаешься, какую бумажку дать, то, по моим воспоминаниям, это должна быть оранжевая». Распознавая последовательности паттернов, кортикальные области будут предсказывать будущую информацию и говорить нижестоящим областям, чего они должны ожидать.

Область кортекса не только изучает последовательности, она также обучается модифицировать их классификацию. Скажем, вы начали с набора корзин, помеченных «зеленые», «желтые», «красные», «пурпурные» и «оранжевые». Вы готовы распознавать последовательность «ККЗПОЗ» также, как и другие комбинации этих цветов. Но что если цвет будет сильно отличаться? Что если каждый раз, когда вы видите последовательность «ККЗПОЗ», пурпурный нередко сильно отличается? Новый цвет больше похож на индиго. Так что вы заменяете пурпурную корзину на «индиго». Теперь корзина лучше соответствует тому, что вы видите; вы сократили неоднозначность. Кортекс пластичен.

В кортикальных областях классификации снизу вверх и последовательности сверху вниз постоянно взаимодействуют, изменяясь в течение жизни. В этом суть обучения. Фактически, все области кортекса пластичны, таким образом они могут модифицироваться с накоплением опыта. Формирование новых классификаций и новых последовательностей — это именно то, как вы помните мир.

Напоследок, давайте взглянем на то, как классификация и предсказание взаимодействуют в области кортекса выше по иерархии. Другое назначение вашего кортекса — передать в вышестоящую область имя последовательности, которую вы видите, таким образом, вы передаете кусочек бумаги с надписью «ККЗПОЗ». Эти буквы сами по себе мало что значат для вышестоящей области; имя — это просто паттерн, который комбинируется с другой информацией, классифицируется и затем передается в еще более вышестоящие области. Подобно вам, он отслеживает последовательности, которые он видит. В некоторый момент он может сказать вам: «Эй, если ты сомневаешься, что передать мне, то, по моим воспоминаниям, я предсказываю, что это должна быть последовательность ‘ЖЖКЗЖ’». Это по сути для вас инструкция о том, что искать в вашем собственном входном потоке. Вы лучше будете интерпретировать то, какую последовательность видите.

Поскольку большинство людей слышали термин классификация паттернов, используемый в исследованиях по ИИ и по машинному зрению, давайте взглянем на то, как этот процесс в его обычном понимании отличается от того, что делает кортекс. В попытках заставить машины распознавать объекты исследователи обычно создают шаблоны — скажем, изображение чашки, или некоторый прототип чашки — и затем дают машине инструкции сопоставлять поступающую информацию с прототипом. Если обнаруживается близкое совпадение, компьютер скажет, что он обнаружил чашку. Но в нашем мозгу нет шаблонов подобных этому, и паттерны, которые получает каждая область кортекса, не похожи на картинки. У вас нет воспоминаний о мгновенных снимках с вашей сетчатки, или мгновенных снимков паттернов от улитки или от кожи. Иерархическое представление, являющаяся памятью об объектах, распределено по кортикальной иерархии; она не располагается в одной точке. Также, поскольку каждая область формирует инвариантные воспоминания, то, что обычно область кортекса изучает в последовательностях в инвариантной форме, само по себе и является последовательностью инвариантных воспоминаний. Вы не найдете изображения чашки или какого-либо другого объекта, хранящегося в вашем мозге.

В отличие от памяти видеокамеры, ваш мозг помнит мир таким, какой он есть, а не таким, как он видится. Когда вы думаете о мире, вы вспоминаете последовательности паттернов, которые соответствуют тому, чем являются и как себя ведут объекты мира, а не тому, как они представляются через те или иные органы чувств в любой момент времени. Последовательности, с помощью которых вы получаете опыт об объектах мира, отражают инвариантную структуру самого мира. Порядок, в котором вы воспринимаете части мира, определяется структурой мира. Например, вы можете попасть в самолет, идя прямо по переходу-«рукаву», но не через пункт регистрации на рейс. Последовательности, с помощью которых вы воспринимаете мир, являются реальной структурой мира, и они именно то, что помнит кортекс.

Не забывайте, однако, что инвариантное представление в любой области кортекса может быть развернуто в детальное предсказание того, как ситуация появится в ваших органах чувств, путем распространения паттерна вниз по иерархии. Аналогично инвариантное представление в моторном кортексе может быть развернуто в моторные команды, специфические в данной ситуации, путем распространения паттерна вниз по моторной иерархии.

6.6. На что похожа область кортекса

Сейчас я собираюсь обратить ваше внимание на отдельную область кортекса, одну из тех, что изображены на рисунке 5. На рисунке 6 такая область показана более детально. Моя цель показать вам, как клетки в области кортекса могут запоминать и вспоминать последовательности паттернов, что является наиболее существенным элементом для формирования инвариантного представления и предсказаний. Мы начнем с описания, как выглядит область кортекса, и как она образуется. Кортикальные области значительно отличаются по размерам, наиболее крупные — в первичных сенсорных областях. V1, например, размером с паспорт в смысле площади, которая она занимает на кортексе. Но, как я указал ранее, в действительности она состоит из множества мелких областей размером с букву на этой странице. Сейчас давайте предположим, что типичная кортикальная область размером с небольшую монету.

Рисунок 6. Слои и колонки в кортикальной области.

Вспомните о шести визитках, о которых я упоминал в главе 3, где каждая визитка представляет отдельный слой кортикальной ткани. Почему говорят о слоях? Если вы возьмете нашу кортикальную область монетного размера и поместите ее под микроскоп, вы увидите, что плотность и форма клеток изменяется по мере того, как вы движетесь сверху вниз. Эти отличия задают слои. Верхний слой, называемый первым, наиболее отличный от остальных. В нем очень мало клеток, и он состоит преимущественно из переплетения аксонов, идущих параллельно кортикальной поверхности. Слои 2 и 3 выглядят почти одинаково. В них содержится множество плотно упакованных пирамидальных клеток. В слое 4 клетки звездообразной формы. В слое пять как обычные пирамидальные клетки, так и сверхбольшие пирамиды. Нижний слой, слой 6 также содержит несколько уникальных типов нейронов.

Визуально мы обнаруживаем горизонтальные слои, но очень часто ученые говорят о колонках клеток, которые идут перпендикулярно слоям. Вы можете думать о колонках как о вертикальных «модулях» из клеток, работающих совместно. (Термин колонка вызывает множество дебатов в содружестве нейроученых. Их размеры, функции и значимость спорны. Для наших целей, однако, вы можете думать в общих терминах о колончатой архитектуре, с существованием которой согласны все.) Слои внутри каждой колонки соединяются аксонами, которые идут вверх и вниз и соединяются синапсами по пути. Колонки не выделяются подобно колоннам с четкими границами — в кортексе нет ничего простого — но об их существовании можно догадываться исходя из нескольких фактов.

Одна причина — это то, что вертикально выровненные клетки в каждой колонке имеют тенденцию активизироваться в ответ на один и тот же стимул. Если мы взглянем поближе на колонки в V1, мы обнаружим, что некоторые отвечают на линейные сегменты, которые наклонены в одном направлении (/), а другие отвечают на линейные сегменты, наклоненные в другом направлении (\). Клетки в каждой колонке сильно связаны, именно поэтому колонка целиком отвечает на один и тот же стимул. В особенности, активные клетки в слое 4 заставляют становиться активными клетки в слоях 2 и 3, что затем приводит к активизации клеток в слоях 5 и 6. Активность распространяется вверх и вниз по клеткам колонки.

Другая причина, почему мы говорим о колонках, лежит в том, как формируется кортекс. У эмбриона единственная клетка-предшественник мигрирует из внутренней полости мозга туда, где формируется кортекс. Каждая из этих клеток делится и создает около сотни нейронов, называемых микроколонкой, которые по вертикали соединяются так, как я только что описал. Термин колонка часто неточно используется только для описания различных феноменов; он может ссылаться на вертикальные соединения или на специфические группы клеток от одного и того же предка. Используя последнее определение, мы можем сказать, что в человеческом кортексе приблизительно несколько сотен миллионов микроколонок.

Чтобы увидеть эту колончатую структуру, вообразите отдельную микроколонку толщиной в человеческий волос. Возьмите тысячи волос и отрежьте от них очень короткий сегмент — скажем, высотой с букву i без точки. Выровняйте эти волоски или колонки и склейте их в виде очень плотной кисточки. Затем создайте слой из длинных, очень тонких волос — представляющих аксоны из слоя 1 — и приклейте их горизонтально поверх слоя из коротких волосинок. Это похожий на кисточку слой является очень упрощенной моделью маленькой кортикальной области. Информация течет в основном в направлении этих волос: горизонтально в слое 1 и вертикально в слоях со второго по шестой.

Есть еще одна деталь о колонках, которую вам необходимо знать, и затем мы приступим к тому, для чего это все. При близком рассмотрении мы видим, что как минимум 90 процентов синапсов на клетках в каждой колонке приходит извне этой колонки. Некоторые соединения приходят от соседних колонок. Другие приходят с другой половины мозга. Как же мы можем говорить о значимости колонок, если так много кортикальных соединений распространяются вбок на больших расстояниях?

Ответ в модели «память-предсказание». В 1979, когда Вернон Монткастл указал, что существует единый кортикальный алгоритм, он также предположил, что кортикальные колонки являются базовым вычислительным модулем кортекса. Однако, он не знал, какую функцию выполняют колонки. Я верю, что колонки являются базовым модулем предсказания. Чтобы колонка могла предсказать, когда она должна активизироваться, она должна знать, что происходит в других местах — отсюда синаптические соединения с различных направлений.

Скоро мы вдадимся в детали, но вот обзор того, почему нам надо знать этот вид соединений в мозге. Для предсказания следующей ноты в песне вам нужно знать название песни, в каком месте песни вы находитесь, сколько времени прошло с момента последней ноты и какая была последняя нота. Большое число синаптических соединений, соединяющих клетки в колонках с другими частями мозга обеспечивает каждую колонку контекстом, который ей нужен для того, чтоб предсказать ее активность во множестве различных ситуаций.

* * *

Следующее, что нам необходимо рассмотреть — как эти маленькие кортикальные области (и их колонки) посылают и получают информацию вверх и вниз по кортикальной иерархии. Сначала взглянем на восходящий поток, который имеет относительно прямой маршрут, отображенный на рисунке 7. Вообразите, что мы смотрим на кортикальную область с ее тысячами колонок. Рассмотрим в большом масштабе только одну. Сходящаяся информация от нижестоящих областей всегда приходит в слой 4 — основной входной слой. По пути входные пути формируют соединения в слое 6 (мы увидим позже, почему это существенно). Клетки слоя 4 затем посылают проекции вверх к клеткам в слоях 2 и 3 внутри колонки. Когда колонка отправляет информацию вверх, большинство клеток слоев 2 и 3 посылают аксоны ко входному слою колонок следующей вышестоящей области. Таким образом информация течет от области к области вверх по иерархии.

Информация, идущая вниз по кортикальной иерархии имеет менее прямой маршрут, что изображено на рисунке 8. Клетки слоя 6 являются отправителями нисходящих соединений колонки и проецируются на слой 1 в иерархически нижестоящих областях. В слое 1, аксон распространяется на большие дистанции в низших кортикальных областях. Таким образом информация, текущая вниз по иерархии от одной колонки имеет возможность активизировать множество колонок в нижестоящей области. В слое 1 очень мало клеток, но клетки слоев 2, 3 и 5 имеют дендриты в слое 1, таким образом клетки могут быть возбуждены обратными связями, идущими через слой 1. Аксоны, идущие от клеток в слоях 2 и 3 формируют синапсы в слое 5, когда они покидают кортекс, и, предположительно, возбуждают клетки в слоях 5 и 6. Таким образом мы можем сказать, что когда информация течет вниз по иерархии, ее путь более извилист. Она может разветвиться по множеству различных направлений через распределение в слое 1. Обратная информационная связь начинается с клетки в слое 6 в области, выше по иерархии; она распространяется по слою 1 в нижестоящих областях. Некоторые клетки в слоях 2, 3 и 5 в нижестоящих областях возбуждаются, и некоторые из них возбуждают клетки слоя 6, которые проецируют на слой 1 в еще более нижестоящих по иерархии, и так далее. (Если вы изучите рисунок 8, будет гораздо понятнее.)

Рисунок 7. Восходящие информационные потоки в кортикальную область.

Вот предварительные сведения о том, почему информация распределяется по слою 1. Чтобы преобразовать инвариантное представление в конкретное предсказание требуется способность решать от момента к моменту, каким путем посылать сигнал, когда он распространяется вниз по иерархии. Слой 1 обеспечивает способ преобразования инвариантного представления в более детальное и конкретное представление. Как я говорил выше, вы можете вспомнить Геттисбергское послание либо в устной, либо в письменной форме. Общее представление идет по одному из двух путей, один для устной, другой для письменной речи. Аналогично, когда я слышу следующую ноту мелодии, мой мозг должен взять интервал, например квинту, и преобразовать ее к конкретной ноте, такой как До или Соль. Горизонтальные потоки активности по слою 1 обеспечивают механизм для этого. Чтобы высокоуровневое инвариантное предсказание распространилось вниз по иерархии и стало конкретным предсказанием, мы должны иметь механизм, который позволяет потокам паттернов ветвиться на каждом уровне. Слой 1 отвечает всем требованиям. Мы могли бы предсказать его необходимость, даже если бы мы не знали о его существовании.

Рисунок 8. Нисходящие информационные потоки в кортикальной области.

Последний анатомический штрих: когда аксоны покидают слой 6 чтоб уйти в другие места, они упаковываются в оболочку из белой жировой субстанции, называемой миелином. Эта так называемое белое вещество похоже на изоляцию электрических проводов в вашем доме. Оно помогает предотвратить искажение сигналов и повысить скорость их прохождения, увеличивая ее до двухсот миль в час. Когда аксоны покидают белое вещество, они входят в новую кортикальную колонку в слой 6.

* * *

В конечном счете есть еще один метод непрямой коммуникации кортикальных областей.

Прежде чем я опишу его в деталях, я хочу напомнить вам об автоассоциативной памяти, которая обсуждалась в главе 2. Как вы помните, автоассоциативная память может быть использована для хранения последовательностей паттернов. Когда выход группы искусственных нейронов используется как обратная связь на входы всех нейронов, и к обратной связи добавляется задержка, то паттерны обучаются следовать один за другим в последовательности. Я верю, что кортекс использует тот же самый базовый механизм для хранения последовательности, хотя с небольшими дополнительными ухищрениями. Вместо того, чтоб формировать автоассоциативную память из нейронов, он формирует автоассоциативную память из кортикальных колонок. Выход всех колонок направляется к слою 1. Таким образом, слой 1 содержит информацию о том, какие колонки были только что активны.

Давайте пройдемся по элементам, как показано на рисунке 9. Уже давно известно, что особенно большие клетки в слое 5 в моторном кортексе (область M1) направляет прямые соединения к мышцам и моторным областям в спинном мозге. Эти клетки буквально приводят в действие мышцы и заставляют вас двигаться. Когда вы либо говорите, печатаете или выполняете какие то сложные действия, эти клетки возбуждаются скоординированным образом, заставляя ваши мышцы сокращаться.

Рисунок 9. Как текущее состояние и моторное поведение широко взаимодействуют через таламус.

Совсем недавно исследователи открыли, что гигантские клетки в слое 5 могут играть роль в поведении в других частях кортекса, не только в моторных областях. Например, большие клетки в визуальном кортексе проецируются на часть мозга, управляющую движением глаз. Таким образом, визуальные области кортекса, такие как V2 и V4, не только обрабатывают визуальную информацию, но также влияют на движение глаз, и следовательно на то, что вы видите. Большие клетки слоя 5 наблюдаются по всему неокортексу, во всех областях, претендуя на более значительную роль во всех видах движений.

В дополнение к поведенческой роли, аксоны этих больших клеток слоя 5 раздваиваются. Одна ветвь идет к части мозга, называемой таламусом, показанной на рисунке 9 круглым объектом. Таламус человека имеет форму и размер двух яиц небольших птиц. Он располагается в самом центре мозга, на верхушке старого мозга и окружен белым веществом и кортексом. Таламус получает множество аксонов от всех частей кортекса и посылает аксоны обратно к тем же самым областям. Большинство деталей эти соединений известно, но сам по себе таламус сложная структура и его роль не вполне ясна. Но таламус необходим для нормальной жизни; повреждение таламуса ведет к постоянному вегетативному состоянию.

Есть несколько путей из таламуса в кортекс, но только один интересен нам сейчас. Этот путь начинается в больших клетках слоя 5, которые проецируются на считающийся неспецифическим класс таламических клеток. Неспецифические клетки проецируют аксоны обратно в слой 1 во многие различные области кортекса. Например, клетки 5-го слоя со всей площади областей V2 и V4 посылают аксоны в таламус, а таламус посылает информацию обратно в слой 1 на всю площадь областей V2 и V4. Другие части кортекса делают то же самое; клетки 5-го слоя с различных кортикальных областей проецируются на таламус, который посылает информацию обратно к 1-му слою этих же самых и ассоциированных областей. Я предполагаю, что эти контуры в точности похожи на обратные связи с задержками, которые позволяют модели автоассоциативной памяти запоминать последовательности.

Я сейчас должен упомянуть о двух путях поступления информации в слой 1. Вышестоящие области кортекса распространяют активность по слою 1 нижестоящих областей. Активные колонки в этих областях также распространяют активность через слой 1 в тех же самых областях через таламус. Мы можем думать об этих входах в слой 1 как о названии песни (вход из вышестоящих областей) и как о позиции в песне (задержанная активность от активных колонок в этой же области). Таким образом, слой 1 принимает большинство той информации, которая нам нужна для предсказания того, когда колонка должна быть активной — имя последовательности и позиция в последовательности. Используя эти два сигнала в слое 1, область кортекса может запоминать и вспоминать множество последовательностей паттернов.

6.7. Как работают области кортекса: детали

Держа в уме эти три вещи — схождение паттернов, идущих вверх по иерархии, расхождение паттернов идущих вниз по иерархии и обратная связь с задержкой через таламус — мы можем приступить к рассмотрению того, как области кортекса выполняют необходимые им функции. Вот что мы хотим знать:

1. Как область кортекса классифицирует поступающую информацию (аналогично корзинам)?

2. Как она запоминает последовательности паттернов (такие как интервалы мелодии или последовательности «глаз нос глаз» при рассматривании лица)?

3. Как она формирует постоянные паттерны или «названия» последовательностей?

4. Как она делает конкретные предсказания (встреча поезда в правильное время или предсказание конкретной ноты в мелодии)?

Давайте начнем с предположения, что колонки в области кортекса похожи на корзины, которые мы использовали при классификации цветных бумажек. Каждая колонка представляет метку корзины. Клетки в слое 4 в каждой колонке получают входные волокна от нескольких областей ниже и возбуждаются, если поступает правильная комбинация. Когда возбуждаются клетки в слое 4, это «вынесение решения» о том, что информация удовлетворяет метке. По аналогии с сортировкой бумажек, информация может быть неоднозначной, так что возможно несколько колонок могу соответствовать этой информации. Мы хотим, чтобы область кортекса принимала однозначное решение; бумажка либо красная, либо оранжевая, но не то и другое одновременно. Колонка с наиболее интенсивным входом должна предотвратить возбуждение других колонок.

В мозге есть клетки, которые делают именно это. Они интенсивно тормозят другие нейроны в соседних колонках, эффективно приводя только к одному победителю. Эти тормозные клетки воздействуют только на область, окружающую колонку. Таким образом, даже если имеется значительное торможение, все равно большинство колонок в области может быть активными одновременно. (В реальном мозге нет ничего, что бы представлялось единственным нейроном или колонкой). Для того, чтоб облегчить дальнейшее понимание, вы можете временно предположить, что область выбирает одну и только одну колонку-победителя. Но держите в уме, что одновременно будут активны множество колонок. Актуальный процесс, используемый областью кортекса для классификации информации и то, как она запоминает, слишком сложно и не до конца понятно. Я не буду пытаться протащить вас через выводы. Вместо этого я хочу предположить, что область кортекса классифицирует информацию как набор активных колонок. Затем мы сможем сфокусироваться на последовательностях и названиях последовательностей.

Как кортикальная область хранит последовательность классифицированных паттернов? Я уже предлагал ответ на этот вопрос, но я не вдавался в детали. Вообразите, что вы колонка из нейронов, и информация из нижележащих областей заставляет одну из клеток слоя 4 возбуждаться. Вы счастливы и клетка из вашего 4-го слоя заставляет также возбуждаться клетки в слоях 2 и 3, затем 5 и 6. Колонка целиком становится активной, когда возбуждена из нижестоящих областей. Ваши клетки в слоях 2,3 и 5 имеют тысячи синапсов в слое 1. Если некоторые из этих синапсов активны, когда возбуждаются клетки в слоях 2, 3 и 5, эти синапсы усиливаются. Если это происходит достаточно часто, эти синапсы в слое 1 становятся настолько сильными, что заставляют возбуждаться клетки в слоях 2, 3 и 5 даже если клетки 4-го слоя не возбуждены — значит, некоторые колонки могут активизироваться, даже не получая информации от нижестоящих областей кортекса. В этом случае клетки в слоях 2, 3 и 5 обучаются предсказывать момент, когда они должны возбудиться от паттерна в слое 1. До обучения колонка может становиться активной только если возбуждается из 4-го слоя. После обучения колонка может активизироваться частично по памяти. Когда колонка активизируется от синапсов в слое 1, ей легче возбудиться от нижестоящих областей. Это предсказание. Если бы колонка могла говорить, она сказала бы: — «Когда я активизировалась в прошлом, определенное множество синапсов в слое 1 были активны. Так что когда я снова увижу это определенное множество, я начну возбуждаться заранее».

Вспомните, что половина информации поступает в слой 1 от клеток 5-го слоя в соседних колонках и областях кортекса. Эта информация представляет то, что происходило моментом ранее. Она представляет колонки, которые были активны до того, как стала активна ваша колонка. Она представляет предыдущий интервал мелодии, или последнее, что я видел, или последнее, что я чувствовал или предыдущую фонему в речи, которую я слушаю. Если порядок, в котором возникают эти паттерны, постоянен, то колонки запоминают порядок. Они будут возбуждаться одна за другой в правильной последовательности.

Другая половина информации приходит в слой 1 от клеток слоя 6 в вышестоящих областях. Эта информация более стационарна. Она представляет название последовательности, которую вы в данный момент ощущаете. Если колонки — музыкальные интервалы, то это название мелодии. Если колонки — фонемы, то это слово, которое вы слышите. Если колонки — слова, то сигнал сверху — это предложение. Таким образом информация в слое 1 представляет и название последовательности и последний ее элемент. В этом случае определенные колонки могут входит в состав различных последовательностей без всякой путаницы. Колонки учатся возбуждаться в правильном контексте и в правильном порядке.

Прежде чем двинуться дальше, я должен указать, что не только синапсы в слое 1 участвуют в запоминании того, когда колонка должна стать активной. Как я упоминал ранее, клетки получают и посылают информацию во множество окружающих колонок. Вспомните, что более 90 процентов всех синапсов приходят от клеток из других колонок, и большинство этих синапсов располагаются не в слое 1. Например, клетки в слоях 2, 3 и 5 имеют тысячи синапсов в слое 1, но также тысячи синапсов в их собственном слое. Общая идея в том, что клетки ищут любую информацию, которая поможет им предсказать, когда они должны быть активизированными снизу. Обычно активность в близкорасположенных колонках коррелирует, таким образом мы видим множество прямых соединений к близлежащим колонкам. Например, если линия движется через визуальное поле, она будет активизировать соответствующие колонки. Часто, однако, информация, необходимая для предсказания активности колонки, более глобальна, в этом случае играет роль слой 1. Если б вы были нейроном в колонке, вы бы не знали, что обозначает любой из этих синапсов, все, что вы знали бы — это то, что они помогают вам предсказать, когда вы должны активизироваться.

* * *

Сейчас давайте рассмотрим вывод того, как область кортекса формирует название последовательности. Снова вообразите, что вы область кортекса. Ваши активные колонки изменяются с поступлением новой информации. Вы успешно выучили порядок, в котором колонки становятся активными, а значит, некоторые из клеток становятся активными до прибытия информации из нижестоящих областей. Какую информацию вы посылаете в область кортекса выше по иерархии? Мы видели ранее, что клетки в ваших слоях 2 и 3 посылают аксоны в следующую область выше по иерархии. Активность этих клеток является входной информацией для вышестоящих регионов. Но тут есть одна проблема. Для того, чтоб работала иерархия, вы должны транслировать постоянный паттерн в течение запомненной последовательности; вы должны передавать название последовательности, но не ее детали. До того, как вы запомните последовательность, вы можете передавать детали, но после того, как вы ее запомнили и способны успешно предсказывать, какие колонки будут активными, вы должны передавать только постоянный паттерн. Однако, я еще не показал вам, как это сделать. Как подразумевается сейчас, вы будете передавать в ответ на любой изменившийся паттерн, независимо от того, можете ли вы предсказать его. Когда любая колонка становится активной, клетки в ее слоях 2 и 3 будут посылать сигнал вверх по иерархии. У кортекса должен быть способ удерживать постоянный паттерн, передаваемый в вышестоящие области в течение запомненной последовательности. У нас должен быть способ отключить выход от клеток слоев 2 и 3, когда колонка предсказывает свою активность, или наоборот, сделать эти клетки активными, когда колонка не может предсказать свою активность. Это единственный способ сформировать постоянный паттерн.

Рисунок 10. Формирование постоянного названия для запомненной последовательности.

О кортексе недостаточно известно, чтобы точно утверждать, как он это делает. Я могу вообразить несколько способов. Я опишу наиболее предпочитаемый мной сейчас, но имейте в виду, что более важна концепция, чем конкретный метод. Создание постоянного «названия» паттерна — требование этой теории. Все, что я могу сейчас показать это то, что существует правдоподобный механизм для процесса именования.

Снова вообразите, что вы колонка, как показано на рисунке 10. Мы хотим понять, как вы обучаетесь представлять в вышестоящую область постоянный паттерн, когда вы можете предсказать свою активность, и изменяющийся паттерн — когда не можете. Давайте начнем с предположения, что в слоях 2 и 3 есть несколько классов нейронов. (В дополнение к нескольким типам тормозящих нейронов многие анатомы различают типы нейронов, которые они называют слоями 3а и 3б, так что это предположение не беспочвенно).

Давайте также предположим, что один класс нейронов, называемый нейронами слоя 2, учатся задерживать активность, пока длится заученная последовательность. Группа таких нейронов представляет название последовательности. Они предоставляют постоянный паттерн вышестоящей кортикальной области, пока наша область может предсказывать, какие колонки станут активными. Если наша область кортекса запомнила последовательность из трех различных паттернов, то нейроны в слое 2 всех колонок, представляющих эти паттерны должны оставаться активными, пока внутри последовательности. Они являются названием последовательности.

Теперь давайте предположим, что есть еще один класс нейронов, нейроны слоя 3б, которые не возбуждаются, если наша колонка успешно предсказывает поступающий паттерн, но возбуждаются, когда она не предсказала свою активность. Нейроны слоя 3б представляют неожиданный паттерн. Они возбуждаются, когда колонка становится активной неожиданно. Они возбуждаются каждый раз, когда колонка становится активной до того, как обучится. Но по мере обучения предсказанию активности нейроны слоя 3 становятся все спокойнее. Слои 2 и 3б совместно удовлетворяют нашим требованиям. До обучения и те и другие активизируются и дезактивируются в такт с колонкой, но после обучения нейроны слоя 2 остаются постоянно активными, а нейроны слоя 3 становятся молчащими.

Как эти нейроны обучаются этому? Во-первых, давайте рассмотрим, как заставить замолчать нейроны слоя 3б, когда колонка успешно предсказывает свою активность. Скажем, есть другой нейрон, расположенный выше в слое 3б, а слое 3а. У этого нейрона есть также дендриты в слое 1. Его единственная цель — предотвратить возбуждение нейрона в слое 3б, когда он видит соответствующий паттерн в слое 1. Когда нейроны слоя 3а видят заученный паттерн в слое 1, они быстро активизируют тормозящие нейроны, которые предотвращают возбуждение нейронов слоя 3б. Все это могло бы остановить возбуждение нейронов слоя 3б, когда колонка корректно предсказывает активность.

Теперь давайте рассмотрим более сложную задачу — удержание постоянной активности в течение известной последовательности паттернов. Это сложнее, потому что различные множества нейронов в слое 2 во множестве различных колонок должны оставаться активными все вместе, даже когда их индивидуальные колонки неактивны. Вот как я себе это представляю. Нейроны слоя 2 могли бы обучаться становиться активными только от иерархически вышестоящих областей кортекса. Они могли бы формировать синапсы преимущественно с аксонами из слоя 6 из вышестоящих областей. Нейроны слоя 2 могли бы таким образом представлять постоянное имя паттерна от вышестоящей области. Когда вышестоящая область кортекса посылает паттерн вниз к слою 1 нижестоящей области, множество нейронов в слое 2 в нижестоящей области должно стать активными, представляя все колонки, которые являются членами последовательности. Поскольку эти нейроны слоя 2 также проецируются обратно в вышестоящую область, они должны формировать полустабильную группу нейронов. (Это отличается от того, если бы эти нейроны оставались активными постоянно. Они возможно возбуждаются синхронно в некотором ритме). Это как если бы вышестоящая область посылала бы название мелодии в слой 1 ниже. Это событие заставляет множество нейронов слоя 2 возбуждаться, те, у которых колонка должна быть активной, когда слышится мелодия.

В сумме эти механизмы позволяют кортексу запоминать последовательности, делать предсказания и формировать константные представления, или «названия» последовательностей. Это базовая операция для формирования инвариантного представления.

* * *

Как мы делаем предсказания о событиях, которые мы никогда раньше не видели? Как мы выбираем из множества интерпретаций входной информации? Как область кортекса делает конкретное предсказание из инвариантного воспоминания? Я приводил несколько примеров ранее, таких как предсказание точной следующей ноты в мелодии, когда ваша память помнит только интервалы между нотами, притчу о поезде и процесс вспоминания Геттисбергского послания. В этих случаях единственным путем решения проблемы является использование последней конкретной информации для преобразования инвариантного предсказания в конкретное. Перефразируя это в терминах кортекса, мы должны скомбинировать прямой поток информации (актуальную информацию) с обратным потоком информации (предсказание в инвариантной форме).

Вот простой пример, как, я думаю, это происходит. Скажем, вы — область кортекса и вам сказали ожидать музыкальный интервал величиной в квинту. Колонки области представляют всевозможные интервалы, такие как До-Ми, До-Соль, Ре-Ля и тому подобное. Вам необходимо решить, какая из ваших колонок должна активизироваться. Когда область выше говорит вам ожидать квинту, она заставляет нейроны слоя 2 возбуждаться во всех колонках, которые являются квинтами, такие как До-Соль, Ре-Ля и Ми-Си. Нейроны слоя 2 в колонках, представляющих другие интервалы, неактивны. Сейчас вы должны выбрать одну из колонок из множества возможных квинт. Информация, поступающая в вашу область, является конкретной нотой. Если последняя нота, которую вы слышали, была Ре, то все колонки, представляющие интервал, начинающийся на Ре, такие как Ре-Ми и Ре-Си, частично активизируются входной информацией. Таким образом, теперь в слое 2 у нас активны все колонки, являющиеся квинтами, и в слое 4 у нас идет частичное возбуждение во всех колонках, представляющих интервалы, начинающиеся на Ре. Пересечение этих двух множеств дает нам ответ, колонку, представляющую интервал Ре-Ля (см. рисунок 11).

Как кортекс находит это пересечение? Вспомните, что ранее я упоминал факт, что аксоны от нейронов из слоев 2 и 3 в основном формируют синапсы в слое 5, когда они покидают кортекс, и аналогично, аксоны, идущие в слой 4 из нижележащих областей кортекса формируют синапсы в слое 6. Пересечение этих двух синапсов (сверху вниз и снизу вверх) дает нам все, что необходимо. Нейроны слоя 6, получающие активность из обоих каналов, возбуждаются. Нейроны слоя 6 представляют то, что по мнению области кортекса происходит, конкретное предсказание. Если бы нейроны слоя 6 могли говорить, они могли бы сказать: «Я часть колонки, представляющей нечто. В моем конкретном случае моя колонка представляет музыкальный интервал Ре-Ля. Другие колонки обозначают другое. Я говорю от лица всей кортикальной области. Когда я становлюсь активным, это обозначает, что мы верим, что музыкальный интервал Ре-Ля либо уже возник, либо возникнет. Я мог бы стать активным, потому что информация снизу вверх от уха заставляет нейроны слоя 4 в моей колонке возбуждать всю колонку. Или моя активность могла бы обозначать, что мы узнали мелодию и предсказываем следующую конкретный интервал. В любом случае моя обязанность сказать нижестоящим областям кортекса то, что по нашему мнению происходит. Я представляю нашу интерпретацию мира, не смотря на то, является ли это истиной или просто воображаемо.»

Рисунок 11. Как область кортекса делает конкретное предсказание из инвариантных воспоминаний.

Позвольте мне описать это, используя другую мысленную картинку. Вообразите два кусочка бумаги с множеством маленьких дырочек. Эти дырочки в бумаге представляют колонки, у которых нейроны в слоях 2 и 3 активны, наше инвариантное предсказание. Дырочки на другой бумаге представляют колонки с частичным возбуждением от нижестоящих областей. Если вы положите одну бумажку поверх другой, некоторые из этих дырочек совпадут, другие нет. Совпавшие дырочки представляют колонки, которые должны быть активными.

Этот механизм не только делает конкретные предсказания, он также разрешает неоднозначности в сенсорной информации. Очень часто информация, поступающая в область кортекса, является неоднозначной, как мы видели в случае с цветными бумажками, или когда вы слышите полуискаженное слово. Этот механизм сопоставления потоков информации снизу вверх и сверху вниз позволяет вам выбрать из двух или более интерпретаций. Выбрав, вы сообщаете вашу интерпретацию нижестоящей области.

В каждый момент вашего бодрствования, каждая область неокортекса сравнивает множество ожидаемых колонок, возбуждаемых сверху, с множеством наблюдаемых колонок, возбужденных снизу. Пересечение этих двух множеств и есть то, что мы воспринимаем. Если б мы имеет идеальную информацию и идеальное предсказание, то множество воспринимающих колонок всегда содержалось бы в множестве предсказываемых. Часто такого согласия не наблюдается. Метод комбинирования частичного предсказания с частичной входной информацией решает проблему неоднозначности информации, он восполняет недостающие кусочки информации и выбирает между альтернативными точками зрения. Именно так мы комбинируем ожидаемый инвариантный к тону интервал с последней услышанной нотой для предсказания следующей конкретной ноты мелодии. Именно так мы решаем, является ли картинка вазой или парой лиц. Именно так мы направляем наш моторный поток либо для того, чтоб написать, либо чтобы сказать Геттисбергское послание.

В конце концов, в дополнение к проекции в нижестоящие области, нейроны слоя 6 могут посылать информацию обратно к нейронам слоя 4 своей собственной колонки. Когда они делают это, наше предсказание становится входной информацией. Именно это происходит, когда мы мечтаем или думаем. Это позволяет нам видеть следствия наших собственных предсказаний. Мы делаем это нередко в течение дня, когда планируем будущее, репетируем речь, и беспокоимся о предстоящих событиях. Архитектор кортикальных моделей Стивен Гроссберг называет это «folded feedback» («закольцованные обратные связи»). Я предпочитаю называть «воображением».

* * *

Последнее замечание прежде чем мы завершим этот раздел. Я несколько раз указывал, что чаще всего то, что мы видим, слышим или чувствуем зависит от наших собственных действий. То, что мы видим, зависит от того, куда совершили саккаду наши глаза и как мы повернули голову. То, что мы чувствуем, зависит от того, как мы двигаем наши пальцы и конечности. То, что мы слышим, иногда зависит от того, что мы говорим и делаем.

Таким образом, чтобы предсказать, что мы почувствуем далее, мы должны знать, какие действия мы предпримем. Моторное поведение и сенсорное восприятие сильно взаимозависимы. Как мы можем делать предсказания, если то, что мы почувствуем далее, в основном результат наших собственных действий? К счастью, есть неожиданное и элегантное решение этой проблемы, хотя некоторые детали непонятны.

Первое неожиданное открытие в том, что восприятие и поведение в основном одно и то же. Как я упоминал ранее, большинство, если не все области кортекса, даже визуальные области, участвуют в создании поведения. Нейроны слоя 5, которые проецируются в таламус и затем в слой 1 также, видимо, имеют моторную функцию, потому что они одновременно проецируются в моторные области старого мозга. Таким образом, знание о том, «что сейчас произойдет» — и сенсорное и моторное — доступно в слое 1.

Вторая неожиданная вещь и следствие первой то, что моторное поведение также должно быть представлено в иерархии инвариантного представления. Вы генерируете движение, необходимое для выполнения определенного действия, размышляя над его выполнением в инвариантной к деталям форме. Когда моторная команда идет вниз по иерархии, она транслируется в сложные и детальные последовательности, требуемые для выполнения той активности, которую вы ожидаете. Это происходит и в моторном кортексе, и в сенсорном кортексе, что стирает различие между ними. Если область IT визуального кортекса воспринимает «нос», простое действие переключения на представление для «глаза» генерирует саккаду, необходимую для того, чтоб сделать предсказание реальным. Конкретная саккада, необходимая для перевода взгляда с носа на глаз изменяется в зависимости от того, где расположено лицо. Близкорасположенное лицо требует большей саккады; лицо подальше требует саккаду поменьше. Наклоненное лицо требует совершения саккады под углом, отличающимся от того, когда лицо стоит ровно. Детали необходимой саккады определяются как предсказание увидеть движение «глаза» к V1. Саккада становится все более и более конкретной по мере продвижения вниз по иерархии, приводя в результате к саккаде, наводящей ваши фовеальные области точно на цель или близко к ней.

Давайте взглянем на другой пример. Если мне нужно физически переместиться из комнаты в кухню, все, что моему мозгу достаточно — это переключиться с инвариантного представления комнаты на инвариантное представление кухни. Это переключение вызывает сложную разворачивающуюся последовательность. Процесс генерации последовательности предсказаний того, что я увижу, почувствую и услышу пока иду из комнаты на кухню, также генерирует и последовательность моторных команд, которые заставляют меня идти из комнаты на кухню и перемещать взгляд так, как надо. Предсказание и моторное поведение работают рука об руку, когда паттерны идут вверх и вниз по кортикальной иерархии. Как бы странно это ни звучало, когда задействовано поведение, ваше предсказание не только предсказывает ощущения, оно определяет ощущения. Мысль о следующем паттерне в поведении вызывает каскад предсказаний того, что вы должны ощутить после. Когда каскад предсказаний разворачивается, он генерирует моторные команды, необходимые для успешного завершения предсказания. Думая, предсказывая и выполнение — это части одного и того же процесса разворачивания последовательностей вниз по кортикальной иерархии.

«Выполнение» через размышление, параллельное разворачивание перцептивного и моторного поведения — это суть того, что называется целенаправленным поведением. Целенаправленное поведение — это Святой Грааль робототехники. Он встроен в кортекс.

Конечно, мы можем отключить моторное поведение. Я могу размышлять о разглядывании чего-либо, на самом деле не видя этого, и я могу размышлять о походе на кухню, на самом деле не делая этого. Но размышление о выполнении чего-либо — это буквально начало того, как мы делаем что-то.

6.8. Вверх и вниз

Давайте отойдем слегка назад и поразмышляем о том, как информация движется вверх и вниз по кортикальной иерархии. Когда вы движетесь в мире, в низшие области кортекса попадают изменяющиеся паттерны. Каждая область пытается интерпретировать ее поток паттернов как часть известной последовательности паттернов. Колонки пытаются предсказать свою активность. Если у них получается, они передают стабильный паттерн, имя последовательности в вышестоящую область. И снова, как если бы область сказала: «Я слышу песню, вот ее название. В ее деталях я разберусь сама.»

Но что если придет неожиданный паттерн, неожиданная нота? Или что если мы увидим что-то, что не является частью лица? Неожиданный паттерн автоматически передается вышестоящей кортикальной области. Это происходит естественным путем, когда возбудятся нейроны из слоя 3б, которые не являются частью ожидаемой последовательности. Вышестоящая область может быть способна понять этот новый паттерн как часть ее собственной последовательности. Она могла бы сказать: «О, я вижу, что пришла новая нота. Может быть, это первая нота следующей песни в сборнике. Очень похоже, поэтому я предсказываю, что мы должны перейти к следующей песне. Нижестоящая область, вот название следующей песни, которая, как я думаю, вы должны сейчас услышать». Но если этого распознавания не происходит, неожиданный паттерн продолжает распространяться вверх по иерархии до тех пор, пока некоторая высшая область не сможет проинтерпретировать его как часть ее нормальной последовательности событий. Чем выше неожиданный паттерн поднимется, тем больше областей кортекса будет вовлечено в объяснение неожиданной информации. Наконец, когда область где-то вверху иерархии думает, что сможет понять неожиданное событие, она генерирует новое предсказание. Это новое предсказание распространяется вниз по иерархии до тех пор, пока получается. Если новое предсказание не верное, будет обнаружена ошибка и снова она будет карабкаться вверх по иерархии до тех пор, пока какая-либо область не сможет проинтерпретировать ее как часть ее активной в данный момент последовательности. Таким образом мы можем увидеть, как наблюдаемые паттерны идут вверх по иерархии, а предсказания — вниз по иерархии. В идеале, если бы мир был извествен и предсказуем, большинство потоков вверх-вниз происходили бы мгновенно и возникали бы в нижележащих областях кортекса. Мозг быстро пытается обнаружить, какая часть его модели мира соответствует неожиданной информации. Только тогда он поймет эту информацию и будет знать, чего ожидать дальше.

Если я иду обычным путем по комнате в моем доме, совсем немного ошибок будет распространяться вверх по кортикальной иерархии. Глубоко заученные последовательности моего дома могут быть обработаны в низших областях визуальной, соматосенсорной и моторной иерархии. Я знаю комнату настолько хорошо, что могу пройти по ней даже в темноте. Моя осведомленность об окружении эффективно освобождает большую часть моего кортекса для других задач, таких как размышление о мозге и написание книг. Однако, если бы я попал в незнакомую комнату, особенно в такую, которая отличается от любой из комнат, которые я видел ранее, мне нужно было бы не только смотреть и видеть, куда я иду, но неожиданные паттерны постоянно поднимались бы на самый верх кортикальной иерархии. Чем больше мой сенсорный опыт не соответствует заученным последовательностям, тем больше ошибок возникало бы. В такой нестандартной ситуации я не смог бы больше думать о мозге, потому что большая часть моего кортекса уделяла бы внимание проблемам навигации по комнате. Это распространенная ситуация для людей, которые выходят из самолета в незнакомой стране. Тогда как дороги могут казаться похожими на те, к которым вы привыкли, машины могут проноситься не по той стороне улицы, деньги будут странными, язык непонятным, и поиск туалета может занять всю вашу кортикальную мощь. Не пытайтесь произносить длинные речи, когда идете по чужой стране.

Ощущение неожиданного понимания, момент «Ага!» может быть объяснен в этой модели. Вообразите, что вы смотрите на неоднозначную картинку. Заполненная чернильными кляксами и разбросанными линиями, она не похожа ни на что. Она не имеет смысла. Когда кортекс не может найти какие-либо воспоминания, соответствующие поступающей информации, возникает замешательство. Ваши глаза сканируют все детали картинки. Новая информация полностью поступает на вершину вашей кортикальной иерархии. Высокоуровневый кортекс пробует множество различных гипотез, но, когда эти предсказания идут вниз по иерархии, каждая из них конфликтует с поступающей информацией и кортекс вынужден пробовать снова. В процессе этого замешательства ваш мозг полностью занят попытками понять картинку. В конце концов, вы делаете высокоуровневое предсказание, которое оказывается правильным. Когда это происходит, предсказание начинается на верхушке кортикальной иерархии и успешно распространяется все ниже и ниже. Менее чем за секунду, каждая область получает последовательность, которая удовлетворяет входным данным. Больше ни одна ошибка не поднимается наверх. Вы понимаете картинку, вы видите далматинца среди точек и каракуль (смотрите рисунок 12).

Рисунок 12. Вы видите далматинца?

6.9. Действительно ли обратные связи могут делать это?

За десятилетия стало известно, что соединения в кортикальной иерархии являются реципрокными. Если область А проецируется на область Б, то и Б проецируется на А. Часто бывает, что больше аксонов идет вниз, чем вверх. Но даже хотя это описание является широко принятым, превалирующей парадигмой является то, что играют второстепенную, или «модулирующую» роль в мозге. Идея, что сигнал в обратных связях мог бы немедленно и точно вызывать возбуждение различных множеств нейронов в слое 2, не является превалирующей точной зрения среди нейрофизиологов.

Почему бы так могло быть? Частично причина в том, как я упомянул раньше, что нет реальной необходимости привлекать обратные связи, если вы не принимаете центральную роль предсказания. Если вы считаете, что информация течет напрямую в моторную систему, то зачем вам нужны обратные связи? Другая причина игнорирования обратных связей в том, что сигнал в обратных связях распределен по большому числу областей слоя 1. Интуитивно мы должны были бы ожидать, что сигнал, рассеянный по большой площади мог бы иметь только второстепенный эффект на большинстве нейронов, и несомненно в мозгу есть несколько таких модулирующих сигналов, которые не воздействуют на конкретный нейрон, а изменяют глобальные атрибуты, такие как уровень внимания.

Последняя причина игнорирования обратных связей в том, сколько ученых верят в независимую работу нейронов. Обычный нейрон имеет тысячи или десятки тысяч синапсов. Некоторые расположены очень далеко от тела нейрона, другие почти рядом с ним. Синапсы ближе к телу клетки имеют сильное влияние на возбуждение нейрона. Примерно с десяток синапсов возле тела нейрона могут заставить его сгенерировать спайк или импульс электрического разряда. Это известный факт. Однако, подавляющее большинство синапсов располагаются вдали от тела нейрона. Они распространяются вдаль и вширь по древоподобной структуре дендритов нейрона. Поскольку эти синапсы далеки от тела нейрона, ученые склоняются к уверенности, что спайк, прибывающий на один из таких синапсов, имел бы слабый или почти незаметный эффект на то, сгенерирует нейрон спайк или нет. Эффект от отдаленных синапсов рассеивался бы за то время, пока он достигнет тела нейрона.

Как правило, информация, идущая вверх по кортикальной иерархии, передается по синапсам, расположенным близко к телу нейрона. Информация, идущая вверх по иерархии, имеет, следовательно, более определенный путь от области к области. Также, как правило, обратные связи идущие вниз по кортикальной иерархии, используют для этого синапсы, удаленные от тела нейрона. Нейроны в слоях 2, 3 и 5 посылают дендриты в слой 1 и формируют там множество синапсов. Слой 1 — это масса синапсов, но все они от далеких нейронов из слоев 2, 3 и 5. Более того, любой конкретный нейрон, скажем, в слое 2 будет формировать совсем мало синапсов с помощью конкретного волокна обратной связи. Таким образом, некоторые ученые могут возражать идее, что короткий паттерн в слое 1 мог бы точно вызывать возбуждение набора нейронов в слоях 2, 3 и 5. Но именно это соответствует имеющейся у меня теории.

Разрешение это дилеммы в том, что нейроны ведут себя не так, как в классической модели. Фактически, в последние годы становилось все больше ученых, предполагающих, что синапсы на удаленных тонких дендритах могут играть активную и особую роль в возбуждении нейронов. В этих моделях удаленные синапсы ведут себя не так, как синапсы на толстых дендритах возле тела нейрона. Например, если два синапса располагаются очень близко на тонком дендрите, они могут выступать как «детектор совпадений». То есть, если бы оба синапса получали входной импульс в течение короткого промежутка времени, они могли бы вызывать значительный эффект на нейрон, даже если они далеко от тела нейрона. Они могли бы заставить тело нейрона сгенерировать спайк. Как ведут себя дендриты нейрона до сих пор является загадкой, так что я не могу сказать что-нибудь еще о них. Что важно, так это то, что модель кортекса «память-предсказание» требует, чтобы синапсы, далекие от тела нейрона были способны обнаруживать специфические паттерны.

Глядя в прошлое, мне кажется почти безрассудным говорить, что тысячи синапсов нейрона играют только модулирующую роль. Многочисленные обратные связи и огромное число синапсов существуют с вполне конкретной целью. Используя эту догадку, мы можем сказать, что типичный нейрон имеет способность запоминать сотни точных совпадений на волокнах обратных связей, если они формируют синапсы на тонких дендритах. Это значит, что каждая колонка в неокортексе очень пластична в том смысле, какие паттерны обратных связей могут ее активизировать. Это значит, что каждое конкретное свойство может быть точно ассоциировано с тысячами различных объектов и последовательностей. Моя модель требует, чтобы обратные связи были быстродействующими и точными. Нейроны должны возбуждаться, если они чувствуют некоторое количество совпадений на их удаленных дендритах. Новые модели нейронов должны допускать такое.

6.10. Как обучается кортекс

У всех нейронов во всех слоях кортекса есть синапсы, и большинство этих синапсов может изменяться при обучении. Будет корректно сказать, что обучение и память возникают во всех слоях, вот всех колонках и во всех областях кортекса.

Ранее в книге я упоминал правило Хебба, названное в честь канадского нейропсихолога Дональда О. Хебба. Его формулировка проста: Когда два нейрона возбуждаются одновременно, синапсы между ними усиливаются. (Коротко и точно это передается фразой «Fire together, wire together»). Мы знаем, что Хебб был в основном прав. Конечно, в природе не все так просто, и в действительности детали реального мозга более сложны. Наша нервная система использует множество вариаций правила Хебба; например, некоторые синапсы изменяют свою силу в ответ на небольшие изменения во времени прихода сигнала, некоторые синаптические изменения короткоживущие, некоторые долгоживущие. Но Хебб создал только основу для изучения памяти, не законченную теорию, и эта основа невероятно полезная.

Принципы обучения по Хеббу могут объяснить большую часть того кортикального поведения, которое я упомянул в этой главе. Вспомните, еще в 1970 году устройства автоассоциативной памяти, использовавшие классические алгоритмы обучения по Хеббу, могли запоминать пространственные паттерны и последовательности паттернов. Основная проблема была в том, что те устройства не могли нормально работать с вариациями образов. Согласно теории, предложенной в этой книге, кортекс обошел это ограничение путем использования иерархической стопки из модулей автоассоциативной памяти, и частично, за счет использования усложненной колончатой архитектуры. В этой главе было почти все о иерархии и о том, как она работает, потому что иерархия это то, в чем заключается сила кортекса. Так что вместо того, чтоб идти через детали того, как каждый нейрон запоминает то или это, я хочу охватить более общие принципы обучения в иерархии.

Когда человек рождается, его кортекс практически ничего не знает. Он не знает ни про язык, ни про культуру, ни про дом, ни про город, ни про людей, вместе с которыми он вырастет, ничего. Вся эта информация, структура мира, должна быть выучена. Двумя базовыми компонентами обучения являются классификация паттернов и построение последовательностей. Эти две комплементарные компоненты памяти взаимодействуют друг с другом. Когда одна область запоминает последовательность, информация, которую она посылает в слой 4 в вышестоящую кортикальную область, изменяется. Таким образом, нейроны слоя 4 обучаются формировать новую классификацию, которая изменяет паттерны, проецируемые обратно в слой 1 нижестоящей области, на которую влияет последовательность.

Основа формирования последовательностей — это группирование паттернов, которые являются частью одного объекта. Один способ сделать это заключается в группировании паттернов, которые возникают рядом во времени. Если ребенок держит игрушку в его руке и медленно двигает ее, его мозг может вполне законно предположить, что изображение на сетчатке от момента к моменту относятся к одному и тому же объекту, и, следовательно, изменяющееся множество паттернов может быть сгруппировано. Иногда вам нужны дополнительные сведения, чтоб принять решение, какие паттерны должны принадлежать к одной группе. Чтобы запомнить, что яблоки и бананы являются фруктами, а морковь и сельдерей не являются, требуется учитель, который поможет сгруппировать эти вещи. В любом случае ваш мозг медленно строит последовательности паттернов, которые должны быть вместе. Но когда область кортекса строит последовательности, информация, поступающая к вышестоящим областям, меняется. Информация изменяется от представления индивидуальных паттернов к представлению групп паттернов. Информация, поступающая в область, меняется с нот на мелодии, с букв на слова, с носов на лица и так далее. Поскольку информация, идущая снизу вверх, становится более «объектно-ориентированной», вышестоящие области кортекса могут теперь запоминать последовательности этих высокоуровневых объектов. Там, где раньше область строила последовательность букв, теперь она строит последовательность слов. Неожиданным результатом такого процесса обучения является то, что в процессе повторяющегося обучения представление объектов продвигается вниз по кортикальной иерархии. В течение первых лет жизни ваши знания о мире формируются сначала в вышестоящих областях кортекса, но по мере обучения они реформируются все ниже и ниже по кортикальной иерархии. Мозг не двигает знания; он переобучается снова и снова. (Я не говорю, что все знания начинаются на верхушке кортекса. В действительности формирование знаний более сложно. Я считаю, что классификация паттернов в слое 4 начинается внизу и движется вверх. Но когда это происходит, мы начинаем формировать последовательности, которые движутся вниз. Я полагаю, что эта память о последовательности переформируется все ниже и ниже по кортексу.) По мере продвижения простых последовательностей вниз, верхние области получают возможность запоминать более сложные и утонченные паттерны.

Вы можете наблюдать создание и движение иерархической памяти вниз на примере обучения ребенка. Рассмотрим, как мы учимся читать. Первое, чему мы учимся — это узнавать отдельные печатные буквы. Это медленная и сложная задача, требующая сознательных усилий. Затем мы переходим к узнаванию простых слов. И снова это сложно и медленно поначалу даже для трехбуквенных слов. Ребенок может читать каждую букву в последовательности и произносить буквы одну за другой, но необходимо определенное количество практических занятий, прежде чем слова сами по себе будут распознаваться как слова. После обучения чтению простых слов мы приступаем к многосложным словам. Поначалу мы произносим каждый слог, соединяя их, как мы делали это с буквами, когда учили простые слова. Через годы практики человек может читать быстро. Мы переходим к тому, что мы в действительности не видим отдельных букв, а вместо этого распознаем целые слова и часто целые фразы одним взглядом. Мы не просто быстрее стали читать; мы действительно распознаем слова и фразы как одно целое. Когда мы читаем одновременно слова целиком, видим ли мы буквы? И да и нет. Очевидно, что сетчатка видит буквы, и область V1 соответственно. Но распознавание букв возникает довольно низко по кортикальной иерархии, скажем, в областях V2 или V4. Когда сигнал достигает IT, отдельные буквы уже не представлены. Что поначалу требует усилий целого визуального кортекса — распознавание отдельных букв — теперь возникает ближе к сенсорному входу. По мере продвижения простых объектов, вроде букв, вниз по иерархии, верхние области получают возможность запоминать сложные объекты, такие как слова или фразы.

Другой пример — обучение чтению музыки с листа. Поначалу вам приходится концентрироваться на каждой ноте. Практикуясь, вы начинаете узнавать общие нотные последовательности, затем целые фразы. После достаточно долгой практики вы как бы совсем не замечаете отдельных нот. Нотная запись только напоминает вам о глобальной структуре пьесы; детальные последовательности запоминаются на самых нижних уровнях иерархии. Этот тип обучения возникает и в моторной, и в сенсорной областях.

Необученный мозг медленнее распознает информацию и медленнее формирует моторные команды, потому что воспоминания, используемые в этих задачах, находятся в нем на верхних уровнях иерархии. Информация должна пройти весь путь вверх и вниз, возможно многочисленными путями, чтобы разрешить конфликты. Нейронным сигналам требуется время, чтобы пропутешествовать вверх и вниз по кортикальной иерархии. Необученный мозг еще не сформировал сложные последовательности на верхнем уровне, и, следовательно, не может распознавать и воспроизводить сложные паттерны. Необученный мозг не может понимать высокоуровневую структуру мира. По сравнению с взрослыми, речь ребенка проста, его музыка проста и его социальные взаимодействия просты.

Если вы изучаете определенный набор объектов снова и снова, ваш кортекс переформирует воспоминания для представления этих объектов в нижней части иерархии. Это освобождает верхнюю часть для изучения более тонких, более сложных отношений. Согласно теории именно так появляются эксперты.

В моей работе по разработке компьютеров, некоторые люди удивляются тому, как быстро я могу взглянуть на изделие и увидеть проблемы, присущие его конструкции. После 25 лет разработки компьютеров у меня сформировалась более-чем-средняя модель следствий, ассоциированных с мобильными вычислительными устройствами. Аналогично, опытные родители могут с легкостью узнать, отчего расстроился их ребенок, тогда как начинающие родители могут прилагать все усилия для разрешения ситуации. Опытный бизнес-менеджер может с легкостью увидеть недостатки и преимущества структуры организации, тогда как новичок просто не может понять этих вещей. У них одна и та же информация, но модель новичка недостаточно сложна. Во всех этих и тысячах других случаев мы начинаем обучение с базовых, простых структур. С течением времени мы продвигаем наши знания вниз по кортикальной иерархии и, следовательно, мы получаем возможность изучения высокоуровневых структур. Именно знание высокоуровневых структур делает нас опытными. У экспертов и гениев мозг видит структуру структур и паттерны паттернов, чего не могут другие. Вы можете стать экспертом практикуясь, но определенно существует генетическая компонента и для талантов и для гениев.

6.11. Гиппокамп: вершина всего этого

Под кортикальным слоем лежат и взаимодействуют с ним три больших мозговых структуры. Это базальные ганглии, мозжечок и гиппокамп. Все три существовали до неокортекса. В общем мы можем сказать, что базальные ганглии это примитивная моторная система, мозжечок — изучает точные временные соотношения между событиями, а гиппокамп — хранит память о конкретных местах и событиях. В некоторой степени неокортекс взял на себя их исходные функции. Например, человек, рожденный без большей части мозжечка, будет испытывать трудности в определении временных интервалов и должен будет применять больше сознательных усилий при движении, но во всем остальном он будет практически нормальным.

Мы знаем, что неокортекс отвечает за все сложные моторные последовательности и может напрямую контролировать конечности. Это не значит, что базальные ганглии не важны, просто неокортекс берет на себя большую часть моторного управления. Поэтому я описал общие функции неокортекса независимо от базальных ганглий и мозжечка. Некоторые ученые могут не согласиться с этим предположением, но именно его я использовал в этой книге и своей работе.

С гиппокамп, однако, другое дело. Это одна из наиболее глубоко изученных областей мозга, потому что в нем суть формирования воспоминаний. Если вы потеряете обе половинки гиппокампа (как и многие другие части нервной системы, он существует и в левой, и правой стороне мозга), вы потеряете способность формировать новые воспоминания. Без гиппокампа вы сможете продолжать говорить, ходить, видеть и слышать, и на коротких промежутках времени будете казаться нормальным. Но, фактически, вы глубоко неполноценны: вы не можете запомнить ничего нового. Вы можете помнить друзей, которых вы знали до потери гиппокампа, но вы не можете запомнить ни одного нового человека. Даже если вы встречаете доктора пять раз в день в течение года, каждый раз был бы для вас как первый раз. У вас не было бы воспоминаний о событиях, которые произошли после потери вами гиппокампа.

На протяжении многих лет не хотелось думать о гиппокампе, потому что он не имел для меня смысла. Понятно, что он необходим для обучения, но он не является конечным хранилищем большинства наших знаний. Им является неокортекс. Классическая точка зрения на гиппокамп заключается в том, что там формируются знания, а затем в течение нескольких дней недель или месяцев эти новые знания переносятся в неокортекс. Это мне ничего не говорило. Мы знаем, что зрение, слух, осязание — все наши сенсорные потоки — поступают прямо в сенсорные области кортекса без предварительного прохождения через гиппокамп. Мне казалось, что эта сенсорная информация должна автоматически формировать новые знания в кортексе. Почему же нам для обучения нужен гиппокамп? Как такая отдельная структура, как гиппокамп, может взаимодействовать и опережать обучение в кортексе, только в последствии передавая информацию обратно в кортекс?

Я решил отложить гиппокамп, надеясь, что наступит день, когда его роль для меня прояснится. Этот день настал в 2002 году, практически в то время, когда я только начал писать эту книгу. Один мой коллега из Института Нейронаук в Редвуде, Бруно Ольшозен, указал, что соединения между гиппокампом и неокортексом наводят на мысль, что гиппокамп является самой верхней областью кортекса, а не отдельной структурой. С этой точки зрения гиппокамп занимает верхушку неокортикальной пирамиды, самый верхний блок на рисунке 5. Неокортекс появился на эволюционной сцене в промежутке между гиппокампом и остальными структурами мозга. Несомненно, такая точка зрения на гиппокамп, как на вершину кортикальной иерархии, был уже известен; просто я об этом не знал. Я поговорил с несколькими экспертами по гиппокампу и попросил их объяснить, как эта структура в форме морского конька может предавать знания в кортекс? Никто не смог объяснить. И никто не упомянул о том, что гиппокамп является вершиной кортикальной пирамиды, возможно потому что гиппокамп не только сидит на верхушке кортикальной пирамиды, но также напрямую соединяется с многими другими частями мозга.

Но я тут же увидел новую перспективу, как решение моего замешательства.

Подумайте над информационными потоками от глаз, ушей и кожи в неокортекс. Каждая область неокортекса пытается понять, что обозначает информация. Каждая область пытается понять информацию в терминах известных ей последовательностей. Если она понимает информацию, она говорит: «я поняла, это просто часть объекта, на который я уже смотрю. Я не буду сообщать о деталях». Если область не понимает текущую информацию, она передает ее вверх по иерархии до тех пор, пока не поймет одна из вышестоящих областей. Однако паттерн, который действительно совершенно новый, будет подниматься все выше и выше по иерархии. Последовательно каждая вышестоящая область говорит: «я не знаю, что это, я не предвидела этого, почему бы тебе, вышестоящая область, не взглянуть на это?». Загвоздка в том, что когда вы доберетесь до верхушки кортикальной пирамиды, все, что останется — это информация, которая не может быть понята через предыдущий опыт. У вас осталась действительно новая и неожиданная часть информации.

В повседневности мы встречаем множество новых вещей, поступающих на вершину кортикальной иерархии — например, статья в газете, имя человека, которого вы встретили сегодня утром, автомобильная авария, которую вы видели по пути домой. Именно эти необъясненные и непредсказуемые остатки информации, новый материал поступает в гиппокамп и сохраняется там. Эта информация не будет храниться вечно. Либо она будет передана в кортекс, либо, соответственно, будет потеряна.

Я заметил, что по мере старения я начинаю испытывать проблемы с запоминанием новых вещей. Например, мои дети помнят детали большинства театральных спектаклей, которые они видели за последний год. Я не помню. Возможно, это потому что я видел так много спектаклей за свою жизнь, что я не вижу ничего действительно нового. Новые спектакли укладываются в мои воспоминания о предыдущих спектаклях, и информация просто не попадает в мой гиппокамп. Для моих детей каждый спектакль содержит гораздо больше новой информации и достигает гиппокампа. Если это так, мы можем сказать, что чем больше мы знаем, тем меньше мы запоминаем.

В отличие от неокортекса, у гиппокампа гетерогенная структура из нескольких специализированных областей. Она великолепно подходит для задачи быстрого сохранения поступающих паттернов. Гиппокамп находится в отличной позиции, на верхушке кортикальной пирамиды, чтобы запоминать то, что является новым. Он также находится в отличной позиции для того, чтоб вспоминать эту новую информацию, позволяя ей сохраняться в кортикальной иерархии, что в некоторой степени является медленным процессом. Вы можете мгновенно запомнить новое событие в гиппокампе, но вы запомните что-либо в кортексе только если вы ощущаете это снова и снова, либо в реальности, либо думая об этом.

6.12. Альтернативный путь по иерархии

В кортексе есть другой значительный путь для передачи информации от области к области вверх по иерархии. Этот альтернативный путь начинается в нейронах слоя 5, которые проецируются в таламус (отличие одних частей таламуса от других мы обсуждали ранее), и затем из таламуса в вышестоящую область кортекса. Если две области кортекса соединяются напрямую в иерархическом стиле, они также соединяются косвенно через таламус. Этот второй путь передает информацию только вверх по иерархии, но не в низ. Таким образом, при движении вверх по кортикальной иерархии есть прямой путь между двумя областями и косвенный путь через таламус.

Второй путь имеет два режима функционирования, определяемые нейронами таламуса. В одном режиме путь практически не работает, так что информация по нему не идет. В другом режиме информация идет точно между двумя областями. Двое ученых, Мюррей Шерман из Нью-Йоркского Государственного Университета и Рей Гиллери из Медицинского Университета Висконсина описали альтернативный путь и постулировали, что он может быть настолько же важным, как и прямой путь (возможно даже больше), что и является темой данной главы. У меня есть предположения о том, для чего нужен этот второй путь.

Прочтите это слово: imagination. Большинство людей может прочесть это слово с первого взгляда. Теперь взгляните на букву i в середине слова. Теперь взгляните на точку над i. Ваши глаза могут смотреть в одно и то же место, но в одном случае вы видите слово, в другом — букву, в последнем случае вы видите точку. Вглядитесь пристально в букву i и попытайтесь переключать ваше восприятие между словом, буквой и точкой. Если у вас не получается, попробуйте произносить «точка», «i» и «imagination», пока вглядываетесь в точку. Во всех случаях одна и та же информация поступает в V1, но по мере того, как она достигает области IT, вы воспринимаете различные вещи, различные уровни детализации. Область IT знает, как распознать все три объекта. Она может распознать отдельную точку, букву i, и слово целиком. Но когда вы воспринимаете слово целиком, V4, V2 и V1 обрабатывают детали и все, о чем знает IT — это слово. Обычно вы не воспринимаете отдельные буквы при чтении; вы воспринимаете слова или фразы. Но вы можете воспринимать буквы, если захотите. Мы занимаемся таким сдвигом внимания все время, но обычно мы это не осознаем. Я могу слушать музыку и воспринимать только мелодию, но если я попытаюсь, я могу выделить певца или бас-гитару. В мои уши поступают одни и те же звуки, но я могу фокусировать мое восприятие. Каждый раз, когда вы чешете голову, движение вызывает внутри громкий звук, но обычно вы не осознаете его. Однако, если сфокусироваться на нем, вы можете отчетливо услышать звук. Это другой пример того, как сенсорная информация, которая обычно обрабатывается нижними уровнями кортикальной иерархии, может быть перенесена на высшие уровни если вы обращаете на нее внимание.

Я полагаю, что альтернативный путь через таламус — это механизм, посредством которого мы обращаем внимание на детали, которые обычно мы не замечаем. Он пропускает группирование последовательностей в слое 2, посылая сырые данные в вышестоящую область кортекса. Биологи показали, что альтернативный путь может включаться одним из двух способов. Один из них — это сигнал из вышестоящей области самого кортекса. Этот способ вы использовали, когда я попросил вас обращать внимание на детали, которые вы обычно не замечаете, такие как точка над i или звук почесывания головы. Второй способ активировать этот путь — это сильный неожиданный сигнал снизу. Если сигнал на альтернативный путь достаточно сильны, он посылает вышестоящей области сигнал пробуждения, которая снова может включить альтернативный путь. Например, если бы я показал вам лицо и спросил, что это было, вы бы ответили «Лицо». Если бы я показал вам то же самое лицо, но со странной отметиной на носу, вы сначала узнали бы лицо, но затем немедленно ваши нижние зрительные уровни заметили бы, что что-то не так. Эта ошибка форсирует открытие альтернативного пути. Детали теперь пойдут по альтернативному пути, пропуская группирование, которое обычно возникает, и ваше внимание привлечет отметина. Теперь вы видите отметину, а не просто лицо. Если б отметина было достаточно необычной, она могла бы привлечь все ваше внимание целиком. В этом случае необычные события быстро привлекают ваше внимание. Именно поэтому мы не можем не обращать внимание на уродство или другие необычные паттерны. Ваш мозг делает это автоматически. Однако, часто ошибка недостаточно сильная, чтоб открыть альтернативный канал. Вот почему мы иногда не замечаем, что слово написано с ошибкой.

6.13. Завершающие мысли

Чтобы найти и обосновать новую систему научных взглядов, необходимо искать простейшие концепции, способные объединить и объяснить большое количество несопоставимых фактов. Неизбежным следствием такого процесса является то, что уходят в крайность излишнего упрощения. Важные детали вероятно буду проигнорированы и факты будут проинтерпретированы неправильно. Если такая система взглядов становится устоявшейся, неизбежно будут найдены улучшения и исправления, показывая, как далеко зашли начальные предположения, или недостаточно далеко, или вообще были ошибочны.

В этой главе я ввел множество умозрительных идей о том, как работает неокортекс. Я ожидаю, что некоторые из этих идей будут опровергнуты, и, вероятно, каждая из них будет пересмотрена. Есть также множество деталей, о которых я даже не упомянул. Мозг очень сложен; специалисты по нейронаукам, читающие эту книгу, должны знать, что я привел грубую характеристику сложности реального мозга. Но я верю, что в целом озвучил новую систему взглядов. Все, на что я могу надеяться, это то, что основные идеи будут сохранены, и изменятся только детали вопреки новым данным и новому осмыслению.

В конце концов, вам может быть неприемлема идея, что простая, но большая система памяти может действительно в результате вести себя так, как человек. Можем ли вы и я быть просто иерархической системой памяти? Могут ли наши жизнь, верования и желания быть сохраненными в триллионах синапсов? В 1984 я начал профессионально писать программы. До этого я писал маленькие программки, но тогда я в первый раз программировал компьютер с графическим интерфейсом и впервые работал над большим и сложным приложением. Я писал приложение для операционной системы, созданной Grid Systems. С окнами, множественными шрифтами и меню, операционная система Grid была действительно продвинутой для того времени.

Однажды меня поразила практическая невозможность того, что я делаю. Как программист, я написал одну строчку кода. Я сгруппировал строчки кода в блоки, называемые подпрограммами. Подпрограммы были сгруппированы в модули. Модули были скомбинированы, чтоб стать приложениями. В программе для электронных таблиц, над которой я работал, было так много подпрограмм и модулей, что никто не мог понять это полностью. Это было сложно. Хотя каждая строчка кода делала совсем немного. Чтобы нарисовать один пиксел на дисплее, требовалось несколько строчек кода. Чтобы нарисовать целый экран с электронной таблицей, компьютеру требовалось выполнить миллионы инструкций, распределенных по сотням подпрограмм. Подпрограммы использовали другие подпрограммы рекурсивным способом. Это было настолько сложно, что было невозможно знать все, что должно было бы происходить в выполняющейся программе. Меня поразило, насколько невероятно то, что программа за время выполнения рисует картинку, которая нам кажется появившейся мгновенно. Ее внешним проявлением были таблицы чисел, меток, текстов и графов. Она вела себя как электронная таблица. Но я знал, что должно происходить внутри компьютера с процессором, выполняющим одну простую инструкцию в один момент времени. Было трудно поверить, что компьютер смог бы пройти его путь по лабиринту модулей и подпрограмм, и выполнить все эти инструкции настолько быстро. Если бы я не знал подробностей, я был бы уверен, что это не может работать. Я понимал, что если кто-то изобрел концепцию компьютера с графическим интерфейсом и электронными таблицами, и представил ее мне на бумаге, я бы отверг ее как непрактичную. Я сказал бы, что ему потребовалась бы вечность, чтоб что-то сделать. Это было унизительной мыслью, потому что это работало. Затем я понял, что мое интуитивное ощущение скорости микропроцессора и мое ощущение силы иерархического дизайна были неадекватными.

В этом был урок про неокортекс. Он не был сделан из сверхбыстрых компонент и правила, по которым он работает, не сложны. Однако он имеет иерархическую структуру, содержащую миллиарды нейронов и триллионы синапсов. Если для нас сложно вообразить, как такая логически простая, но численно громадная система памяти может создавать наше сознание, наш язык, нашу культуру, наше искусство, эту книгу, нашу науку и технологию, то это потому, предположил я, что наше интуитивное ощущение емкости неокортекса и силы его иерархической структуры являются неадекватными. Неокортекс работает. Это не волшебство. Мы можем понять его. И, подобно компьютеру, в конце концов мы сможем построить интеллектуальные машины, которые будут работать по тем же самым принципам.