Из истории
Акустика — область физики, изучающая звуки, их природу, образование, распространение и восприятие. Гидроакустика — отрасль акустики, занимающаяся изучением звуковых явлений в воде.
Современный военный корабль, как надводный, так и подводный, без гидроакустических приборов небоеспособен. Гидроакустика — это «уши» корабля, а для подводной лодки — и ее «глаза».
Еще в 1490 г. известный мыслитель и ученый Леонардо да Винчи заметил возможность прослушивания подводных шумов, опустив один конец трубы в воду, а другой приложив к уху.
В начале прошлого столетия ученые серьезно заинтересовались распространением звуковых волн в воде. Их интересовало, можно ли раскрыть при помощи звука тайны глубин моря и как это сделать.
Вначале были применены простые по устройству приспособления, называемые гидрофонами. Гидрофон представляет собой металлическую трубу, изогнутую на одном конце под углом 90°. На конце изогнутой части прикреплен рупор с туго натянутой кожей на широкой его части. Опустив конец трубы с рупором в воду, а второй конец приложив к уху, можно слышать звуки, возникающие под водой.
В 1905 г. в Петербурге под руководством инженера Р. Ниренберга проводились первые опыты по созданию гидроакустической аппаратуры. В 1912 г. К. Шиловский предложил устройство, основанное на принципе приема отраженных ультразвуковых сигналов от препятствий.
Первая мировая война послужила толчком в развитии гидроакустики и создании различных гидроакустических приборов. В 1918 г. Ланжевеном совместно с Шиловским был создан первый гидролокатор.
В годы Великой Отечественной войны гидроакустика была уже одним из важнейших средств, обеспечивающих боевые действия кораблей флота.
В послевоенные годы и в настоящее время гидроакустика развивается бурными темпами.
Скорость звука в воде
Мы знаем, что скорость света во много раз больше скорости звука. Примеры, подтверждающие этот вывод, часто наблюдаем в повседневной жизни. Взметнулся вверх столб пыли и камней, а через некоторое время слышен звук взрыва. Над заводской трубой появился белый дымок, а когда он почти рассеялся, до нашего слуха донесся звук гудка. И это понятно, так как скорость звука в воздухе всего 330 метров в секунду, то есть в 900 тысяч раз меньше, чем скорость света.
Известно также, что скорость звука изменяется в зависимости от среды, в которой он распространяется. Чем плотнее среда, тем больше скорость звука. В воде она составляет 1450 метров в секунду, а в стали 5050 метров в секунду (рис. 18).
Рис. 18. Распространение звука в различных средах.
Известно, что если приложить ухо к железнодорожным рельсам, то шум идущего поезда слышен задолго до его появления и тем более до возникновения шума в воздухе.
Если представить, что звуки, созданные в Ленинграде одновременно в воздухе, воде и стали, были бы слышны в Москве, то в Москву звук в воздухе прошел бы за 31 минуту, в воде — за 7,2 минуты, а в стали всего за 2 минуты.
Но даже в одной и той же среде скорость звука может быть различна, так как зависит от многих причин (температуры, плотности, солености и т. д.).
Как же измерили скорость звука в воде?
В 1827 г. на Женевском озере впервые были проведены опыты по измерению скорости звука в воде. Две лодки были расположены одна от другой на расстоянии 13 847 метров. На одной из них под днищем был подвешен колокол, а со второй опущен в воду простейший гидрофон.
На первой лодке человек ударил в колокол и одновременно поджег порох (рис. 19, а). На второй лодке человек в момент вспышки пороха запустил секундомер (рис. 19, 6) и стал ждать прихода звукового сигнала от колокола в воде.
Рис. 19. Измерение (скорости звука: а — на первой лодке человек ударил в колокол и поджег порох; б — на второй лодке человек в момент вспышки пороха запустил секундомер.
В момент прихода звука секундомер был остановлен. Зная расстояние и время прохождения звука, вычислили скорость звука в воде, которая оказалась в четыре с лишним раза больше скорости звука в воздухе, т. е. 1450 метров в секунду.
Опытами и теорией установлено, что при увеличении температуры воды на 1 °C скорость звука увеличивается примерно на 0,2 %.
Соленость воды также влияет на скорость звука. С увеличением солености воды на один промилле скорость звука увеличивается на 0,1 %.
В различное время года и в различных морях скорость звука практически колеблется в пределах 1450–1500 метров в секунду.
Звук отражается и преломляется
В конце XIX века русский ученый Ф. В. Петрушевский заметил, что звук на границе двух различных сред, например воздуха и воды, или на границе неоднородности одной и той же среды отражается и преломляется, т. е. меняет направление распространения. Искривление звуковых лучей называется рефракцией.
Если, например, вода имеет различную температуру или соленость, то на границе, разделяющей слои воды с различной температурой или соленостью, звуковой луч изменит свое направление, т. е. преломится, а часть энергии звукового луча отразится (рис. 20).
Рис. 20. Преломление и отражение звукового луча.
Величина преломления луча зависит от различия среды по плотности, температуре и т. д. Чем больше одна среда отличается от другой по температуре или солености, тем больше угол преломления звукового луча. Звуковой луч преломляется потому, что, попав в другую среду, его скорость изменяется.
Чем больше температура воды и ее соленость, тем больше скорость распространения звуковых волн. Звуковые лучи искривляются в сторону тех слоев воды, в которых меньше скорость распространения звука.
Когда звуковой луч проходит из среды I с большей скоростью распространения в среду II с меньшей скоростью распространения, то угол преломления меньше угла падения (рис. 21, a), и наоборот, угол преломления больше угла падения, когда звуковой луч проходит из среды II с меньшей скоростью распространения в среду I с большей скоростью распространения (рис. 21, б).
Рис. 21. Переход звукового луча из одной среды в другую: а — из среды с большей скоростью звука; б — из среды с меньшей скоростью звука.
Летом верхние слои моря нагреваются больше и поэтому звуковые лучи изгибаются вниз (рис. 22, а), а зимой верхние слои моря холоднее нижних и звуковые лучи изгибаются вверх (рис. 22, б).
Рис. 22. Распространение звукового луча: а — летом; б — зимой.
Отражение луча зависит от различия плотности среды, в которой распространяется звук и от которой он отражается. Чем больше разница в плотности двух сред, тем больше энергии будет отражаться. Например, звуковой луч, достигая поверхности воды, полностью отразится, так как разница в плотности воды и воздуха большая. Почти то же самое произойдет, если звуковой луч достигнет дна моря, причем отражение будет наибольшим, если дно каменистое, и наименьшим, если дно илистое.
Реверберация и эхо
Морская среда неоднородна не только потому, что слои моря имеют различные соленость и температуру, а и по другим причинам. В морской воде можно обнаружить много пузырьков воздуха и газа, а также твердых частиц во взвешенном состоянии. Летом температура воды повышается, поэтому количество пузырьков больше, чем зимой.
Звуковые волны, распространяясь в море, отражаются от пузырьков воздуха и газа (рис. 23), что при прослушивании вызывает непрерывное звучание, называемое реверберацией.
Рис. 23. Звуковые волны отражаются от пузырьков воздуха, находящихся в воде.
Непрерывность звучания объясняется тем, что пузырьки находятся близко один от другого и волны не могут отражаться от каждого пузырька в отдельности. Звуковые волны отражаются вначале от пузырьков, расположенных в непосредственной близости от излучателя. При дальнейшем распространении звуковой волны отраженные сигналы приходят от пузырьков, находящихся на все большем расстоянии.
Естественно, что от пузырьков, находящихся на большем удалении, отраженные сигналы слабее, поэтому звучание реверберации постепенно замирает.
Если звуковая волна на своем пути встретит какое-либо упругое препятствие, то от него отраженный сигнал будет сильнее реверберации. Этот отраженный сигнал принято называть эхом. Отраженный звуковой сигнал, т. е. эхо, можно наблюдать не только в море, но и воздухе, если крикнуть в ущелье (рис. 24) или хлопнуть в ладоши в большом пустом помещении.
Рис. 24. Эхо.
Звук затухает
Интенсивность звука в море уменьшается (звук затухает) по мере удаления акустических волн от источника. Это происходит в результате расширения фронта волны, поглощения и рассеяния звуковой энергии. На больших расстояниях звук в воде настолько слабеет, что перестает быть слышимым.
Мы уже знаем, что звуковая волна представляет собой колебательное движение частиц. Энергия частиц передается от частицы к частице не целиком, так как часть энергии расходуется на теплообразование. Превращение частиц звуковой энергии в тепловую называется поглощением звуковой энергии. С повышением частоты поглощение звуковой энергии увеличивается.
Ослабление интенсивности звука в море связано также с явлением реверберации. Неоднородность среды, наличие пузырьков газа, неровности дна моря и т. д. приводят к тому, что часть звуковой энергии отражается в различные стороны — рассеивается. Поэтому отражение звуковых волн от неоднородностей называется рассеянием.
Все сказанное справедливо при изучении интенсивности звуковой энергии на больших удалениях от источника звука. Для малых расстояний основная причина ослабления звука — расширение фронта волны.
При сферической волне частицы среды колеблются по фронту волны в сферической поверхности. Чем больше расстояние от источника звука, тем больше сферическая поверхность, а следовательно, больше частиц участвует в колебании. Это приводит к уменьшению амплитуды колебаний частиц, а значит, к уменьшению величины звукового давления.
Затухание звука существенно зависит от частоты. С повышением частоты увеличивается поглощение звука. Поэтому в современных гидроакустических приборах стремятся использовать низкие частоты, при которых поглощение звука уменьшается, а следовательно, и затухание будет меньше.
Как далеко слышен звук в воде?
Мы в своей повседневной жизни привыкли к восприятию звуков на различных расстояниях. Мы говорим громче или тише в зависимости от того, на каком расстоянии находится от нас собеседник. Если он находится на значительном расстоянии, то приходится повышать голос до крика.
Но существует предел дальности распространения звука в воздухе, и этот предел зависит от многих причин. В лесу, например, можно услышать звуки на большем расстоянии, чем в городе, ночью лучше слышно, чем днем. А какова дальность распространения звука в море?
Дальность распространения звука в море зависит прежде всего от того, как сильно уменьшается интенсивность звука с расстоянием. С увеличением расстояния от источника звука интенсивность звуковых колебаний уменьшается прежде всего за счет расширения фронта волны, а также за счет поглощения и рассеяния звуковой энергии.
Неоднородность среды, как уже было сказано, способствует поглощению и рассеянию звука, что приводит к затуханию звука, а следовательно, к уменьшению дальности его распространения.
Значительное влияние на дальность распространения звука оказывает рефракция. Чем больше разнородность среды, тем больше искривляется звуковой луч, тем меньше дальность распространения звука. Количество неоднородностей в воде различно и зависит от времени года, иногда даже от времени суток.
Установлено, что зимой дальность распространения звука больше, чем летом. Это происходит потому, что условия среды, т. е. распределение температуры слоев, таковы, что звуковой луч не загибается вниз ко дну, а, загибаясь вверх, распространяется вдоль поверхности.
Замечено также, что летом после большого шторма дальность распространения звука увеличивается. Объясняется это тем, что слои воды с различной температурой перемешиваются и среда становится более однородной.
Но в море бывают случаи, когда звуковая энергия в воде распространяется в десятки и сотни раз дальше, чем обычно. Это бывает тогда, когда существует так называемый подводный звуковой канал, создаваемый природой.
Явление распространения звуковой энергии в подводном звуковом канале объяснено советским ученым Л. М. Бреховских.
Подводный звуковой канал возникает чаще всего в океане и представляет собой область глубин, где скорость звука вначале уменьшается, а достигнув минимума, начинает возрастать (рис. 25).
Рис. 25. Распространение звука в подводном звуковом канале.
Верхняя и нижняя границы подводного звукового канала представляют глубину с равными скоростями звука. За ось канала принимается глубина с наименьшей скоростью звука. Звук будет распространяться дальше, если источник звука будет находиться на оси подводного звукового канала.
Очень большая дальность распространения звука в канале объясняется тем, что звуковые лучи проходят большие расстояния, претерпевая полное внутреннее отражение от верхней и нижней границ звукового канала, не выходя за его пределы. Распространяется звук вдоль оси звукового канала.
Когда в таком звуковом канале была взорвана бомба весом 1,8 килограмма, взрыв был слышен на расстоянии 4200 километров вместо 20–30 километров, если бы бомба была взорвана в обычных условиях.
Другой, более характерный, опыт был проведен в районе Австралии. Звук от взрыва бомбы весом 22,5 килограмма был слышен на расстоянии 19 200 километров. Звук прошел этот путь за 3 часа 43 минуты. Но необходимо учесть, что дальность распространения звука в море зависит не только от среды, но и от мощности источника звука, направленности и длины волны. Чем больше мощность, направленность и длина волны, тем больше дальность распространения звука.
Эффект Допплера
Каждый из вас, вероятно, обращал внимание на изменение тона звука гудка быстро приближающегося паровоза. Тон звука повышается с приближением паровоза и понижается по мере его удаления.
Чем больше скорость сближения с источником звука, тем изменение тона звука заметнее.
При движении наблюдателя к источнику звука или, наоборот, источника звука к наблюдателю ухо наблюдателя воспринимает в единицу времени большее число звуковых волн, чем если бы источник звука и наблюдатель были неподвижны относительно один другого.
Чем больше скорость сближения, тем больше волн воспринимает ухо, тем чаще будет колебаться барабанная перепонка и, следовательно, тем выше будет тон воспроизводимого звука.
Явление изменения тона звука при движении источника звука или наблюдателя называется эффектом Допплера.
Эффект Допплера существует и в море. В гидроакустике он играет очень важную роль.
Звук, отраженный от какого-либо предмета, например от подводной лодки, будет иметь определенный тон. Такой же тон будет иметь отраженный звук от пузырьков воздуха в воде, т. е. тон реверберации. Но если предмет, от которого отражаются волны, будет сближаться с приемником, то тон отраженного звука (тон эха) будет повышаться, а тон реверберации останется прежним. На основании этого можно сделать очень важный вывод: если мы заметим, что тон эха от подводного предмета повышается по сравнению с тоном реверберации, значит, предмет перемещается и, более того, он перемещается в сторону сближения, а если тон эха понижается, следовательно, предмет идет на удаление. Если же тон эха не изменится — предмет либо стоит на месте, либо перемещается перпендикулярно направлению от приемника на предмет. Эффект Допплера можно проиллюстрировать рисунком, называемым «розой Допплера» (рис. 26).
Рис 26. «Роза Допплера».
Опытный гидроакустик может определить курс подводной лодки в подводном положении с точностью примерно до 30°. Для этого он определяет тон эха и по «розе Допплера» определяет курс подводной лодки.
Надежный сторож
Не все порты и базы оборудованы причалами, к которым могут подходить крупные корабли и транспорты. Поэтому корабли вынуждены становиться на якорь на внутренних или внешних рейдах.
При стоянке кораблей и транспортов на рейдах создается опасность атаки вражескими подводными лодками, находящимися в подводном положении.
Чтобы обнаружить подкрадывающуюся подводную лодку и нанести ей упреждающий удар, нужен надежный сторож, способный найти подводную лодку в подводном положении. Роль такого сторожа выполняет береговая гидроакустическая станция.
Береговые гидроакустические станции устанавливаются у входов в порты и базы и в районах рейдовых стоянок.
Приемник, воспринимающий звуковые колебания от винтов подводной лодки, располагают на дне моря. Остальные приборы гидроакустической станции размещают на берегу. Приемник соединяют подводным кабелем с приборами, находящимися на берегу (рис. 27).
Рис. 27. Приемник береговой гидроакустической станции расположен на дне моря, а остальные приборы — на берегу.
Приемник улавливает шумы от винтов всех проходящих кораблей и судов, а нужно зафиксировать шумы, издаваемые только подводной лодкой. Гидроакустик отличает шум винтов подводной лодки от других шумов.
Чтобы шумы хорошо прослушивались гидроакустиком, они усиливаются, проходят через фильтры, а затем подводятся к телефонам.
Современные береговые гидроакустические станции, как отмечалось в иностранной печати, работают не только в режиме шумопеленгования, но и в режиме эхопеленгования, т. е. излучают ультразвуковые посылки и принимают отраженные от них эхосигналы.
Кроме береговых гидроакустических станций, для обнаружения подводных лодок в иностранных флотах применяют радиогидроакустические буи. Они сбрасываются с самолета, вертолета или корабля в предполагаемом районе нахождения подводных лодок.
Радиогидроакустический буй состоит из гидрофона и небольшой радиостанции. Гидрофон улавливает шум подводной лодки, а радиостанция автоматически передает сигнал на приемную станцию самолета, вертолета или корабля. Приемная аппаратура может находиться и на берегу.
Радиогидроакустические буи применяются комплектами (до несколько десятков штук в каждом). Барьер радиогидроакустических буев устанавливается у входов в базы и порты, в районе рейдовых стоянок кораблей, а также на предполагаемых маршрутах движения подводных лодок.
Каждый радиогидроакустический буй связан с приемной аппаратурой отдельным радиоканалом на определенной частоте. Получив сигнал, оператор знает, какой буй передает сигналы. Зная местонахождение буя, можно определить, в каком районе находится подводная лодка (рис. 28).
Рис. 28. На вертолете оператор принял сигнал от радиогидроакустического буя, значит, в этом районе подводная лодка.
Радиогидроакустические буи могут работать непрерывно (в непрерывном режиме) или периодами (в дежурном режиме). После израсходования энергии аккумуляторов для работы радиостанции буи самозатопляются.
Некоторые конструкции радиогидроакустических буев приспособлены не только для подслушивания подводной лодки, но и для определения направления и расстояния до нее.
Радиогидроакустические буи могут использоваться как активное средство обнаружения в системе подводных взрывов. Волна от взрыва, распространяясь на большие расстояния, достигает подводной лодки и отражается от нее. Отраженный эхосигнал принимается гидрофоном радиогидроакустического буя и далее по радио передается на самолет.
Радиогидроакустические буи выставляются не только плавучие, но и стационарные — на якорях. Стационарные буи можно лучше оборудовать, аккумуляторы их можно периодически перезаряжать, а поэтому срок службы их значительно удлиняется.
Наблюдение за подводными лодками можно вести также с гидроакустических станций, установленных на кораблях.
Шумопеленгатор — «уши» подводной лодки
Не только подводные лодки опасны для надводных кораблей, но и подводным лодкам угрожает опасность быть атакованными надводными кораблями, а особенно противолодочными кораблями (охотниками за подводными лодками). Поэтому, естественно, подводные лодки должны иметь хорошую гидроакустическую аппаратуру, позволяющую им свободно ориентироваться в подводном положении, обнаруживать и выбирать цели, а при необходимости и уклоняться от преследования.
Мы уже знаем, что в воде, как и в воздухе, существует бесчисленное количество звуков. Большей частью это звуки неорганизованные, представляющие собой природные шумы (шум перекатывающейся гальки, всплески волн, звуки косяков рыб и др.) и шумы создаваемые (шумы от винтов кораблей, подводных работ и др.).
Нас, конечно, больше интересуют шумы, создаваемые винтами кораблей. Можно ли отличить шумы винтов крейсера от шума винтов транспорта, шумы эскадренного миноносца от шумов подводной лодки и т. д.? Да, можно. Человеческое ухо способно различать шумы винтов различных классов кораблей. Более того, хорошо натренированный гидроакустик определит не только класс корабля, но и ориентировочно его скорость движения. У транспортов, особенно крупных, винты вращаются с небольшой скоростью. Число оборотов винтов можно сосчитать. Запустив секундомер, гидроакустик считает число оборотов винтов за одну минуту, и ориентировочно определяет скорость транспорта.
У боевых кораблей, особенно таких, как эскадренные миноносцы, сторожевые корабли, торпедные катера и др., число оборотов винтов сосчитать нельзя. В этом случае гидроакустик по интенсивности шума определяет примерную скорость корабля (полный, средний и малый ход).
Задача гидроакустика состоит в том, чтобы обнаружить шум, определить его характер, направление на шумящий объект и установить, в каком направлении объект перемещается. Гидроакустик обязан обеспечить командира корабля всеми необходимыми данными для атаки. При этом подводная лодка должна находиться в подводном положении. Стоит ей только всплыть, как она сразу же будет обнаружена и атакована надводными кораблями.
Находясь даже в подводном положении, подводная лодка должна соблюдать максимальную скрытность. Ее приборы не должны работать на излучение, чтобы не демаскировать себя. Единственным средством наблюдения и обеспечения атаки на подводной лодке служит шумопеленгаторная станция, которая является как бы ее «ушами».
Шумопеленгатором можно обнаружить подводные лодки, надводные корабли и торпеды, определить направление на них, а также обеспечить командира корабля необходимыми данными для атаки кораблей торпедами из подводного положения.
Шумопеленгаторная станция (рис. 29) состоит из акустической системы, усилителей (предварительного, основного, супергетеродинного, слухового), компенсатора и индикаторных приборов (электронно-лучевой трубки, телефона, громкоговорителя).
Рис. 29. Схема шумопеленгаторной гидроакустической станции.
Акустическая система представляет собой большое количество пьезоэлектрических приемников, расположенных по кругу или эллипсу обычно в носовой части подводной лодки. Приемники преобразуют акустические колебания шумящего объекта в электрические.
Каждый отдельный приемник не обладает направленностью, а несколько приемников, расположенных по кругу или эллипсу, образуют подобно расположению ушей человека базу, в результате чего акустическая система становится направленной. Чем больше приемников и больше база (расстояние между крайними приемниками), тем больше направленность акустической системы.
Предварительные усилители предназначены для предварительного усиления очень слабых электрических сигналов, возникающих в приемниках под воздействием акустических волн, приходящих от источника звука. Для каждого приемника предусмотрен свой предварительный усилитель, с выходов которого сигналы поступают в компенсатор.
Компенсатор представляет собой серию задерживающих цепей, состоящих из индуктивностей и емкостей, включенных параллельно.
Подключая задерживающие цепи к приемникам, к которым звук пришел раньше, мы добиваемся, чтобы к усилителю от всех приемников сигналы поступали одновременно, без сдвига фаз. Оператор, вращая штурвал компенсатора, добивается максимальной слышимости сигнала, при этом стрелка указателя пеленга покажет направление на шумящий объект.
Для объяснения работы компенсатора рассмотрим упрощенную акустическую систему, состоящую из двух приемников (левого и правого). К левому приемнику звук приходит раньше (рис. 30, а), чем к правому, следовательно, преобразованные электрические сигналы с выходов приемников к усилителю поступят не одновременно, а со сдвигом фаз.
Чтобы определить направление на источник звука, нужно развернуть акустическую систему так, чтобы звук приходил одновременно к обоим приемникам. Геометрическая ось акустической системы укажет направление на источник звука (рис. 30, 6).
Направление на источник звука можно определить, не вращая акустическую систему. Для этого нужно задержать сигнал от левого приемника, куда звук пришел раньше, т. е. уравнять сигналы по фазе. Достигается это включением в цепь левого приемника задерживающих цепей, которые как бы удлиняют путь сигнала левого приемника, в результате чего сигналы от обоих приемников к усилителю придут одновременно, т. е. в фазе (рис. 30, в).
Рис. 30. Определение направления на источник звука: а — к левому приемнику звук приходит раньше; б — после поворота акустической системы звук к обоим приемникам приходит одновременно; в — уравнивание фазы включением задерживающих цепей.
Усилитель представляет собой обычный усилитель на электронных лампах и служит для усиления сигналов, поступающих с выхода компенсатора.
Несмотря на то что сигналы уже усиливались предварительными усилителями, в усилителе они усиливаются до необходимого уровня и преобразуются.
Слуховой усилитель служит для усиления сигналов при пеленговании на звуковых частотах, т. е. частотах, которые воспринимаются человеческим ухом.
Супергетеродинный усилитель предназначен для усиления сигналов при пеленговании на ультразвуковых частотах, т. е. на частотах, которые человек не слышит. Супергетеродинный усилитель преобразует ультразвуковые сигналы в сигналы промежуточной частоты, а затем — в звуковые.
С выхода супергетеродинного усилителя преобразованные сигналы поступают на вход слухового усилителя и далее — как и при пеленговании звуковых сигналов.
На ультразвуковых частотах точность пеленгования повышается, так как характеристика направленности будет более острой, чем на звуковых частотах.
Индикаторные приборы — телефоны и громкоговоритель — служат для прослушивания шумов звуковой частоты. Телефоны надевает на голову оператор гидроакустической станции, а громкоговоритель, как правило, устанавливается на командном пункте. При определении направления, т. е. при пеленговании целей максимальным методом, оператор, вращая штурвал компенсатора, добивается максимальной слышимости.
Электронно-лучевая трубка служит для определения направления на цель фазовым методом, который основан на уравнивании разности сигналов двух приемников или двух групп приемников акустической базы.
При фазовом методе пеленгования применяется двухканальный компенсатор, который делит приемники акустической системы, участвующие в пеленговании, на две группы — левую и правую. С выходов двухканального компенсатора сигналы подаются на входы тоже двухканального усилителя, где они преобразуются и усиливаются, а затем подаются на отклоняющие пластины электронно-лучевой трубки.
При фазовом методе пеленгования оператор добивается, чтобы линия на электронно-лучевой трубке была расположена строго вертикально. В этот момент стрелка компенсатора укажет направление на цель.
Кроме указанных методов, есть еще третий метод — фазово-амплитудный, который также основан на использовании электронно-лучевой трубки. Если ось акустической системы совпадает с направлением на цель, изображение линии будет расположено в центре трубки, а если не совпадает, то изображение линии будет иметь выбросы влево или вправо.
Измерение времени с момента посылки до возвращения отраженного сигнала позволяет определить расстояние до цели с учетом того, что общее время нужно разделить пополам, так как сигнал проходит двойное расстояние — до цели и обратно.
А как же определить в этом случае направление на цель? Мы уже упоминали о том, что ультразвук излучается направленно, что позволяет определить направление на цель с большой точностью. Некоторые современные гидролокаторы определяют также и глубину подводной лодки.
По устройству гидролокационная станция значительно сложнее шумопеленгаторной и состоит из большего числа приборов. В нее входят: преобразователь, подъемно-опускное и поворотное устройства, генератор, реле приема — передачи, усилитель, рекордер, автомат посылок, пульт управления и индикаторные приборы (рис. 31).
Рис. 31. Схема гидролокационной станции.
Гидроакустический преобразователь служит для излучения ультразвуковых волн и приема отраженных от цели эхосигналов. Ультразвуковые волны излучаются преобразователем короткими посылками. После каждой посылки наступает пауза, во время которой преобразователь становится приемником. Таким образом, преобразователь обладает обратимым свойством, одну часть времени он выполняет функции излучателя, а другую, большую часть времени, — функции приемника.
Действие преобразователей основано на использовании ранее разобранных прямого и обратного магнитострикционного и пьезоэлектрического эффектов.
Зоркий подводный глаз
Таким образом, шумопеленгаторные станции работают на принципе так называемой пассивной акустики, т. е. на прослушивании шумов и определении направлений на них. А если интересующий нас подводный предмет не издает никаких шумов, как обнаружить его?
Шумопеленгаторы не могут полностью обеспечить действия надводных кораблей по борьбе с подводными лодками и по другой причине. Чтобы атаковать подводную лодку, нужно не только обнаружить, но и точно определить ее местонахождение, расстояние до нее. Эту задачу выполняют гидролокационные станции, работающие по принципу излучения и приема отраженных от цели ультразвуковых волн.
Гидроакустические преобразователи могут быть кругового и направленного действия. Первые применяются для обнаружения подводных объектов, вторые — для определения направления, расстояния и глубины.
Преобразователь размещается под днищем надводного корабля, ближе к носовой части. Чтобы уменьшить помехи от завихрений воды во время хода корабля, вибратор помещают в металлический обтекатель яйцевидной формы (рис. 32, а). Толщина стенок обтекателя такова, что они не препятствуют прохождению ультразвуковых волн.
В последние годы в США делают обтекатели из пластических масс, обладающих большой прочностью и хорошей звукопроводимостью.
При работе гидролокатора обтекатель опускается ниже киля, а после окончания работы поднимается вверх в специальный отсек так, чтобы он не выступал ниже днища.
Опускается и поднимается обтекатель подъемно-опускным устройством, состоящим из электродвигателя, редуктора и пульта управления.
На некоторых проектах надводных кораблей зарубежных флотов обтекатели закреплены постоянно в носовой части в виде овальных выпуклостей. В этом случае в подъемно-опускном устройстве нет необходимости (рис. 32, 6).
Рис. 32. Обтекатель: а — опускающийся при работе; б — закрепленный неподвижно.
Для вращения преобразователя служит поворотное устройство, состоящее из электродвигателя с редуктором. Управление поворотным устройством дистанционное с пульта управления.
Генератор собран на специальных генераторных лампах большой мощности, аноды, сетки и накалы которых питаются от специального преобразователя (агрегата).
Генератор вырабатывает электрические колебания определенной частоты, которые поступают на преобразователь и излучаются в водную среду уже в виде акустических колебаний.
Реле приема — передачи представляет собой электромагнитное реле с несколькими группами контактов. Реле приема — передачи при посылке ультразвукового сигнала подключает генератор к преобразователю (рис. 33, a), a при приеме отраженного эха — преобразователь к усилителю (рис. 33, 6).
Рис. 33. Принцип работы реле приема — передачи: а — при излучении; б — при приеме.
Усилитель служит для усиления и преобразования очень слабых электрических сигналов, поступающих от преобразователя. Усилитель состоит из нескольких каскадов и собран на усилительных лампах. Один из каскадов представляет собой гетеродин (маломощный генератор), при помощи которого ультразвуковая частота преобразуется в звуковую. С выхода усилителя сигналы поступают на рекордер и индикаторные приборы (телефоны, громкоговоритель, электронный отметчик).
Рекордер служит для графического воспроизведения отраженных сигналов, измерения расстояния до целей, определения относительной скорости сближения с целью и выработки данных для атаки подводной лодки. Кроме того, рекордер управляет работой реле приема — передачи, а следовательно, посылками ультразвуковых сигналов.
Основные элементы рекордера — каретка с записывающим пером (рис. 34) и посылочными контактами, лентопротяжный механизм с электрохимической бумагой и решающее приспособление со шкалами и линейкой.
Рис. 34. Рекордер.
Лентопротяжный механизм протягивает сверху вниз специальную бумагу, чувствительную к электрическому току, под воздействием которого на ленте появляются темные отчетливые отметки. При работе рекордера бумага перемещается непрерывно с постоянной скоростью.
При включении рекордера подается питание на электромагнитную муфту, которая начинает передвигать каретку слева направо. В самом начале движения каретка своими контактами замыкает посылочные контакты, через которые подается питание на реле приема — передачи, в результате чего преобразователь подключается к генератору. Посылочные контакты замыкаются на незначительное время (10—100 микросекунд), в течение которого ультразвуковые колебания излучаются в воду.
Каретка продолжает передвигаться с постоянной скоростью, пропорциональной скорости распространения звука в воде.
С приходом эха от цели электрический сигнал с преобразователя через усилитель поступает на перо каретки, в результате чего через бумагу проходит ток, оставляя на ней темную отметку. Расстояние от левого края бумаги до отметки будет соответствовать расстоянию до цели в масштабе шкалы, которая расположена горизонтально над бумагой.
При подходе каретки к правому срезу бумаги замкнутся возвратные контакты, обесточится электромагнитная муфта и каретка возвратится в исходное левое положение, и далее циклы будут повторяться.
В результате многократного передвижения каретки на бумаге возникнет много отметок, расположенных одна над другой. Если расстояние до цели будет уменьшаться, то каждая очередная отметка соответственно будет располагаться ближе к левому срезу (рис. 35, а), а при увеличении расстояния до цели каждая очередная отметка будет удаляться от левого среза (рис. 35, б). На бумаге рекордера возникнет трасса, которая может иметь наклон в ту или другую сторону. Если трасса будет вертикальной, расстояние до цели не изменяется (рис. 35, в).
Рис. 35. Характер записи на рекордограмме: а — при сближении; б — при удалении; в — при неизменном расстоянии.
Таким образом, по характеру записи на бумаге рекордера можно определить, сближается цель или удаляется, а приложив линейку вдоль трассы, определить относительную скорость сближения.
Кроме того, по характеру записи можно классифицировать контакт, т. е. отличить цель от ложной цели.
Решающее приспособление рекордера позволяет выработать необходимые данные для использования противолодочного оружия. По этим данным подается команда на пост бомбометов и глубинных бомб.
Автомат посылок служит для управления посылками при поиске цели до ее обнаружения. При работе автомата посылок рекордер выключают, чтобы не создавать перенапряженный режим в работе рекордера и излишне не расходовать электрохимическую бумагу.
Автомат посылок очень прост по устройству и представляет собой реле, конденсатор и несколько сопротивлений, различных по величине. В зависимости от того, какое сопротивление подключено, конденсатор будет разряжаться быстрее или медленнее. Время разряда конденсатора через то или иное сопротивление определяет интервал между посылками.
При включении автомата посылок заряжается конденсатор. В это время через контакты автомата посылок подается питание на реле приема — передачи. Как только конденсатор зарядился, контакты разрываются, реле приема — передачи обесточивается и посылка прекращается. Время заряда конденсатора соответствует длительности посылки.
После разрыва контактов конденсатор начинает разряжаться через сопротивление.
На время разряда конденсатора преобразователь подключен к усилителю, т. е. гидролокационная станция работает на прием. Как только конденсатор разрядился, замыкаются контакты автомата посылок, начинает заряжаться конденсатор и подается питание на реле приема — передачи, и опять происходит посылка. Эти циклы повторяются непрерывно автоматически.
Чтобы изменять интервал между посылками, в автомате посылок имеется несколько сопротивлений, различных по величине. Если оператор подключит самое большое сопротивление, конденсатор будет разряжаться дольше и интервал между посылкой будет большим.
При большем интервале между посылками звук распространится на большее расстояние, а следовательно, зона обследования будет больше.
Малые цели, например мины, обнаруживаются гидролокационной станцией на значительно меньших расстояниях, чем подводная лодка, поэтому большой интервал между посылками нецелесообразен. В этом случае оператор подключает в автомате посылок меньшее сопротивление, конденсатор будет разряжаться быстрее и интервал между посылками сократится.
С приходом эха от цели оператор примет его на слух в виде короткого слабого звука. Чтобы классифицировать цель, оператор сразу включает рекордер, одновременно выключив автомат посылок.
Пульт управления предназначен для дистанционного управления вращением преобразователя, а также подъемно-опускным и поворотным устройствами. Кроме того, на пульте управления размещаются элементы приборов станции.
Индикаторные приборы (электронный отметчик, телефоны, громкоговоритель) служат для регистрации шумов или эхосигналов. Электронный отметчик, кроме того, позволяет определить направление на цель и расстояние до нее, а также может управлять посылками, как и рекордер.
Электронный отметчик представляет собой электроннолучевую трубку с вертикально и горизонтально отклоняющими пластинами, на которые подаются напряжения с выхода двухканального усилителя и генератора пилообразного напряжения.
Направление на цель при фазовом методе пеленгования определяется по отклонению электронного луча. Если акустическая система точно направлена на цель, то электронный луч займет вертикальное положение, если цель справа или слева, то электронный луч соответственно имеет наклон в ту или другую сторону (рис. 36).
Рис. 36. Изображение электронного луча на индикаторе при фазовом методе пеленгования.
При фазово-амплитудном методе направление на цель определяется по выбросам электронного луча вправо или влево (рис. 37).
Рис. 37. Изображение электронного луча на индикаторе при фазово-амплитудном методе пеленгования.
Если акустическая система направлена точно на цель, выбросов не будет.
По методу поиска гидролокационные станции могут быть шагового и кругового поиска. При шаговом поиске акустические волны излучаются направленно в виде узкого луча; при круговом поиске излучение ненаправленное, т. е. круговое, а прием отраженного эхосигнала направленный.
Гидролокационные станции кругового обзора обладают преимуществом: поиск ведется значительно быстрее и одновременно можно наблюдать несколько целей, что невозможно на станции шагового поиска.
Например, в гидролокационных станциях кругового обзора, устанавливаемых на американских атомных подводных лодках, применяются индикаторы кругового обзора, представляющие собой электронно-лучевые трубки, на которых отраженные эхосигналы наблюдаются в виде светящихся отметок (рис. 38).
Рис. 38. Гидролокационный индикатор кругового обзора.
Рассмотренная гидролокационная станция может работать и в режиме шумопеленгования. В этом случае в работе участвуют не все приборы, а только те, которые связаны с приемом и усилением шумов. Генератор и рекордер выключаются, и станция работает только на прием.
Дальность действия гидролокаторов очень зависит от гидрологических условий моря, отражательной способности подводных целей, уровня собственных помех и от технических параметров станции.
При увеличении скорости хода противолодочного корабля дальность обнаружения подводной лодки уменьшается, так как появляются шумы от завихрений воды у обтекателя.
Во время второй мировой войны подводные лодки обнаруживались на дистанции до 15 кабельтовых.
По данным зарубежной печати, в США и Англии ведутся работы по увеличению дальности действия гидролокаторов. По некоторым источникам, дальность обнаружения подводной лодки составляет 35 кабельтовых, а в ближайшие годы может достигнуть 25 миль (250 кабельтовых). Одним из путей увеличения дальности действия гидролокаторов зарубежные специалисты считают увеличение длины волны, т. е. переход от ультразвуковых частот к звуковым, а также применение буксируемых гидролокаторов с переменной глубиной. В этом случае акустическая система может опускаться на необходимую глубину, где условия распространения звука наиболее благоприятны.
В настоящее время в военно-морском флоте США разрабатываются системы раннего предупреждения о нападении подводных лодок. Предполагается установить на дне Атлантического океана (на глубине 4500–5000 метров) около 10 тысяч специальных датчиков-гидрофонов. Такая система якобы позволит обнаружить подводные лодки на расстоянии 500-1000 миль.
Подводные лодки — главная ударная сила флота, поэтому средства борьбы с ними непрерывно совершенствуются.
В иностранных военно-морских флотах большое значение придается также гидролокаторам, используемым с вертолетов и дирижаблей.
По устройству такие станции почти ничем не отличаются от корабельных, за исключением того, что акустическая система опускается в воду на специальном тросе (рис. 39), а остальные приборы находятся на вертолете или дирижабле.
Рис. 39. Вертолетная гидролокационная станция.
Преимущество этого способа в том, что отсутствуют помехи от движения своего корабля и его механизмов, а главное — повышается скорость обследования района. После обследования участка вертолет поднимается с акустической системой и быстро перелетает на другой участок, опускает акустическую систему, после обследования перелетает на третий участок и т. д.
По сведениям иностранной печати, время опускания акустической системы, обследование участка и обратный подъем ее занимают около 5 минут. Расстояние между соседними точками, в которых ведется обследование, выбирается с таким расчетом, чтобы не допускать пропусков обследуемого района и, более того, чтобы обследуемые участки перекрывались между собой.
Звук измеряет глубину
Командиру корабля или штурману необходимо постоянно знать глубину дна моря под кораблем, особенно при плавании в прибрежных районах, где создается опасность сесть на мель.
В старину мореплаватели определяли глубину весьма простым способом — опускали груз на тросе до тех пор, пока он не касался грунта. Длина троса и соответствовала измеренной глубине. Однако не всякую глубину можно определить таким способом. Как, например, измерить глубину сотен, тысяч и даже десятков тысяч метров?
На помощь опять-таки приходит гидролокация. Небольшие и несложные по устройству гидролокационные приборы, называемые эхолотами, быстро и точно измеряют глубину (рис. 40).
Рис. 40. Запись на ленте эхолота позволяет «видеть» дно моря.
Эти приборы основаны также на принципе посылки ультразвукового сигнала и приема отраженного эха от дна моря.
Измеряя глубины отдельных участков или районов моря, можно составить подводную карту, на которой будут видны возвышенности и углубления. Рельеф дна моря или океана в некоторой степени напоминает рельеф земной поверхности. Составление морских карт имеет не только познавательное научное значение, для моряков оно жизненно важно, так как обеспечивает безопасность плавания.
Имея перед глазами ранее составленную карту морских глубин и сравнивая данные ее с показаниями эхолота, штурман может ориентировочно определить место своего корабля в море. При постановке корабля на якорь необходимо также знать глубину места, чтобы не потерять якорь вместе с якорь-цепью на большой глубине. Эхолот и в этом случае приходит мореплавателю на помощь.
Но эхолот все же измеряет только глубину под кораблем, а для того, чтобы обнаружить впереди по курсу подводную банку, скалу, айсберг, либо узкость, используют гидролокационную станцию.
При прохождении узкостей или районов с подводными препятствиями гидроакустик по приказанию командира в режиме эхопеленгования обследует сектор в носовых курсовых углах.
При получении отраженного эха от подводного препятствия гидроакустик докладывает командиру корабля об опасности.
Разговор под водой
Если можно слышать звуки в воде, значит можно и разговаривать, тем более, что под водой в этом есть большая необходимость. Как переговорить командиру одной подводной лодки с командиром другой или командиру надводного корабля с командиром подводной лодки? Проводная связь исключается, радиоволны под водой использовать нельзя. На помощь в этом случае приходит ультразвук.
Если замыкать цепь питания реле приема — передачи телеграфным ключом, то излучение ультразвуковой энергии будет происходить во время нажатия ключа.
Используя азбуку Морзе, можно свободно переговариваться при помощи гидролокаторов, установленных на корабле и подводной лодке. При этом нужно соблюдать правило: когда один работает на передачу, другой работает только на прием. Одновременная работа на передачу недопустима.
Необходимо отметить, что скорость переговоров по азбуке Морзе гидролокаторами значительно меньше, чем по радио. Для ускорения передачи наиболее ходовых фраз используют переговорные таблицы.
В последние годы за рубежом созданы специальные гидроакустические станции связи, при помощи которых можно вести переговоры голосом в телефонном режиме, т. е. разговаривать, как по обычному телефону (рис. 41).
Рис. 41. Телефонный разговор под водой.
Иногда недостаточно сделать вывод, что обнаружена подводная лодка, нужно еще определить, своя это подводная лодка или противника. Для этой цели подводный корабль дает кодированный запрос, на который подводная лодка должна ответить кодированным ответом. Ответ правильный — подводная лодка своя; ответ неправильный или нет никакого ответа — подводная лодка противника.
Раньше запросы и ответы делались обычными гидролокаторами при помощи азбуки Морзе. По данным зарубежной печати, в последнее время на подводных лодках устанавливаются специальные станции связи и опознавания.
Гидроакустика помогает промыслу
Гидроакустические приборы широко применяются в рыбном промысле. Рыболовные суда оборудуются гидроакустическими приборами, простейшим из которых является обычный эхолот.
Косяки рыбы часто достигают больших размеров и передвигаются с довольно большой скоростью. Поэтому важно своевременно обнаружить скопление рыбы и в нужном районе расставить сети.
При работе эхолота ультразвуковые волны, отраженные от рыбы, записываются на специальной бумаге. По характеру записи можно судить о плотности косяков, их размерах, а также узнать глубину, на которой находится рыба.
Интересно отметить, что ультразвук отражается не от тела рыбы, а от плавательного пузыря, наполненного воздухом.
Совсем недавно гидроакустические приборы начали применять не только для обнаружения косяков рыбы, но и для определения ее разновидностей.
Мы уже знаем, что различные животные и рыбы издают звуки, а точнее, ультразвуки различной частоты.
Рыбы издают ультразвуки определенной частоты, присущие каждой породе. Вот этим и воспользовались современные рыбаки; при помощи специальных приборов, опущенных в воду, они обнаруживают таинственные голоса и определяют породу рыб.
Если внимательно прослушать очень слабые «голоса» различных рыб, усиленные гидроакустическими приборами, можно отличить сельдь от кильки. Сельдь издает звуки, на-поминающие чириканье птиц, а звуки, издаваемые килькой, воспринимаются как непрерывное гудение.
Более всего говорливы горбыли, они даже переговариваются между собой, издавая звуки, напоминающие перестукивание.
Наиболее широко используются гидроакустические приборы в рыбном промысле в открытом океане.