Искусство схемотехники. Том 2 [Изд.4-е]

Хоровиц Пауль

Хилл Уинфилд

Глава 9

СОПРЯЖЕНИЕ ЦИФРОВЫХ И АНАЛОГОВЫХ СИГНАЛОВ

 

 

«Перемалывание чисел» само по себе является, несомненно, чрезвычайно важным применением цифровой электроники, но ее действительные возможности открываются при использовании цифровых методов для обработки аналоговых (линейных) сигналов и процессов. Эту главу мы начнем с краткой хронологии «взлетов и падений» семейств цифровой логики и рассмотрим входные и выходные характеристики «выживших» семейств ТТЛ-КМОП-логики для того, чтобы понять, как осуществить сопряжение логических семейств друг с другом и с устройствами цифрового ввода (переключателями, клавиатурой, компараторами и т. п.) и вывода (индикаторами, реле и т. п.). Мы рассмотрим также n-канальные логические элементы на МОП-транзисторах, поскольку они находят широкое применение при реализации функциональных БИС. Затем коснемся важной темы ввода и вывода цифровых сигналов на платы и внешние приборы, а также передачи цифровых сигналов по кабелям, после чего обсудим методы взаимного преобразования цифровых и аналоговых сигналов. Наконец, после того как читатель усвоит эти методы, мы рассмотрим несколько примеров применения, в которых сочетание аналоговых и цифровых средств обеспечивает эффективное решение разнообразных задач.

 

Сопряжение логических 

КМОП

- и

ТТЛ

-элементов

9.01. Хронология логических семейств

В начале 1960-х гг. во времена, которые можно назвать доисторическими, предприимчивые люди, не пожелавшие создавать свои логические схемы на дискретных транзисторах, самоотверженно бились над резисторно-транзисторной логикой (РТЛ), простым семейством логических элементов, разработанным на фирме Fairchild и характеризующимся небольшим коэффициентом разветвления по выходу и низкой помехоустойчивостью. Рис. 9.1 иллюстрирует возникшие в то время проблемы, в частности, логический порог, превышающий уровень земли на одно напряжение U бэ , и крайне маленький коэффициент разветвления по выходу (в некоторых случаях один выход мог питать только один вход!) были обусловлены пассивной выходной схемой и низкоомной токоотводящей нагрузкой. Это были времена малой интеграции и наиболее сложным элементом, который можно было реализовать, был сдвоенный триггер, работающий на частоте 4 МГц. Но мы смело строили свои схемы на РТЛ, иногда они сбивались особенно, когда в той же комнате включали паяльник.

Похоронный звон по РТЛ прозвучал несколькими годами позже, когда появилась диодно-транзисторная логика (ДТЛ) фирмы Signetics и вскоре вслед за ней универсальная быстродействующая логика SUHL фирмы Sylvania, которая теперь называется транзисторно-транзисторной логикой (ТТЛ). Фирма Signetics выпускала распространенную смесь из двух серий, названную DCL Utilogic серии 8000 («Логические схемы по выбору проектировщика»). ТТЛ быстро прижилась особенно в «системе счисления» «74хх», автором которой была фирма Texas Instruments.

В этих семействах были применены входы, поставляющие ток, с логическим порогом в 2 напряжения U бэ и и (как правило) двухтактные каскадные выходы (рис. 9.1).

Рис. 9.1. Упрощенные схемы элементов различных логических семейств.

Семейства ДТЛ и ТТЛ открыли эру положительной 5-вольтовой логики (РТЛ была логикой +3,6 В) и предлагали скорость, соответствующую 25 МГц, а коэффициент разветвления по выходу 10, т. е. один выход мог работать на 10 входов. Разработчики не могли нарадоваться скорости, надежности и сложным функциям (например, счетчику по модулю 10) этих семейств. Казалось, что больше и мечтать не о чем; ТТЛ — это на веки вечные.

Однако людям свойственно стремление к совершенствованию. Им потребовалась большая скорость, меньшая мощность потребления. Казалось бы, вскоре они получили и то и другое. В области высокого быстродействия скоростные ТТЛ-схемы (серии 74Н) позволили увеличить скорость почти вдвое, правда, за удвоенную мощность! (это выдающееся достижение было сделано путем уменьшения вдвое величин всех резисторов). Другое семейство — эмиттерно-связанная логика (ЭСЛ) — представило настоящую скорость (30 МГц в первоначальной версии) за счет использования отрицательного источника питания и более близких друг к другу логических уровней (—0,98 и —1,75 В); элементы семейства потребляли уйму мощности и едва втиснулись в малый уровень интеграции. В области низкой мощности появились маломощные ТТЛ-элементы (серия 74L) с 1/4 скорости при 1/10 мощности, соответствующих «стандартной» ТТЛ серии 7400. При поддержке фирмы RCA было разработано первое семейство логических элементов на МОП-транзисторах, КМОП-логика серии 4000. Эти элементы обладали нулевой мощностью потребления в состоянии покоя и широким диапазоном напряжения питания (от +3 до +12 В). Выходы имели размах, равный напряжению питания, а входы не «оттягивали» ток. Это были хорошие новости, но были и плохие - скорость (1 МГц при питании 10 В) и цена (20 долл. за корпус с четырьмя вентилями). Несмотря на цену на микромощных КМОП-элементах выросло целое поколение разработчиков устройств с батарейным питанием, просто не было другого выбора. Работая с легко «ранимыми» входами, разработчики поняли истинное значение статического электричества.

Такова была ситуация на начало 1970-х гг.,-две главные линии биполярной логики (ТТЛ и ЭСЛ) и необычная КМОП-логика. Варианты ТТЛ были по природе своей совместимы друг с другом, за исключением того, что ТТЛ-элементы серии 74L имели слабый выходной узел (отвод тока 3,6 мА) и могли питать только две стандартных (серии 74) нагрузки ТТЛ (чьи входы требовали 1,6 мА на низком уровне). Среди большинства семейств почти не было совместимости (хотя погруженные ТТЛ-элементы могли питать КМОП-элементы, а 5-вольтовые КМОП- только одну ТТЛ-нагрузку серии 74L).

В течение 1970-х гг. ситуация постоянно улучшалась практически на всех направлениях. От ТТЛ отпачковались ненасыщенные «фиксируемые диодами Шоттки» семейства (см. разд. 13.23): сначала серия 74S, которая благодаря утроенной скорости при удвоенной мощности вытеснила серию 74Н, и затем 74LS (L — low, S — Schottky, маломощная Шоттки), которая слегка улучшив скорость при 1/5 мощности вытеснила ТТЛ серии 74. Жизнь с 74LS и 74S была приятной; затем подоспела фирма Fairchild со своей серией 74F (F — FAST: Fairchild Advanced Schottky TTL — усовершенствованная ТТЛ с диодами Шоттки фирмы Fairchild), которая была быстрее на 50 %, чем 74S, при 1/3 мощности; кроме того, были и другие улучшения, так что проектирование схем на этих элементах стало сплошным удовольствием. Фирма Texas Instruments (автор многих линий 14хх) выпустила пару улучшенных семейств Шоттки-логики: 74AS (улучшенная Шоттки-логика) и 74ALS («улучшенная маломощная Шоттки»). Предполагалось, что первое семейство заменит 74S, а второе - 74LS. Все эти ТТЛ-семейства имели одинаковые логические уровни и добротную схему формирования выхода, так что их можно было сочетать в одной схеме. Используя табл. 9.1 и рис. 9.2, можно сравнить скорости и мощности этих семейств.

Рис. 9.2. Зависимость скорости от мощности для различных логических семейств.

Между тем серия 4000 КМОП эволюционировала в улучшенную серию 4000 В с более широким диапазоном напряжения питания (от 3 до 18 В), лучшей защитой входов и более высокой скоростью (3,5 МГц при 5 В). По существу, это та же серия 74S с функциями и выводами семейства 74, которая воспользовалась потрясающим успехом биполярной логики семейства 74. ЭСЛ пустила ростки в виде ECLII, ECLIII, ECL 10,000 и ECL 100,000, обладающие скоростью до 500 МГц.

Итак, ситуация в 1980 г. была следующей. Большинство схем было выполнено на серии 74LS в сочетании с 74F (или 74AS), если требовалась более высокая скорость. Та же самая ТТЛ использовалась как своего рода клей для связи микропроцессорных n-МОП-схем, чьи входы и выходы были совместимы с ТТЛ. Микромощные устройства всегда были сделаны с использованием КМОП-серий 4000 В или 74С, эквивалентными и совместимыми друг с другом. Для устройств с самой высокой скоростью (100÷500 МГц) использовалась ЭСЛ. Совместное использование семейств было не столь уж частым явлением, исключение составляли редкие сочетания КМОП и ТТЛ или сопряжение ТТЛ с быстродействующими ЭСЛ-схемами.

В 1980-е гг. произошло замечательное событие - разработка КМОП-логики со скоростью и выходными параметрами, соответствующими ТТЛ. Сначала появились элементы серии 74НС («высокоскоростная КМОП-логика») с такой же скоростью как 74LS и, разумеется, с нулевым током покоя и затем серия 74АС («улучшенная КМОП-логика») с такой же скоростью как 74F или 74AS. Обладая размахом выходного сигнала, равным напряжению питания, и входным порогом, равным половине напряжения источника питания, эта логика сочетает лучшие свойства предшествующих ТТЛ- и КМОП-логики и постепенно должна вытеснить биполярную ТТЛ. Вместе с тем имеется некоторая несовместимость — логический «высокий» уровень выходного сигнала ТТЛ- и n-МОП-логики (мин. 2,4 В) не достаточен для запуска входа НС и АС. Поскольку, по-видимому, существует Такой период времени, когда вам необходимо использовать некоторые из старых семейств биполярной ТТЛ- или n-МОП-логики, каждое семейство КМОП-логики имеет вариант с более низким входным порогом. Такие семейства имеют наименование 74НСТ и 74АСТ («быстродействующая КМОП-логика с ТТЛ-порогом»). Однако не пытайтесь использовать их везде, где только можно, ведь элементы с КМОП-порогом обладают более высокой помехоустойчивостью и представляют собой семейства по выбору проектировщика. К тому же в 80-е гг. БИС и СБИС постепенно переключались с n-МОП-технологии на КМОП (с вытекающими отсюда низкой мощностью и КМОП-совместимостью), одновременно увеличивая скорость и сложность. И наконец, на вершине быстродействия — элементы на GaAs (арсенида галлия), обеспечивающие скорость в несколько гигагерц.

Заметьте, что все КМОП-семейства (4000 В, 74 С, НС, НСТ, АС и ACT) обладают довольно привлекательным свойством — нулевой «статической» (т. е. когда ничего не происходит) мощностью рассеивания с типовым током покоя менее микроампера. Но при переключениях логических уровней КМОП-элементы потребляют «динамический» ток, обусловленный двумя эффектами: а) переходной проводимостью между шинами питания внутренних двухтактных пар в середине логического перепада и б) динамическим током, необходимым для заряда и разряда внутренних емкостей и емкости нагрузки. Динамический ток пропорционален частоте переключения и может соперничать с током биполярной логики при достижении максимальной частоты работы. Для более детального анализа загляните в разд. 8.10 (рис. 8.18) и разд. 14.16 (рис. 14.38).

Завершим нашу краткую историческую справку следующей рекомендацией. Используйте во всех ваших новых устройствах логику 74НС в сочетании с (а) 74НСТ для обеспечения совместимости с существующими устройствами на n-МОП- и ТТЛ и (б) 74АС(Т) для обеспечения скорости. Можно использовать биполярную ТТЛ (74LS/ALS и 74F/S), но предпочтительнее, по-видимому, КМОП-логика. Если требуется широкий диапазон напряжения питания, а к быстродействию особых требований не предъявляется (например, портативные устройства с питанием от нерегулируемой батареи 9 В), то используйте старую серию 4000 В/74С.

9.02. Входные и выходные характеристики

Семейства цифровой логики проектируются таким образом, чтобы выход кристалла был способен работать на большое число входов элементов того же семейства. Типовой коэффициент разветвления по выходу равен 10; это означает, что к выходу вентиля или триггера можно подключить до 10 входов и элемент будет правильно работать. Другими словами, в обычной практике проектирования цифровых схем можно обойтись без каких-либо сведений об электрических параметрах используемого вами кристалла при условии, что ваша схема состоит только из элементов цифровой логики, работающих также на элементы цифровой логики того же типа. Практически это означает, что вы можете особенно не думать о реальных процессах, происходящих на логических входах и выходах. Однако если вы пытаетесь подключить цифровую схему к внешним источникам сигналов (цифровых или аналоговых) или используете цифровые схемы для запуска других приборов, вы должны иметь представление о том, что необходимо для управления логическим входом и чем может управлять логический выход. Более того, при смешивании семейств логических элементов важно знать схемные особенности логических входов и выходов. Сопряжение логических семейств представляет отнюдь не чисто теоретический интерес. Для того чтобы воспользоваться преимуществами современных кристаллов БИС или специальными функциями, которыми обладает только одно семейство логических элементов, вы должны знать, как сочетать логические элементы различных типов. В последующих разделах мы рассмотрим детально схемные особенности логических входов и выходов и приведем примеры сопряжения логических семейств между собой и логических элементов с внешним миром.

Входные характеристики. Графики, приведенные на рис. 9.3, демонстрируют основные свойства КМОП- и ТТЛ-входов — входной ток и выходное напряжение (для инвертора) как функции входного напряжения. На графиках мы несколько расширили диапазон входных напряжений по сравнению с принятым в цифровых схемах, поскольку при сопряжении легко могут возникнуть ситуации, когда входные сигналы будут превышать напряжение источника питания. Как следует из графиков, и КМОП-логика и ТТЛ нормально работают при подключении вывода питания отрицательной полярности к земле.

Рис. 9.3. Характеристики логических вентилей, а — входной ток; б — передаточная характеристика.

При подаче на ТТЛ-вход низкого уровня он работает как источник тока заметной величины, а при подаче высокого уровня — как нагрузка, потребляющая небольшой ток (типовой — несколько мкА; никогда не превышает 20 мкА). Для управления ТТЛ-входом вы должны обеспечить отвод тока порядка 1 мА (точные значения приведены в табл. 9.1), поддерживая напряжение на входе на уровне менее 0,4 В. Несоблюдение этого условия может привести к неправильной работе схемы при сопряжении! Для входных напряжений ниже уровня земли ТТЛ-вход ведет себя как фиксирующий диод, включенный на землю; при напряжениях выше +5 В ток определяется напряжением пробоя диода (LS, F) или перехода база-эмиттер (ALS, AS) с напряжением пробоя около 10 В.

Типичное значение входного порога ТТЛ составляет примерно +1,3 В, хотя по техническим условиям он может находиться между +0,8 и +2,0 В. ТТЛ-вентили с триггерами Шмитта на входе (`13, `14, `132) имеют гистерезис +0,4 В; при графическом изображении они помечаются символом гистерезиса (см. например, рис. 9.9). Напряжение питания U пит (обычно его обозначают U KK ) составляет +5,0 В +5 %.

Входы КМОП-элементов при входных напряжениях от уровня земли до напряжения питания не потребляют ток (за исключением тока утечки, типовое значение которого составляет 10-5 мкА). Для напряжений выше диапазона напряжений питания входы ведут себя как два фиксирующих диода, подключенных к положительному полюсу источника питания и к земле (рис. 9.1). Кратковременный ток через эти диоды, превышающий примерно 10 мА, переводит многие КМОП-приборы в состояние тиристорного «защелкивания» (см. разд. 8.35; новейшие схемы противостоят более высоким токам и обладают иммунитетом к этой «болезни»; например на входы семейств НС и НСТ можно подавать на 1,5 В выше напряжения питания без нарушения функционирования или разрушения прибора). Это — те знаменитые диоды для защиты входов, без которых КМОП-элементы были бы чрезвычайно подвержены разрушениям от статического электричества при ручных манипуляциях (они и так все еще довольно нежны). Типовое значение порога для семейств 4000В, 74С, 74НС и 74АС составляет половину напряжения питания, но он может колебаться от 1/3 до 2/3U + (U + обычно называют U CC ); для 74НСТ и 74АСТ типовой порог равен примерно 1,5 В для обеспечения совместимости с ТТЛ. Как и в ТТЛ, существуют КМОП-вентили с триггерами Шмитта на входе. Напряжение питания КМОП-логики составляет от +2 до +6 В для НС, АС, +5 В +10 % для НСТ и ACT, и от +3 до +18 В для 4000В и 74С.

Выходные характеристики. Выходной узел ТТЛ представляет собой npn-транзистор, подключенный к земле, и npn-повторитель (или схема Дарлингтона), подключенный к U + с резистором, ограничивающим ток, в коллекторе. Один транзистор насыщен, другой выключен. В результате ТТЛ-элемент может отводить большой ток на землю (8 мА для 74LS, 24 мА для 74F) при небольшом падении напряжения и способен отдавать по меньшей мере несколько миллиампер при высоком выходном уровне (около +3,5 В). Выходная схема проектируется таким образом, чтобы можно было подключить до 10 ТТЛ-входов.

Выходная схема КМОП-логики представляет собой двухтактную пару комплементарных МОП-транзисторов; один включен, другой выключен (рис. 9.1). Выход ведет себя как r откр МОП-транзистора, подключенное к земле или к U + , если напряжение на нем находится в пределах 1 В относительно шины питания, или как источник тока, если вы отбираете такой большой ток, что напряжение на выходе отличается на 1÷2 В от напряжения на шинах питания.

Типовое значение r откр составляет от 200 Ом до 1 КОм для 4000В/74С, 50 Ом — для 74НС(Т) и 10 Ом для 74АС(Т). Выходные характеристики КМОП и ТТЛ показаны на рис. 9.4.

Рис. 9.4. Выходная характеристика логического вентиля.

На рисунке мы изобразили типовое выходное напряжение для обоих состояний выхода — ВЫСОКОГО и НИЗКОГО в зависимости от входного тока. Для упрощения графиков входной ток везде показан положительным. Заметьте, что выходы КМОП-элементов, если они не сильно нагружены, подключаются либо к U + , либо к земле, обеспечивая полный размах выходного напряжения; при подключении только КМОП-нагрузок (нулевой статический ток) размах составляет полное напряжение на шинах питания.

Для сравнения отметим, что типовое значение ТТЛ-уровней составляет 50÷200 мВ (НИЗКИЙ) или +3,5 В (ВЫСОКИЙ) при условии подключения в качестве нагрузки других ТТЛ-элементов. Подключение нагрузочного резистора (рассматривается ниже) доводит высокий ТТЛ-уровень до +5 В.

9.03. Сопряжение логических семейств

Поскольку существуют ситуации, когда вам приходится смешивать различные типы логических семейств, важно знать, каким образом можно обеспечить «общение» различных семейств друг с другом. Например, многие представляющие интерес кристаллы БИС созданы на основе n-МОП-технологии с ТТЛ-совместимыми выходными уровнями (ВЫСОКИЙ — около +3 В), но их нельзя сразу же подключать к 74НС. Другой пример, вам захотелось использовать превосходную серию счетчиков 14С9хх в существующей схеме, построенной на 74LS. Или вам понадобилась 5-вольтовая логика по периферии 12-вольтовой КМОП-системы для того, чтобы обеспечить соединение с внешними ТТЛ-совместимыми сигналами, или для питания кабелей.

Воспрепятствовать сочетанию какой-либо логической пары кристаллов могут только 3 вещи: а) несовместимость входных логических уровней; б) возможности выходного формирователя и в) напряжение питания. Чтобы не утомлять вас страницами объяснений, что работает а что-нет, мы свели проблему сопряжения к табл. 9.2. Предпримем по ней краткое путешествие.

ТТЛ использует напряжение питания +5 В и обычно выдает высокий уровень всего около +3,5 В; она обладает хорошим низким уровнем-почти до земли. Таким образом, ее можно подключить к логике с низким значением порога, т. е. к ТТЛ, НСТ, ACT и n-МОП (в которых заранее закладывается совместимость). Для того чтобы управлять НС, АС и 4000В/74С, работающие при 5 В, вам понадобится полный перепад до +5 В. Это вы можете сделать с помощью резисторной подвески к +5 В или вставляя буфер НСТ (напомним, что НСТ и ACT имеют выходы с полным перепадом).

Если вы используете подвеску, учтите, что значение резистора определяется компромиссом — чем меньше, тем быстрее, но при большей мощности. Обычно выбирают 4,7 КОм. Резистор подвески подтягивает высокий выходной уровень ТТЛ к +5 В, хотя последняя часть волны подъема (во время которой резистор и делает всю работу) довольно медленная. Для того чтобы управлять высоковольтной КМОП-логикой, используйте преобразователь уровней типа 40109, 14504 или LCT1045; они очень медленные, ну и пусть, ведь вы же все равно пытаетесь управлять медленной КМОП-логикой. n-МОП-выходы похожи на ТТЛ, но в общем случае обладают меньшей нагрузочной способностью. Можете использовать, таким образом, те же средства сопряжения.

Выходы всех КМОП-семейств обладают перепадом, равным напряжению питания. Это означает, что вы можете непосредственно подключать 5-вольтовую КМОП-логику к ТТЛ, n-МОП- и 5-вольтовой КМОП-логике. Учтите, однако, что КМОП старого типа (4000В/74С) имеют слабый выход при работе от 5 В (ток отвода 0,5 мА) и полностью теряют свою способность управлять ТТЛ. Для этих семейств используйте транслятор уровней для управления высоковольтной КМОП-логикой.

Превосходным решением задачи сопряжения КМОП-ТТЛ/n-МОП является использование КМОП при уменьшенном напряжении питания; по стандарту JEDEC Standard № 8 напряжение питания составляет +3,3 В, при этом входной порог располагается вблизи обычного ТТЛ-порога 1,4 В. Таким образом, ТТЛ может непосредственно управлять НС/АС при питании 3,3 В и наоборот. В качестве дополнительного вознаграждения работа при 3,3 В снижает динамическую мощность потребления (см. разд. 8.10, 14.16 и рис. 8.18 и рис. 14.38) на 55 % относительно мощности при 5 В при увеличении задержек распространения почти на 40 %. Учтите, однако, что вы не можете подключать (и в том и в другом направлении) 3,3-вольтовую КМОП к другим КМОП, работающим при 5 В.

Упражнение 9.1. Объясните, почему последнее утверждение истинно.

Наконец, высоковольтная КМОП-логика может управлять 5-вольтовой логикой, если для формирования 5-вольтового выходного перепада вы поставите преобразователь уровней (74С901/2, 14504, LTC1045 или 4049/4050). Можно управлять LS ТТЛ-элементами непосредственно от высоковольтной КМОП-логики, поскольку там нет диодов, защищающих входы, и входное напряжение пробоя обычно превышает 10 В; однако в соответствии с техническими условиями на LS (абсолютное максимальное входное напряжение 7 В) необходимо использовать преобразователь уровней.

Предостережение. Хотя статические логические уровни могут не вызывать беспокойства, иногда возникает занимательная динамическая несовместимость, если вы пытаетесь управлять фронтовыми входами (например, входы синхронизации счетчиков) НС или АС от выходов более медленной логики типа 4000В или 74С. На рис. 9.5 изображены многократные переходы, которые вы могли часто наблюдать; иногда кристалл НС совсем отказывается считать до тех пор, пока вы не прикоснетесь щупом осциллографа (или небольшой емкостью)! По-видимому, виновником этого является комбинация большого времени перехода и относительно высокого выходного импеданса медленной КМОП. На рис. 9.6 приведены несколько сочетаний семейств, с которыми вам, вероятно, доводилось встречаться.

Рис. 9.5. Быструю фронтовую логику нельзя запускать медленными сигналами (например, от узлов с медленной логикой).

Рис. 9.6. Соединение логических семейств друг с другом.

9.04. Управление КМОП-и ТТЛ-входами

Механические ключи в качестве устройств ввода. Если вам известны входные характеристики используемой логики, то управление цифровыми входами от переключателей, клавиатуры, компараторов и т. п. не доставит вам особых осложнений. Самый простой способ — это использовать резистор, подключенный к шине питания (рис. 9.7). Для элементов ТТЛ, учитывая их входные характеристики, лучше всего, когда резистор коммутируется ключом на землю. Ключ легко отбирает входной ток на низком уровне, а резистор поднимает высокий уровень до +5 В, обеспечивая высокую помехоустойчивость; кроме того, это удобно, когда ключ возвращается в состояние, соответствующее земле.

Рис. 9.7. Управление логическими элементами от механических ключей (без защиты от дребезга).

Альтернативный способ, когда резистор подключается к земле, а ключ обеспечивает коммутацию к +5 В, нежелателен, поскольку при этом необходима маленькая величина сопротивления резистора (220 Ом), гарантирующая низкий ТТЛ-уровень в несколько десятых вольта, а это означает, что при замкнутом ключе будет протекать большой ток. В схеме с подвеской к шине питания помехоустойчивость при разомкнутом ключе (худший случай с точки зрения чувствительности к помехе) будет составлять по крайней мере 3 В, в то время как в схеме с подвеской к земле - всего 0,6 В (для ТТЛ FAST нижний порог +0,8 В, входной ток равен — 0,6 мА).

Для КМОП-логики и та и другая схема работает превосходно, поскольку входы не потребляют ток, а типовое значение порога составляет половину U CC . Обычно удобно заземлять одну из сторон ключа, но если схема становится проще при наличии высокого уровня, когда ключ замкнут, то вполне пригоден способ с подключением резистора на землю. На рис. 9.7 показаны все три описанных способа.

Дребезг ключей. Как было отмечено в гл. 8, после замыкания контактов механических переключателей дребезг контактов продолжается в течение примерно 1 мс. Дребезг крупногабаритных переключателей может продолжаться до 50 мс. Это может приводить к беспорядочным переключениям в схемах, реагирующих на смену состояний или фронт (например, если триггер или счетчик тактируются прямо от ключа, то возможно многократное их переключение). В подобных ситуациях следует подавить дребезг ключа электронными средствами.

Рассмотрим несколько способов подавления.

1. Соберите из двух вентилей асинхронный RS-триггер, не забыв, разумеется, о резисторах подвески к шине питания (рис. 9.8). Можно использовать готовый триггер с входами СБРОС и УСТАНОВКА (например, `74), заземлив вход синхронизации.

Рис. 9.8. Схема защиты от дребезга ( RS -триггер).

2. Используйте интегральный вариант предыдущей схемы. Элементы `279, 4043 и 4044 представляют собой счетверенные RS-триггеры.

3. Используйте КМОП-триггер Шмитта с замедляющей RС-цепочкой на входе (рис. 9.9). Фильтр нижних частот R 2 C 1 сглаживает дребезг, поэтому триггер Шмитта переключится только один раз. В общем случае вполне достаточно иметь постоянную времени RС-цепочки, равную 10÷25 мс. Для ТТЛ этот способ не подходит из-за низкого импеданса, необходимого для запуска ТТЛ-входов.

Рис. 9.9. Схема защиты от дребезга ( RС -цепочка и триггер Шмитта ).

4. Воспользуйтесь кристаллом типа 4490, «сшестеренным подавителем дребезга». В этой превосходной схеме использована цифровая задержка (5-разрядный сдвиговый регистр на каждый ключ) как своего рода цифровой фильтр нижних частот. Схема содержит внутренние резисторы подвески и схему синхронизации. Пользователь добавляет времязадающий конденсатор, устанавливая частоту генератора и определяя тем самым время задержки.

5. Примените схему, показанную на рис. 9.10, используя либо неинвертирующий вентиль, либо буфер. Логический выход всегда можно заблокировать, замыкая его на U+ или землю, но при условии, что эта блокировка кратковременна. Приведенная схема удовлетворяет этому условию, поскольку принудительная установка действует только на интервале времени, равном задержке вентиля, после чего вентиль поддерживает сам себя в новом состоянии.

Рис. 9.10. Схема защиты от дребезга (неинвертирующий вентиль с обратной связью).

6. Применяйте компоненты с встроенным подавителем дребезга. Например, шифраторы клавиатуры проектируются с учетом того, что в качестве устройств ввода будут использованы механические ключи, поэтому они обычно содержат схему подавления дребезга.

7. Можно использовать ключи, построенные на основе эффекта Холла. Они представляют собой твердотельные ключи, управляемые магнитным полем, и используются в качестве панельных или клавиатурных ключей. Для их работы требуется напряжение +5 В; вырабатываемые ими бездребезговые логические выходные сигналы можно использовать для управления ТТЛ или КМОП-логикой, работающей от +5 В. Поскольку ключи на эффекте Холла не имеют изнашиваемых механических контактов, они практически вечны (хотя однажды у нас случилась эпидемия прогрессирующей магнитной анемии клавиатуры на эффекте Холла; мы надеемся, что эта болезнь теперь побеждена).

Несколько общих замечаний о ключах как устройствах ввода. Следует иметь в виду, что для однополюсных ключей на одно направление (иногда называемых «тип А») можно использовать 3-й и 4-й способы (и как правило, 6-й), в то время как для однополюсных ключей на 2 направления (тип «В») следует применять остальные способы. Помните также, что во многих случаях нет необходимости подавлять дребезг ключей, ведь ключи не всегда управляют схемами, чувствительными к фронту. Еще один важный момент: хорошие ключи обладают обычно свойством «самоочистки», позволяющим сохранять чистоту контактных поверхностей (разберите один из ключей и вы поймете, что это означает), тем не менее для очистки контактов желательно выбрать параметры схемы таким образом, чтобы через контакты протекал ток не менее нескольких миллиампер. Выбор подходящего материалы для контактов (например, золото), а также специальная конструкция позволяют избежать этой проблемы «сухого переключения», ключ будет хорошо работать даже при нулевом токе.

9.05. Управление цифровой логикой от компараторов и операционных усилителей

Компараторы и операционные усилители, наряду с аналого-цифровыми преобразователями (АЦП), являются обычными устройствами ввода, с помощью которых аналоговые сигналы могут управлять цифровыми схемами. На рис. 9.11 показано несколько примеров.

Рис. 9.11. Управление логикой от компараторов и операционных усилителей.

В первой схеме компаратор управляет ТТЛ непосредственно. Большинство компараторов содержат выходной npn-транзистор с открытым коллектором и заземленным эмиттером, поэтому остается только добавить нагрузочный резистор, подключенный к +5 В. Аналогичную схему можно использовать и для КМОП, подключая резистор к +U CC . Использование двуполярного источника для питания компаратора совсем не обязательно; многие из них предназначены для работы с одним источником (U_ заземлено), а некоторые будут работать даже с одним источником питания 5 В (например, элементы 311, 339, 393 или 372/4).

На второй схеме показан способ управления КМОП-логикой от операционного усилителя с использованием только последовательно включенного токоограничивающего резистора. Диоды защиты входов элементов КМОП образуют эффективные фиксаторы уровней U CC и земли, благодаря чему входной ток не превышает 10 мА. В третьей схеме операционный усилитель переводит npn-транзистор в насыщение, обеспечивая возможность управления нагрузкой ТТЛ; диод служит для предотвращения пробоя перехода база-эмиттер в обратном направлении (~6 В). В этой схеме R 1 и D 1 можно исключить, заменяя одновременно npn-транзистор на n-канальный МОП-транзистор. Последнюю схему мы особенно не рекомендуем, но она вполне работоспособна. Фиксирующий диод на входе ТТЛ-элемента ограничивает отрицательный перепад до величины падения на диоде ниже земли, а внешний диод ограничивает положительный перепад.

Последовательно включенный резистор предотвращает повреждение схемы, когда на входном транзисторе ТТЛ появляется напряжение обратного пробоя база-эмиттер. Величина резистора выбирается достаточно малой для того, чтобы отвести входной ток на низком уровне ТТЛ, когда на выходе операционного усилителя появится отрицательное напряжение в несколько вольт.

Тактовые входы. Гистерезис. Общее замечание относительно управления цифровой логикой от операционных усилителей. Не пытайтесь управлять тактовыми входами с помощью приведенных выше схем; длительность перехода довольно большая и, когда входной сигнал проходит через напряжение логического порога, в вашей схеме могут появиться выбросы. Если возникает необходимость управлять тактирующими входами (триггеров, сдвиговых регистров, счетчиков, одновибраторов и т. п.), лучше всего использовать компаратор с гистерезисом или поставить на входе вентиль с триггером Шмитта (или любой другой элемент такого типа). Аналогичное замечание относится и к сигналам от транзисторных аналоговых схем. Обратимся к рис. 9.12.

Рис. 9.12. Пороговый детектор с гистерезисом.

Величину резистора R 2   выбирают таким образом, чтобы гистерезис составлял 50 мВ. Параллельно резистору обратной связи включен небольшой конденсатор С 2 , который обеспечивает необходимую скорость переходов и предотвращает появление многократных импульсов при пересечении порога (элемент 311 особенно склонен к этому). Для предотвращения выбросов на входе опорного напряжения важную роль играет конденсатор развязки C 1 . Во многих случаях опорное напряжение равно нулю и тогда C 1  можно не ставить.

9.06. Некоторые замечания, касающиеся логических входов

При разработке ТТЛ-элементов имеется тенденция использовать низкий уровень в качестве активного входного сигнала (как и для их аналогов НС и АС). Например, от низкого уровня срабатывают входы УСТАНОВКА и СБРОС триггеров. Поэтому цепи внешних цифровых входных сигналов почти всегда содержат нагрузочный резистор и, будучи активными, находятся в состоянии низкого уровня (отвод тока); это удобно, поскольку механические ключи и т. п. могут работать с возвратом на землю. Кроме этого, возрастает помехоустойчивость, так как цепь с напряжением около +5 В имеет помехоустойчивость 3 В, а цепь с напряжением около 0 В помехоустойчивость 0,8 В. Эта присущая ТТЛ слабость (низкая помехоустойчивость на низком уровне) станет очевидной, если вы представите себе, что кристалл может интерпретировать отрицательный выброс 0,5 В на своей земляной шине как входной сигнал высокого уровня. Такие выбросы не являются чем-то необычным; их могут порождать короткие импульсы тока в индуктивности шины земли. Дальнейшее обсуждение этого животрепещущего вопроса отложим до разд. 9.11.

Помехоустойчивость КМОП-логики одинакова в любом состоянии, поэтому при управлении от приборов, имеющих открытое состояние, в качестве входных цепей вы можете использовать резисторы, подключенные к питанию или к земле. Чаще используются резисторы, подключенные к земле, хотя подключение к питанию можно увидеть в схемах, в которых управляющий элемент аналогичен ключу с возвратом на землю.

Открытый ТТЛ-вход — это «едва ВЫСОКИЙ». Он располагается на логическом пороге (1,3 В), но, поскольку ток отсутствует, он не открывает входной транзистор. Вам, возможно, довелось видеть «схемы», в которых вход, который должен быть подключен к высокому ТТЛ-уровню, остается незадействованным. Никогда не делайте этого! Это столь же не разумно, сколь и опасно: незадействованный вход имеет нулевую помехоустойчивость, поэтому емкостная связь с любым близлежащим сигналом может привести к коротким всплескам к нижнему уровню на входе. В результате на выходе комбинационных элементов (вентилей) появляются выбросы, что само по себе уже плохо, но в случае триггеров или регистров будет просто недопустимо, поскольку незадействованный вход СБРОС может сработать в непредсказуемые моменты времени. Выбросы, нарушающие работу, иногда невозможно увидеть на осциллографе, они могут иметь характер одиночных импульсов длительностью около 20 не. В большинстве случаев вам, возможно, и удастся «выйти сухим из воды», особенно при небольшой емкости между незадействованным выводом и соседними выводами, тем не менее это не выход из положения; если вы попытаетесь найти причину неработоспособности с помощью логического анализатора или тестовой клипсы, у вас получится новая схема, поскольку дополнительные емкости тестового оборудования почти наверняка приведут к импульсным переходам к нижнему уровню на незадействованных выводах. Кроме того, зачем создавать заведомо ненадежную схему, если вы знаете, как с помощью простых соединений сделать ее надежной? (Конец тирады.)

Неиспользуемые входы. Неиспользуемые входы, которые влияют на логическое состояние ИС (например, вход триггера СБРОС), должны быть подключены соответствующим образом к высокому или низкому уровням. Входы, не оказывающие влияния (например, входы неиспользуемых функциональных частей в том же корпусе), в ТТЛ можно оставить неподключенными, но не в КМОП. Открытые входы незадействованного КМОП-вентиля могут, например, сместиться к логическому порогу, выходы при этом займут положение на половине напряжения питания, т. е. оба выходных МОП-транзистора будут открыты, потребляя значительный ток класса А. Это приведет к чрезмерному потреблению тока и может даже вызвать отказ элементов с большим числом выходных каскадов. Лучше заземлить все входы неиспользуемых функциональных частей в каждом КМОП-кристалле.

В ТТЛ можно не обращать внимания на неиспользуемые функциональные части кристалла, как и на несущественные входы используемых схем. Например, можно оставить неподключенными входы параллельной загрузки счетчика, если вы никогда не активизируете линию ЗАГРУЗКА.

9.07. Компараторы

Мы вкратце уже упоминали о компараторах в разд. 4.23 для того, чтобы проиллюстрировать применение положительной обратной связи (триггер Шмитта) и показать, что специализированные ИС компараторов обладают существенно лучшими характеристиками, чем универсальные операционные усилители, используемые в качестве компараторов. Эти преимущества (малые задержки, высокая скорость нарастания выходного напряжения и сравнительно высокая устойчивость к большим перегрузкам) достигаются ценой полезных для операционных усилителей свойств (в частности, ценой точного управления фазовым сдвигом по частоте). Компараторы не имеют частотной компенсации (разд. 4.33) и не могут использоваться в качестве линейных усилителей.

Компараторы играют важную роль при сопряжении аналоговых (линейных) входных сигналов с миром цифровой техники. В данном разделе мы подробно рассмотрим компараторы, уделяя основное внимание их выходным характеристикам, некритичности в отношении к напряжению источника питания и способам подачи сигналов и защиты входов.

Напряжение питания и выходы. Большинство компараторов имеют выход с открытым коллектором, предназначенный для запуска логических входов (разумеется, с резистором подвески на шину питания) и сильноточных/высоковольтных нагрузок. Элемент 311, например, может управлять нагрузкой, подключенной к источнику питания до 40 В и потребляющей ток до 50 мА, а элемент 306 может работать с еще большим током. Эти компараторы имеют вывод земли в дополнение к выводам отрицательного и положительного питания, поэтому напряжение на нагрузке достигает уровня земли независимо от напряжения питания. Компараторы повышенного быстродействия (521, 527, 529, 360, 361, Am686, СМР-05, LT1016 и VC7695/7) в большинстве случаев имеют выходные каскады с активной нагрузкой. Они предназначены для управления 5-вольтовой цифровой логикой и обычно имеют 4 вывода питания — U + , U _, U KK (+5) и земля.

Следует обратить внимание на то, что для работы большинства компараторов необходимо использовать источники и положительного и отрицательного напряжения даже в том случае, если на входе никогда не появляется отрицательный сигнал. Примерами могут служить элементы 306, 710 и 711, а также компараторы с активной подгрузкой, перечисленные выше. Необходимость иметь источник отрицательного напряжения для обеспечения работы компаратора в аппаратуре, использующей только положительное напряжение, доставляет определенные неудобства. В связи с этим полезно знать характеристики компараторов, которые могут питаться лишь от положительного напряжения (например, 311, 319, 339, 393, 365, СА3290, НА4905, СМР-01, СМР-02, LT1016, AD790 и TLC372/4). Действительно, они могут работать с одним источником питания 5 В; это существенное достоинство для цифровых систем. При работе от одного источника +5 В компараторы 339, 393, 365, СА3290, НА4905, LT1017/18, AD790 и TLC372/4 имеют входной диапазон в режиме синфазного сигнала, достигающий уровня земли. Они созданы специально для работы с одним источником питания и за исключением элементов 4905 и 790 имеют всего два вывода питания (U + и земля); при работе от расщепленного питания выход будет опускаться до U_. Кроме того, некоторые из них обладают довольно необычным свойством — они способны работать от одного источника питания с напряжением лишь +2 В. Говоря об источниках питания, следует упомянуть, что некоторые компараторы спроектированы для работы при малом токе питания в общем случае, менее 0,5 мА; примерами могут служить компараторы LP311, LP339, TLC373/4, TLC339/393, TLC3702/4, СМР-04, LT1017/8, МС14574 и LP365. Последние два элемента представляют собой счетверенные компараторы с программируемым рабочим током. Малая мощность достигается ценой низкого быстродействия с временем реакции порядка нескольких микросекунд. Для полного знакомства с маломощной электроникой обратитесь к гл. 14; в табл. 14.8 перечислены маломощные компараторы.

Входы. Входные цепи компараторов требуют некоторых мер предосторожности общего характера. Везде, где это возможно, следует использовать гистерезис (разд. 4.24), в противном случае возможны ошибочные переключения. Для того чтобы понять причины, вообразите себе компаратор без гистерезиса, в котором дифференциальное входное напряжение проходит через уровень 0 В, медленно изменяясь будучи аналоговым колебанием. Разница на входах всего в 2 мВ приведет к изменению состояния выхода с временем переключения менее 50 нc. Неожиданно в вашей схеме возникают быстрые логические перепады амплитудой 3000 мВ, сопровождаемые импульсами тока в цепях питания и т. п. Можно просто чудом избежать наложения этих быстрых колебаний на входной сигнал, ведь достаточно всего нескольких милливольт для того, чтобы разность на входе превысила 2 мВ и возникли многократные переходы и колебания. Именно по этой причине для создания хорошо работающей чувствительной схемы с компаратором необходим соответствующий гистерезис (с небольшим конденсатором параллельно резистору обратной связи) в сочетании с тщательно продуманной трассировкой и развязками по питанию. Старайтесь вообще избегать управления входами компаратора высокоимпедансными сигналами; используйте выход операционного усилителя. Если быстродействие не требуется, старайтесь также избегать применения быстродействующих компараторов, которые обостряют все эти проблемы. Некоторые компараторы доставляют в этом отношении больше беспокойств, чем другие; мы столкнулись с массой трудностей, применяя превосходный во всех других отношениях компаратор 311.

Еще одно предостережение относительно входов. Некоторые компараторы обладают весьма ограниченным диапазоном напряжений на дифференциальных входах, некоторые типы всего 5 В (например, СМР-05, 685-7 и VT969/7). В этих случаях для защиты входов возможно понадобятся фиксирующие диоды, поскольку избыточное напряжение на дифференциальных входах приведет к уменьшению h 21э и вызовет постоянные ошибки смещения входа, а в ряде случаев выход из строя перехода база-эмиттер входного каскада. Универсальные компараторы в этом отношении лучше; типовое значение диапазона напряжений на дифференциальных входах составляет ± 30 В (например, 311, 393, LT1011 и т. п.).

Одной из важных особенностей входов компараторов является входной ток смещения и его зависимость от дифференциального входного напряжения. Во входных каскадах большинства компараторов используются биполярные транзисторы с входными токами смещения от десятков наноампер до десятков микроампер. Входной каскад представляет собой дифференциальный усилитель с большим усилением, поэтому при переходе компаратора через порог ток смещения изменяется. Кроме того, внутренние схемы защиты могут вызвать еще большие изменения тока смещения в нескольких вольтах от порога. На рис. 9.13 показана типовая зависимость тока смещения (для СМР-02).

Рис. 9.13. Зависимость входного тока смещения от дифференциального входного напряжения для компаратора СМР-0,2 . (С разрешения фирмы Precision Monoliths, Inc.) U и = ±15 В; Т окр = 25 °C.

Небольшая ступенька тока при 0 В (дифференциальное напряжение) представляет собой в действительности плавный переход примерно при 100 мВ; это соответствует изменению напряжения, которое необходимо для полного переключения входного дифференциального усилительного каскада из одного состояния в другое. Для тех применений, где необходимо обеспечить работу при крайне низком входном токе, используются компараторы с полевыми транзисторами на входе.

Примерами могут служить сдвоенные компараторы с полевыми МОП-транзисторами на входе СА3290, TLC372, TLC3702 и TLC393, а также LF311 с полевым транзистором с p-n-переходом, вариант известного компаратора 311. Последний имеет максимальный входной ток 50 пА (311–250 нА) при почти полном сохранении напряжения смещения и быстродействия. Там, где необходимы характеристики какого-то конкретного компаратора, но при более низком входном токе, на входе целесообразно добавить повторитель с согласованной парой полевых транзисторов.

И последнее замечание относительно входных характеристик: температурные градиенты на кристалле, обусловленные рассеиванием мощности на выходных каскадах, могут ухудшить указанное в спецификации напряжение смещения входов. В частности, в связи с тем что тепло, генерируемое на выходном каскаде и зависящее от состояния, может привести к переключению входа, для входных сигналов вблизи 0 В (дифференциальное напряжение) возможен эффект «урчания двигателя» (медленные колебания на выходном каскаде).

Общее быстродействие. Обычно полагают, что компаратор представляет собой идеальную переключательную схему, в которой любые сколь угодно малые изменения полярности дифференциального входного напряжения приводят к мгновенному изменению на выходе. В действительности же для малых входных сигналов компаратор ведет себя как усилитель, а его переключательные характеристики зависят от усилительных свойств на высоких частотах. В результате незначительные перегрузки по входу (т. е. при сигналах, больших, чем это необходимо для насыщения на постоянном токе) приводят к увеличению времени распространения и, как правило, к затягиванию фронта и спада на выходе. В технических данных на компараторы обычно имеется графа «время отклика для различных перегрузок по входу». Некоторые значения этого параметра для компаратора 311 приведены на рис. 9.14.

Рис. 9.14. Время отклика компаратора LM311 при различных выходных перегрузках. (С разрешения фирмы National Semiconductor Corp.) U и = ±15 В; Т окр = 25 °C.

Обратите внимание на снижение параметра в конфигурации, когда выходной транзистор используется как повторитель, т. е. без усиления. Увеличение входного напряжения ускоряет процессы, поскольку снижение коэффициента усиления на высоких частотах компенсируется большим сигналом. Кроме того, увеличение внутренних токов усилителя позволяет ускорить заряд внутренних емкостей.

В табл. 9.3 приведены характеристики большинства современных компараторов.

9.08. Управление внешней цифровой нагрузкой от КМОП- и ТТЛ-элементов

Управление с помощью ТТЛ- и КМОП-элементов устройствами релейного типа, такими, как лампы (светодиоды, СИД), реле, устройства отображения и даже нагрузки с переменным током, не доставит вам особых трудностей. На рис. 9.15 представлены некоторые способы управления.

Рис. 9.15. Управление нагрузками от логических уровней.

На схеме а показан стандартный способ управления СИД-индикатором от 5-вольтовой логики. ТТЛ-элементы лучше работают на отводе тока, чем на отдаче, поэтому СИД подключается к +5 В; для КМОП-элементов СИД можно подключать либо к U + , либо к земле. СИД ведет себя как диод с прямым падением напряжения от 1,5 до 2,5 В при типовых рабочих токах от 5 до 20 мА; используя некоторые самые современные высокоэффективные СИД, вы получите хорошую светоотдачу всего при нескольких миллиамперах (фирма Stanley выпускает ослепительно яркие приборы). Вместо дискретных СИД и резистора можно использовать СИД с интегральным токоограничивающим резистором (или регулятором тока), которые выпускаются многими фирмами; посмотрите каталоги фирм Dialight, General Instrument, Siemens и Hewlett-Packard.

На схеме б показано, как управлять 5-вольтовым слаботочным реле с помощью логических элементов, отводя ток по типу схемы а; диод шунтирует индуктивные выбросы. Реле, показанное на схеме, выполнено в стандартном корпусе DIP с сопротивлением обмотки 500 Ом (потребляемый ток составляет 10 мА, что соответствует возможностям большинства элементов 5-вольтовой логики). Схемы в, г и д предназначены для управления высоковольтной нагрузкой. На схеме в вентиль 74LS26 с открытым коллектором, работающий от источника 15 В, управляется 12-вольтовым реле, а на схеме г «сдвоенный периферийный формирователь» 75451 управляет некой неопределенной нагрузкой в диапазоне напряжений до 30 В и токов до 300 мА. Выпускаются также аналогичные приборы с открытым коллектором, предназначенные для работы с напряжением 80 В и даже с большими, чем в предыдущем случае, токами; познакомьтесь с серией DS3600, выпускаемой фирмой National, и с серией мощных формирователей фирмы Sprague (UCN/UDN/ULN), включающей превосходные октальные формирователи в корпусе DIP. В схеме д мы использовали низкопороговый n-канальный мощный полевой транзистор; благодаря высокому входному импедансу транзистора такой способ управления особенно удобен. При управлении ТТЛ-уровнями для обеспечения нормальных условий работы лучше использовать резисторную подвеску к питанию, поскольку минимальный гарантированный в ТТЛ-элементах высокий уровень (2,4 В) является слишком низким.

Рассмотренные выше способы могут оказаться неприемлимыми для элементов НС, LS или 74С из-за ограничений по выходу (отводящий ток составляет соответственно 5,8 и 3,5 мА). Для управления большими СИД можно воспользоваться элементами типа 74AS1004 (сшестеренный инвертор с током отвода или отдачи 48 мА). При управлении сильноточной нагрузкой от логических элементов следует позаботиться о массивной земляной шине для подвода земли к кристаллу, поскольку ток нагрузки возвращается на землю источника питания через кристалл. В некоторых случаях целесообразно использовать отдельный путь возврата земли.

На схеме е показано применение npn-транзистора для переключения сильноточной нагрузки с помощью 5-вольтовой логики. Для коммутации больших токов используйте второй транзистор, как показано на схеме ж. На схемах з, и представлен способ управления нагрузками, подключенными к отрицательному полюсу источника питания. Высокий выходной уровень открывает pnp-транзистор и напряжение насыщения на коллекторе становится выше потенциала земли на величину падения напряжения на диоде. Ток эмиттера, а, следовательно, и максимальный ток коллектора (нагрузки), в схеме з определяется резистором (или положительным предельным током вентиля). В улучшенной схеме и в качестве буфера используется npn-повторитель; диод, включенный последовательно с выходом, удерживает нагрузку от перепадов выше земли. В обоих случаях максимальный ток нагрузки равен току эмиттера pnp-транзистора. Аналогичные схемы выпускаются в интегральном исполнении; они имеют КМОП/ТТЛ-совместимые входы и высоковольтные выходы с нагрузочной способностью по току до нескольких сотен миллиампер. Попробуйте применить элементы DS3687 (300 мА, — 56 В) фирмы National и распространенную серию UDN фирмы Sprague. В том случае когда вы используете слаботочную логику 4000В/74С с выходным током едва достигающим миллиампера, следует предусмотреть специальный мощный формирователь, даже для светодиода. На схеме к показан надежный сшестеренный буфер, управляющий светодиодом. Этот элемент может работать с отводом тока от 5 до 50 мА при напряжении питания от 5 до 15 В соответственно (нагрузочная способность выхода увеличивается с увеличением напряжения питания). В схемах л, м используются еще более мощные формирователи — 40107, содержащий мощный n-канальный МОП-транзистор на выходе с открытым стоком (отводящий ток составляет от 16 до 50 мА при напряжении питания от 5 до 15 В, соответственно), и DS3632 с мощным npn-формирователем по схеме Дарлингтона, рассчитанным на ток 300 мА. Можно, разумеется, всегда использовать и дискретные внешние транзисторы, как в схемах ж, и, но их применение ограничено базовым током менее миллиампера. Дискретный n-канальный МОП-транзистор в схеме д особенно хорошо работает со «слабенькими» КМОП-элементами.

Для управления удаленной нагрузкой или нагрузкой с независимой системой заземления лучше всего использовать оптрон. Этот прибор содержит светодиод (на стороне формирователя), который освещает фотоприемник (на стороне нагрузки). Оптроны выпускаются на различные скорости с различными конфигурациями входов/выходов (логический вход или просто светодиод; логический выход, выход с насыщенным транзистором (или схема Дарлингтона), выход с МОП-транзистором или выход с тиристором или симистором; см. рис. 9.26).

Типичным примером является распространенный элемент 4N36, показанный на рис. 9.15, н; этот элемент содержит простой светодиод на входе, npn-транзистор на выходе и может работать при напряжении 2500 В с временем переключения 4 мкс. Минимальный коэффициент передачи по току составляет 1.0, поэтому остается только пропустить через светодиод ток, равный максимальному выходному току. Существует ряд оптронов, которые используют логические уровни на входе и на выходе. Примером может служить оптрон 74OL6000 фирмы General Instrument; уровни на входе и выходе соответствуют уровням LS, время распространения составляет 60 нс (15 МГц), напряжение изоляции — 2500 В. В больших количествах его можно приобрести за 3 долл.

Наиболее простым способом управления нагрузкой переменного тока является способ, основанный, как показано на схеме о, на применении твердотельного реле. Реле этого типа представляет собой симистор с оптической связью с логическим входом и нагрузочной способностью по току от 1 до 40 А при коммутации нагрузки с переменным напряжением 115 В. Слаботочные реле в большом разнообразии выпускаются в корпусах типа DIP (например, серия «интегральных ключей» фирмы International Rectifier), в то время как более мощные реле выпускаются в виде прямоугольных блоков со сторонами, равными примерно 2 дюймам, предназначенных для установки на шасси. С другой стороны, нагрузки переменного тока можно коммутировать с помощью обычного реле, управляемого логическим элементом. При этом, однако, обязательно изучите технические данные, поскольку большинство реле, управляемых логикой, не способны коммутировать большие нагрузки переменного тока и вам понадобится логическое реле для того, чтобы управлять вторым более мощным реле. Почти во всех реле используется коммутация по типу «перехода через нуль» (или «нулевого напряжения»), которая в действительности является комбинацией включения по нулевому напряжению и выключения по нулевому току; это весьма полезная особенность, она предотвращает попадание выбросов и помех в шину питания. Много «мусора» на силовую шину переменного тока попадает от симисторных контроллеров, в которых коммутация осуществляется не в моменты перехода через нуль; таковы, например, регуляторы света с фазовым управлением для осветительных ламп, термостатов и двигателей. В качестве альтернативы оптической связи, использованной в схеме о, иногда можно встретить импульсный трансформатор для подвода импульсов запуска к симистору или тиристору.

Для управления 7-сегментными цифровыми индикаторами проще всего использовать элементы, объединяющие дешифратор и формирователи. Разнообразие их поразительно, — с формирователями для СИД и для жидкокристаллических индикаторов, с возможностями отвода и отдачи тока и т. п. Типичными примерами являются элементы «регистр/дешифратор/формирователи» типа 74НС4511 (СИД с общим катодом) и 74НС4543 для жидкокристаллических индикаторов. Более подробно об этом будет изложено в разделе по оптоэлектронике (разд. 9.10).

9.09. Сопряжение n -МОП БИС

Большинство схем большой и очень большой степени интеграции (БИС, СБИС) изготавливаются сейчас с использованием КМОП-технологии; они обладают такой же привлекательной способностью к сопряжению, как 5-вольтовые логические КМОП-вентили, и многими другими возможностями кристаллов средней степени интеграции (СИС), рассмотренными выше. Однако долгое время кристаллы БИС и СБИС изготавливались только на n-канальных МОП-транзисторах в режиме обогащения для того, чтобы упростить технологический процесс и получить более высокую плотность. Такая n-МОП-логика получила широкое распространение, поэтому важно знать, каким образом можно осуществить сопряжение n-МОП-логики и КМОП/ТТЛ и как обеспечить связь входов/выходов n-МОП-логики с внешними дискретными схемами. Большинство кристаллов n-МОП БИС совместимы с ТТЛ, тем не менее здесь есть несколько тонких моментов, которые следует рассмотреть.

Выходы n -МОП-элементов. На рис. 9.16 показана входная цепь интегральной схемы на n-канальных МОП-транзисторах, предназначенная для работы с ТТЛ. T 1 — инвертор, а Т 2 — истоковый повторитель с малыми геометрическими размерами, задающий необходимый ток от шины питания (резистор занял бы слишком много места, поэтому в качестве стоковой нагрузки всегда используется МОП-транзистор); часто используется и другой символ для изображения Т 2 . В современных схемах кремниевых вентилей пороговое напряжение входного транзистора находится в диапазоне от 1 до 1,5 В, поэтому вход можно непосредственно подключать к ТТЛ или КМОП-логике. В некоторых старых схемах порог может оказаться в диапазоне от 2 до 3 В, в этих случаях для управления от ТТЛ лучше использовать резистор 1-10 КОм, подключенный к шине питания; для КМОП обычно этого не требуется.

Рис. 9.16.Входная схема n -МОП-логики в режиме обогащения.

Выходы n -МОП-элементов. Выходная ступень 5-вольтовой n-МОП-логики показана на рис. 9.17.

Рис. 9.17. Выходная схема n -МОП-логики.

T 1  представляет собой ключ, а Т 2 — истоковый повторитель. Для того чтобы установить на выходе нижний уровень на затвор транзистора T 1 подается напряжение +5 В; напряжение на выходе при этом будет ниже 0,5 В даже при отводе тока в несколько миллиампер.

Ситуация в состоянии высокого выходного уровня несколько ухудшается: при минимальном высоком выходном ТТЛ-уровне +2,4 В напряжение затвор-исток составляет всего 2,6 В, что приводит к сравнительно высокому значению сопротивления R вкл ; для более высоких выходных напряжений ситуация быстро ухудшается.

Кривые на рис. 9.18 иллюстрируют это положение.

Рис. 9.18. Типовые выходные характеристики по току n -МОП-элементов. 1 — ток отдачи; 2 — ток отвода; 3 — точка запуска схемы Дарлингтона .

В результате нагрузочная способность n-МОП-выхода составляет всего 0,2 мА (отдача тока) при напряжении на выходе +2,4 В. Это вполне допустимо для управления ТТЛ-входами, но выходит за пределы допустимого для 5-вольтовой КМОП-логики (используйте резистор, подключенный к шине питания, или вставьте вентиль НСТ или ACT); подобная неприятная ситуация изображена на рис. 9.19.

Рис. 9.19.

Для работы СИД с уровнями токов мультиплексируемого устройства отображения (25–50 мА во включенном состоянии) выход n-МОП-элемента должен отдавать ток около 1 мА при +4,1 В. Но это невозможно, поскольку напряжение U ЗИ должно при этом быть всего 0,9 В, а может быть, даже ниже порогового напряжения полевого транзистора. Вспомните еще, что все схемы 5-вольтовой логики должны функционировать при отклонении напряжения питания ±10 %, т. е. при напряжении +4,5 В. Для управления светодиодами (или другими сильноточными приборами) от n-МОП-элементов желательно использовать схемы, показанные на рис. 9.20.

Рис. 9.20. Управление нагрузками с выходов n -МОП-элементов.

В первой схеме низкий выход n-МОП-элемента отбирает ток 2 мА, переводя pnp-транзистор в состояние полной проводимости. На второй схеме npn-транзистор схемы Дарлингтона переключается в открытое состояние малым выходным током n-МОП-элемента, находящегося в состоянии высокого уровня. В этой схеме ВЫСОКИЙ выход фиксируется на уровне падения напряжения на двух диодах выше земли, что может показаться не совсем «дружелюбным» обстоятельством, но оказывается, что выходы n-МОП-элементов проектируются с таким расчетом, чтобы их можно было таким образом закорачивать на землю; причем достаточно малые выходные токи получают возможность управлять базой транзистора с заземленным эмиттером в схеме Дарлингтона без нарушения работоспособности. Типовой n-МОП-выход может отдавать 2 Μ А при +1,5 В в базу схемы Дарлингтона, при этом способность выхода отводить ток для таких схем, как «сшестеренная» матрица Дарлингтона, составит 250 мА при 1 В. В серию ULN фирмы Sprague входят несколько сшестеренных и октальных матриц Дарлингтона в корпусах типа DIP.

9.10. Оптоэлектроника

В двух предыдущих главах мы использовали светодиоды и цифровые индикаторные приборы на светодиодах в различных примерах схем по мере необходимости. Светодиоды относятся к обширной области оптоэлектроники, которая включает в себя и устройства отображения на основе других технологий, а именно, жидких кристаллов, люминесцентных и газоразрядных приборов. Эта область включает также оптические электронные устройства, которые используются не только как индикаторы и дисплеи; к ним относятся оптроны, твердотельные реле, датчики положения («прерыватели»), диодные лазеры, матричные детекторы («приборы с зарядовой связью», ПЗС), электронно-оптические преобразователи и большое разнообразие компонентов, используемых в волоконной оптике.

Хотя мы будем и дальше использовать в качестве примеров различные «волшебные» приборы по мере их необходимости, нам представляется уместным обратиться к области оптоэлектроники, поскольку с ней связаны некоторые обсуждаемые здесь проблемы сопряжения логики.

Индикаторы. Электронные приборы выглядят более привлекательно и проще в применении, если на них есть разноцветные лампочки. В этой области светодиоды полностью вытеснили все предыдущие технологии. Вы можете приобрести красные, желтые и зеленые индикаторы, причем в различных корпусах, наиболее удобными из которых являются лампы для монтажа на панели и различные типы индикаторов для монтажа на печатной плате. Каталоги представляют поразительное их разнообразие по размерам, цвету, светоотдачи и углу излучения. Последняя характеристика требует некоторого пояснения: в так называемые «заливные» светодиоды вводится специальное рассеивающее вещество, поэтому их свечение в широком диапазоне угла зрения одинаково; во многих случаях это хорошо, но за это вы расплачиваетесь яркостью.

С электрической точки зрения светодиод представляет собой обычный диод с прямым падением напряжения около 2 В (при изготовлении светодиодов используют фосфид арсенида галлия, обладающий более широкой запрещенной зоной и, следовательно, большим падением напряжения в прямом направлении, чем кремний). Типичные «заливные» светодиоды панельного типа дают хорошее свечение при прямом токе 10 мА; в углубленной части прибора можно обойтись обычно 2÷5 мА, особенно если используются светодиоды с малым углом излучения.

На рис. 9.21 показаны способы управления индикаторами на светодиодах.

Рис. 9.21. Управление светодиодными индикаторами.

Большинство схем очевидно, однако заметьте, что, поскольку биполярные ТТЛ-элементы имеют небольшой ток отдачи, схему приходится строить так, чтобы низкий логический уровень включал светодиод; для сравнения отметим, что КМОП-семейства симметричны относительно нагрузочной способности по току. n-МОП-схемы, как и биполярные ТТЛ-схемы, обладают слабой отдачей тока, к тому же их способность к отводу тока весьма ограничена, поэтому следует использовать буфер (например, вентиль НСТ) или дискретный полевой транзистор. Учтите также, что некоторые индикаторы на светодиодах выпускаются с внутренними токоограничивающими резисторами (или даже с внутренней схемой фиксации тока); в этих случаях внешний резистор можно не ставить.

Можно использовать небольшие матрицы индикаторов, наборы из 2, 4 или 10 светодиодов в ряд, предназначенные для монтажа на печатной плате. Последние используются чаще всего для вывода данных в виде линейных гистограмм. Они выпускаются как для вертикального монтажа, так и для монтажа под прямым углом. Можно также использовать индикаторы для монтажа на панели, в которых объединены красные и зеленые светодиоды в одном корпусе. Панель при этом становится выразительнее, — плохие и хорошие условия отображаются разными цветами. Мы используем индикаторы на светодиодах, выпускаемые такими фирмами, как Dailight, General Instrument, HP, Panasonic, Siemens и Stanley. Последняя специализируется на лампах необычайно высокой эффективности; вы можете узнать эти приборы на выставках по электроники по изумленным взглядам посетителей.

Дисплеи. Дисплеем называют оптоэлектронный прибор, который может отобразить цифру (цифровой дисплей), 16-ричную цифру, т. е. 0–9 и A-F (16-ричный дисплей) или любую букву или цифру (буквенно-цифровой дисплей). В настоящее время доминирующими технологиями производства дисплеев являются светодиоды и жидкие кристаллы. Жидкокристаллические дисплеи (ЖКД) — это новейшая технология, которая обладает существенными преимуществами для батарейного оборудования, поскольку имеет очень низкую мощность рассеивания, для оборудования, находящегося на открытом воздухе или в условиях высокой внешней освещенности, для создания дисплеев с заказными формами и символами и дисплеев с большим числом цифр и букв. С другой стороны, светодиоды несколько проще в применении, особенно, если вам нужно всего несколько цифр или букв. Кроме того, они выпускаются трех цветов и хорошо выглядят в условиях пониженной освещенности, где их показания легче считываются, чем показания ЖКД.

В области дисплеев на большое число символов, скажем, на одну или две строки текста, с ЖКД конкурируют газоразрядные (плазменные) дисплейные панели, особенно в том случае, когда требуется ясность и контрастность. Вместе с тем плазменные дисплеи потребляют большую мощность, поэтому для батарейного оборудования лучше использовать ЖКД.

Дисплеи на светодиодах. На рис. 9.22 показаны разновидности дисплеев на светодиодах.

Рис. 9.22.

Простейшим является 7-сегментный дисплей; он может отображать цифры 0–9 и шесть букв расширения (A-F), хотя последние отображаются несколько неуклюже (AbcdEF). Вы можете приобрести односимвольные 7-сегментные дисплеи самых разных размеров и дисплеи в виде «палочек» по 2, 3, 4 или 8 символов (обычно они предназначены для мультиплексирования — символы отображаются по одному быстро следуя друг за другом). Односимвольные дисплеи имеют выводы для 7 сегментов и общего электрода; таким образом, возможны две разновидности дисплеев — с общим катодом и с общим анодом. В дисплеях на несколько символов выводится общий электрод каждого символа, но соответствующие сегменты объединяются; это, как раз то, что нужно для мультиплексирования.

16-сегментные дисплеи и матричные дисплеи на 5x7 точек выпускаются в двух вариантах: «тупые» дисплеи, в которых выведены сегменты и общий электрод (также как и в 7-сегментных дисплеях) и «умные» дисплеи, которые принимают на себя всю тяжелую работу по дешифрации и формированию. Не будем больше заниматься обобщениями, рассмотрим лучше несколько примеров (рис. 9.23).

Рис. 9.23. Управление дисплеем на 7-сегментном светодиодном индикаторе, а — одноцифровой; б — мультиплексированный.

На первой схеме показан способ управления дисплеем на одном 7-сегментном светодиодном индикаторе с общим катодом. Элемент `НС4511 — это элемент «регистр/дешифратор/формирователь с преобразованием двоично-десятичного кода в 7-сегментный»; он способен отдавать ток около 15 мА при активном выходе +4,5 В. Последовательные резисторы гарантируют, что ток сегментов будет ограничен указанной величиной при прямом падении напряжения на диодах 2 В. Можно использовать матрицу из одинаковых резисторов в удобном корпусе с однорядным расположением выводов.

Если вы используете принцип мультиплексирования, т. е. высвечиваете только одну цифру за одно обращение, вам понадобится всего один кристалл дешифратора/формирователя, даже при отображении нескольких цифр. На рис. 9.23, б показан принцип мультиплексирования; используется БИС 4-разрядного (десятичных разрядов) счетчика с встроенными 7-сегментными мультиплексируемыми формирователями. Элемент 74С925 предоставляет свои сегментные формирователи (активный высокий уровень с большой нагрузочной способностью) по очереди в распоряжение каждой цифре, одновременно устанавливая активный высокий уровень на соответствующем цифровом выходе A-D. Остальная часть схемы не требует пояснений, за исключением, быть может, той неприятности, что цифровые выходы прижимаются к уровню выше земли, соответствующему падению напряжения на диоде. К счастью, 74С925 допускает подобное включение, поскольку цифровые выходы имеют буферную и токоограничивающую цепь.

На рис. 9.24, а показано, как управлять одним 16-ричным дисплеем, выполненным в виде точечной матрицы 5x7.

Рис. 9.24. Интегральные дисплеи, а — односимвольный, точечная матрица; б — 4-символьный, 16-сегментный, адресуемый.

Элемент HP 5082–7340 является примером «умного» дисплея с встроенными регистром, дешифратором и формирователем. Все, что вам надо сделать, — это выставить 4-разрядные данные, подождать не менее 50 нс и затем активизировать регистр высоким уровнем. На рис. 9.24, б показан один из «интеллектуальных» (умнее «умного»?) дисплеев фирмы Siemens — 4-символьный набор на 16-сегментных дисплеях. Этот дисплей предназначен для того, чтобы работать с микропроцессором по типу памяти; мы еще вернемся к этому в следующих двух главах. Короче говоря, вы выставляете любой 7-разрядный символ и его позицию (2-разрядный адрес), затем подаете WR' (запись) на время, гарантирующее активизацию кристалла. Данные запоминаются внутри элемента, затем осуществляется соответствующее изменение позиции для отображения очередного символа. На рис. 9.25 показан набор отображаемых символов.

Рис. 9.25. Коды 16-сегментного дисплея DL-3416 фирмы Siemens.

(С разрешения фирмы Siemens Components, Inc .)

Если вы хотите использовать «тупой» дисплей (возможно, то, что вам надо, недоступно интеллектуальному дисплею), но вы уже избалованы простотой интеллектуальных дисплеев, можно просто применить кристалл типа 8-разрядного элемента ICM7218/28 фирмы Intersil, который выглядит со стороны микропроцессора как память и который управляет «тупым» светодиодным дисплейным набором от соответствующих сегментных и цифровых формирователей. Другой способ состоит в том, чтобы дать возможность микропроцессору делать всю «умную» работу, используя разряды своих «параллельных портов» для управления соответствующими линиями. Это станет для вас более понятным, после того как вы усвоите две главы о микропроцессорах (гл. 1, 2).

Жидкокристаллические и газоразрядные дисплеи. Многое из того, что мы уже рассказали о дисплеях на светодиодах, применимо и к ЖКД. Однако существует несколько важных отличий. Вот одно из них: для управления ЖКД необходимо использовать переменное напряжение, иначе их жидкие нити разрушаются. Поэтому формирователи ЖКД обычно генерируют прямоугольные сигналы, синхронизированные с сигналом подложки ЖКД. Примером может служить `НС4543, жидкокристаллический родственник светодиодного элемента `НС4511 типа «регистр/дешифратор/формирователь».

Другое отличие состоит в том, что вам не часто приходится видеть односимвольные дисплеи на жидких кристаллах. Они выпускаются в виде больших панелей, которые отображают одну или две строки текста. К счастью, производители достаточно ясно представляют себе, как можно получить довольно сложные вещи, поэтому они поставляют совершенные дисплеи, которые более, чем интеллектуальны — просто на уровне гения. В общем вы обращаетесь к этим дисплеям через микропроцессор и они превращаются в своего рода блок памяти (как и в случае дисплея на рис. 9.24). Отображаться будет все, что бы вы ни записали. Некоторые еще более фантастические дисплеи пошли даже дальше, они способны хранить несколько сообщений и осуществлять связь через последовательные порты. Загляните в EMM, чтобы узнать производителей (см. библиографию).

Газоразрядные дисплеи выделяются своими красивыми красно-оранжевыми символами; вы можете их увидеть на некоторых дорогостоящих портативных компьютерах. Для работы газоразрядных дисплеев необходимы высоковольтные формирователи и производители обычно предусматривают средства формирования. Вы можете приобрести одно- и многоцифровые дисплеи, а также большие многосимвольные панели с памятью и удобным интерфейсом. Примером последнего может служить многостроковый дисплей фирмы Cherry, снабженный памятью с аварийным батарейным питанием, которая может хранить 512 сообщений, осуществлять расслоение данных, поступающих в реальном масштабе времени, и позволяет производить редактирование содержимого. Возможно, вы называете такие устройства не дисплеями, а компьютерами, которым положено иметь дисплей!

Оптроны и реле. Излучатель на светодиоде, размещенный в непосредственной близости от фотодетектора, образует очень полезный предмет, известный как оптопара или оптрон. В двух словах, оптроны позволяют обеспечить обмен цифровыми сигналами (а иногда и аналоговыми) между схемами с раздельной землей. Такая «гальваническая развязка» является хорошим способом избежать земляных контуров в оборудовании, которое управляет удаленной нагрузкой. Это особенно важно в схемах, которые взаимодействуют с силовыми фидерами переменного тока. Например, вам понадобилось включать и выключать нагреватель по цифровому сигналу, вырабатываемому микропроцессором; в этом случае вы, наверное, будете использовать «твердотельное» реле, состоящее из светодиода, подключенного к сильноточному симистору. Некоторые импульсные источники питания, управляемые переменным током, (например, источник питания, используемый в IBM РС-АТ), используют в изолированном контуре обратной связи оптрон (см. разд. 6.19). Точно также проектировщики высоковольтных источников питания используют иногда оптроны для того, чтобы передать сигнал в схему с высоким напряжением.

Вы можете воспользоваться достоинствами оптронов даже в менее экзотических ситуациях. Например, оптический полевой транзистор позволит вам переключить аналоговый сигнал без всякой инъекции заряда; то же самое справедливо для схем квантования с запоминанием и интеграторов. Использование оптронов позволит избежать треволнений при управлении контурами с индустриальными токами, приводами молотов и т. п. Наконец, гальваническая развязка оптронами пригодится в прецизионных и низкоуровневых схемах. Трудно, например, воспользоваться всеми достоинствами 16-разрядного АЦП, поскольку цифровые выходные сигналы (и помехи на цифровой земле, к которой вы подключаете выход преобразователя) возвращаются на «передний край» аналоговой части. Вы можете освободить себя от всех забот, связанных с помехами, применив оптическую развязку в цифровой части.

Оптроны обычно обеспечивают изоляцию в 2500 В (среднеквадратичное), сопротивление изоляции 1012 Ом и емкостную связь между входом и выходом менее пикофарады.

Прежде чем обратиться к реальным оптронам, бросим беглый взгляд на фотодиоды и фототранзисторы. Видимый свет вызывает ионизацию в кремнии и образование пар зарядов в открытой базовой области; эффект от этого точно такой же, как от внешнего базового тока. Существуют два способа использования фототранзистора:

1. В качестве фотодиода, подключенного только к базовому и коллекторному выводам; в этом случае фототок будет составлять несколько процентов от тока светодиода. Фотодиод генерирует фототок независимо от того, прикладываете вы напряжение смещения или нет; следовательно, вы можете подключать его прямо к суммирующему переходу операционного усилителя (виртуальная закоротка) или обеспечить обратное смещение (рис. 9.26 а, б).

Рис. 9.26. а , б

2. Если вы используете ток фотодиода как базовый ток, то получите обычное усиление тока с результирующим током I КЭ , который, как правило в 100 раз больше базового; в этом случае, необходимо сместить транзистор, как показано на рис. 9.26, в. За увеличенный ток приходится платить более медленным откликом, что обусловлено открытой базовой цепью. Для повышения быстродействия можно добавить резистор с базы на эмиттер; однако это дает пороговый эффект, поскольку фототранзистор не переходит в состояние проводимости до тех пор, пока ток фотодиода не достигнет величины, достаточной для получения напряжения UБЭ на внешнем базовом резисторе.

В цифровых схемах порог может оказаться полезным, но в аналоговых приводит к нежелательной нелинейности. На рис. 9.26, г-у показаны типичные примеры применения различных оптронов, с которыми вам, возможно, доводилось встречаться. Самые первые (и самые простейшие) представлены элементом 4N35, пара светодиод — фототранзистор с коэффициентом передачи по току 40 % (мин) и большим временем выключения 5 мкс при нагрузке 100 Ом. На рисунке показан способ его использования: вентиль и резистор образуют формирователь с ограничением по току 8 мА, а относительно большой коллекторный резистор гарантирует переключение выхода в пределах логических уровней с насыщением.

Рис. 9.26. в - у . Оптроны.

Заметьте, что применен инвертор с триггером Шмитта; здесь это хорошая мысль в связи с большим временем переключения. Вы можете приобрести пары светодиод-фототранзистор с коэффициентом передачи по току порядка 100 % и выше (например, МСТ2201 с коэффициентом 100 % (мин)), а также пары светодиод — фототранзисторы Дарлингтона; они даже медленнее фототранзисторов! Для повышения быстродействия производители иногда разделяют фотодиод и транзистор, как в элементах 6N136 и 6N139, оптотранзистор и оптосхема Дарлингтона.

Эти оптроны, конечно, хороши, но иногда раздражают необходимостью использовать дискретные компоненты и на входе и на выходе. Более того, вход нагружает обычные логические вентили до их максимальной нагрузочной способности, а выход с пассивной нагрузкой «страдает» медленным переключением и слабой помехоустойчивостью. Для того чтобы избавиться от этих недостатков кремниевые кудесники предлагают нам «логические» оптроны. Элемент 6N137 на рис. 9.26, и занимает промежуточное положение — диодный вход и логический выход; здесь все еще нужен большой входной ток (по техническим данным 6,3 мА мин. для того, чтобы гарантировать переключение выхода), но вы получаете чистый логический перепад (хотя и с открытым коллектором) и скорость 10 Мбит/с. Заметьте, что на внутренние выходные схемы необходимо подавать питание +5 В. Более новые элементы серии 740L6000 фирмы General Instrument (рис. 9.26, к) предлагают то, что вам действительно требуется: входы и выходы с логическими уровнями, каскадный выход или открытый коллектор по выбору и скорость 15 Мбит/с. Поскольку на входе и на выходе имеются логические схемы, обе стороны кристалла требуют подачи напряжения для питания логики.

На рис. 9.26 показаны еще несколько вариантов схем в продолжение темы светодиод — фототранзистор. Элемент IL252 содержит пару встречно-включенных светодиодов, поэтому им можно управлять переменным током. Для получения защищенности по напряжению 10 кВ (ср. квадр.) в IL11 используется длинный изоляционный зазор (и соответствующий корпус); для остальных оптронов эта величина составляет 2,5 кВ. Элемент Н11С4 — это оптотиристор, удобный для переключения высоких напряжений и больших токов. В МСР3023 однонаправленный тиристор заменен на симистор, т. е. на двунаправленный тиристор; с его помощью можно непосредственно управлять нагрузкой переменного тока (рис. 9.15, о). При управлении нагрузками переменного тока включение нагрузки лучше всего производить в момент пересечения волной переменного тока нуля для избежания попадания выбросов в силовые линии. Это легко осуществить с помощью оптосимисторов, содержащих схему «переключения по нулевому напряжению» (которая блокирует запуск симистора до следующего пересечения нуля); как раз такую схему использует небольшой элемент МСР3043, как и приведенные на рисунке «твердотельные реле» на более сильные токи. Элемент DP6110 фирмы IR выпускается в 16-выводном корпусе типа DIP, а мощные элементы D2410 и D2475 располагаются в мощных модулях с размерами 1,75x25x1 дюйма, предназначенных для монтажа с отводом тепла. Остальные оптроны, представленные на рис. 9.26, можно использовать для линейных сигналов. Полевые оптотранзисторы серии H11F можно использовать как изолированный переменный резистор или как изолированный аналоговый ключ. Здесь нет проблем, связанных с совместимостью уровней напряжения, тиристорным защелкиванием или внесением зарядов. Вы можете использовать один из таких элементов в квантователях с запоминанием и интеграторах. Похожими приборами являются элементы «BOSFET» серии PVR, но они содержат в качестве выходного элемента пару соединенных последовательно мощных полевых МОП-транзистора. Такие элементы предназначены прежде всего для непосредственного переключения нагрузок переменного тока по принципу оптосимисторов. Элемент Н11V1 — это линейный видеоизолятор с полосой частот 10 МГц, а элемент ISO — 100 фирмы Burr-Brown-«умный» аналоговый изоляционный элемент, в котором светодиод имеет связь с двумя согласованными фотодиодами; один из них используется в цепи обратной связи для линеаризации отклика второго фотодиода.

Прерыватели. Пару «светодиод-фототранзистор» можно использовать в качестве датчика близости или движения. «Оптический прерыватель» состоит из светодиода, связанного по щели в 1/8 дюйма с фототранзистором. Он может обнаруживать присутствие светонепроницаемой полоски или вращения щелевого диска. Другой вариант — светодиод и фотодетектор, направленные в одну сторону; такой элемент обнаруживает присутствие в непосредственной близости отражающего объекта. Взгляните на рис. 9.27.

Рис. 9.27. а — оптический прерыватель; б — датчик отражающего объекта.

Оптические прерыватели используются в дисководах и принтерах для обнаружения края подвижного узла. Можно приобрести «кодер вращения», который генерирует квадратурную импульсную последовательность (два выхода с фазовым сдвигом 90°) при вращении вала. Он прекрасно заменяет резистивные панельные органы управления (потенциометры). Смотри разд. 11.09.

При разработке любых практических схем, в которых вы собираетесь использовать оптические прерыватели или датчики с отражением, обратите внимание на датчики на эффекте Холла как на альтернативный вариант; это твердотельные датчики на магнитном поле, предназначенные для определения степени близости объекта. Обычно датчики такого типа используются в автомобильных системах зажигания вместо наконечников механических прерывателей.

Излучатели и детекторы. Мы уже упоминали светодиоды в связи с дисплеями и оптронами. Последнее достижение в области оптоэлектроники — это доступные недорогие твердотельные диодные лазеры, — источники когерентного света в отличии от диффузионных светодиодов. Один из них вы можете увидеть, если откроете верхнюю крышку портативного проигрывателя компакт-дисков. Диодные лазеры стоят около 20 долл. и продаются фирмами, производящими бытовую электронную аппаратуру (Matsushita, Mitsubishi, Sharp и Sony). Типичный диодный лазер генерирует 10 мВт световой мощности на 800 нм (невидимый в ближней инфракрасной области спектра) при токе 80 мА и прямом падении напряжения на диоде 2 В. Выходной поток излучается непосредственно из крошечного отверстия на кристалле с углом расхождения 10°-20°; его можно коллимировать с помощью линзы и получить параллельный пучок или очень маленькое фокусное пятно. Светодиодные лазеры широко используются в оптоволоконной связи.

Еще одной технологией производства излучателей является линейная светодиодная матрица высокой плотности; 300 излучателей на дюйм и даже больше; такие матрицы используются в светодиодных принтерах. При успешном развитии полупроводниковой технологии такие принтеры заменят лазерные, поскольку они проще, надежнее и обладают крайне высокой разрешающей способностью.

В области детекторов существуют несколько альтернатив простым фотодиодам и фототранзисторам, которые мы обсуждали выше, особенно когда требуется скорость или чувствительность. В разд. 15.02 мы рассмотрим PIN-диоды, приборы с зарядовой связью и усилители.

 

Цифровые сигналы и длинные линии

При передаче цифровых сигналов по кабелям или между отдельными приборами возникают специфические проблемы. Важную роль начинают играть такие эффекты, как емкостная нагрузка на быстрые сигналы, синфазные перекрестные помехи, а также эффекты «длинных линий» (отражение от несогласованной нагрузки, см. разд. 13.09). Чтобы обеспечить надежную передачу, в большинстве случаев необходимо использовать специальные средства и соответствующие интерфейсные ИС. Некоторые из этих проблем могут возникнуть даже на отдельной печатной плате, поэтому необходимо кое-что знать о способах передачи цифровых сигналов. Начнем с проблем передачи в пределах одной платы. Затем рассмотрим проблемы, возникающие при передаче сигналов между платами, по шинам данных, и наконец, при передаче сигналов между приборами по скрученным парам и коаксиальным кабелям.

9.11. Внутриплатные соединения

Ток переходного процесса выходного каскада. Двухтактная выходная схема в ТТЛ и КМОП ИС состоит из пары транзисторов, включенных между U + и землей. Когда состояние на выходе изменяется, существует короткий интервал времени, в котором оба транзистора находятся в открытом состоянии; на этом интервале от U + к земле проходит импульс тока, создавая короткий отрицательный выброс на шине U + и короткий положительный выброс на земляной шине. Эта ситуация показана на рис. 9.28.

Рис. 9.28. Помехи на шине земли.

Предположим, что ИС 1 меняет свое состояние; в этом случае от шины +5 В к земле протекает большой кратковременный ток по указанным путям (для схем 74Fхх или 14АС(Т)хх ток может достигать 100 мА). Этот ток в комбинации с индуктивностью проводников земли и U + приводит к появлению, как показано на рисунке, коротких выбросов напряжения относительно опорной точки. Несмотря на то, что выбросы могут иметь длительность всего 5÷20 нc, они доставляют массу неприятностей. Предположим, например, что ИС 2 , «простодушный свидетель», находящийся вблизи «кристалла-нарушителя», находится в состоянии низкого уровня и управляет схемой ИС 3 , расположенной несколько дальше. Положительный выброс на земляной шине ИС 2 появляется и на ее выходе и, если этот выброс достаточно велик, ИС 3 воспримет его как короткий выброс высокого уровня. Таким образом, на ИС 3 , расположенной на некотором расстоянии от «возмутителя спокойствия» ИС 1 , появится полноценный логический импульс, готовый помешать работе «добропорядочной» схемы. Много усилий не требуется для того, чтобы запустить или сбросить триггер, и такие выбросы тока по земляной шине блестящее умеют делать подобную работу.

Лучшей профилактикой против таких явлений является: а) использование большого числа земляных шин по всей плате вплоть до применения «земляных поверхностей» (одна сторона двухсторонней печатной платы целиком отводится под землю) и б) обильное использование конденсаторов развязки по всей схеме. Чем мощнее шины земли, тем меньше выбросы, индуцированные током (меньше индуктивность и сопротивление). Роль конденсаторов развязки, включенных между U + и землей и разбросанных по всей плате, заключается в том, чтобы передать импульсы тока по кратчайшим путям с небольшой индуктивностью и существенно уменьшить выбросы по напряжению (конденсатор работает как локальный источник напряжения, поскольку напряжение на нем существенно не изменяется во время коротких выбросов тока).

Лучше всего установить возле каждой ИС конденсатор емкостью от 0,05 до 0,1 мкФ, хотя может оказаться достаточным и один конденсатор на две-три ИС. Кроме того, для запаса энергии полезно расставить по всей плате танталовые конденсаторы большой емкости (достаточно 20 мкФ, 20 В). Между прочим, конденсаторы развязки между шинами питания и землей рекомендуется ставить в любых схемах, будь то цифровые или линейные. Они помогают превратить шины питания в низкоимпедансные источники напряжения на высоких частотах и предотвращают сигнальную связь между схемами через источник питания. Шины питания без развязок могут привести к непредусмотренному поведению схемы, колебаниям и вообще к головной боли.

Выбросы, обусловленные емкостными нагрузками. Несмотря на развязки по питанию, ваши проблемы еще не закончились. Взгляните на рис. 9.29.

Рис. 9.29. Помехи на шине земли из-за емкостной нагрузки.

Цифровой выход обнаруживает паразитную емкость монтажа и входную емкость ИС, которой он управляет (обычно, 5-10 пФ) как часть общей нагрузки. Для того чтобы осуществить быстрый переход от состояния к состоянию, он должен отобрать от этой нагрузки или подать в нее большой ток в соответствии с I = C(dV/dt). Рассмотрим, например, схему 74АСхх (5-вольтовый выходной перепад за 3 нс), которая управляет общей емкостью нагрузки 25 пФ (это соответствует 3–4 логическим нагрузкам с короткими проводниками). Ток в момент логического перехода составляет 40 мА, т. е. почти на максимальной нагрузочной способности выхода управляющей ИС! Этот ток возвращается через землю (при переходе от высокого к низкому) или через шину +5 В (при переходе от низкого к высокому), индуцируя эти «шустрые» меленькие выбросы, о которых шла речь ранее (для того чтобы получить представление об их величине, примите к сведению тот факт, что индуктивность монтажа составляет примерно 5 нГн/см. На дюйме земляного провода, по которому протекает этот ток логического перехода, появится выброс U = L(dI/dt) = 0,2 В). Если ИС окажется октальным буфером с одновременными переходами на полдюжине выходов, то выбросы по земле превысят 1 В; см. рис. 8.95. Похожие выбросы по земле (хотя и поменьше) появятся вблизи управляемой ИС, где выбросы тока возвращаются на землю через входную емкость управляемого прибора. В синхронных системах с большим числом элементов, одновременно меняющих состояние, ситуация с выбросами-помехами становится настолько серьезной, что схема не в состоянии работать надежно.

Особое значение это приобретает для больших печатных плат с длинными межсоединениями и длинным земляным путем. В такой схеме могут происходить сбои, когда целая группа линий данных меняет свое состояние от верхнего уровня к низкому, вызывая появление кратковременного очень большого тока по земле. Такая информационная зависимость является характерной особенностью сбоев, обусловленных помехами, и хорошим обоснованием для прогона расширенных тестов памяти в микропроцессорных системах (в которых обычно имеется 16 линий данных и 24 адресных линии с самым разнообразным распределением информации).

Наилучший подход к проектированию состоит в том, чтобы использовать массивную разводку земли (для обеспечения низкой индуктивности), лучше всего в виде внутреннего слоя земли на многослойной плате (см. гл. 12) или по крайней мере перпендикулярных земляных проводников с обоих сторон более простой двухсторонней платы. Обильное использование конденсаторов развязки обязательно. Острота этих проблем не так велика для высоковольтных КМОП-элементов (благодаря медленным фронтам); с другой стороны, для логических семейств F, AS и АС (Т) эти проблемы достигают наивысшей остроты. Действительно, семейство АС (Т) настолько склонно к динамическим выбросам тока, что некоторые изготовители (начиная с TI) отказались от традиционного «углового» расположения выводов земли/питания в пользу «центрального» расположения с более низкой индуктивностью выводов; они пошли еще дальше, использовав для снижения индуктивности земли четыре соседних вывода. Учитывая эти проблемы, лучше не применять без нужды быстродействующее логическое семейство; вот почему мы рекомендовали использовать для общих целей логику НС, а не АС.

9.12. Межплатные соединения

В случае логических сигналов, передаваемых между платами, возможностей для появления помех становится все больше. Возрастает емкость проводников, цепь земли становится длиннее, поскольку теперь она проходит по кабелям, разъемным соединителям, платным расширителям и т. п. Поэтому выбросы по земле, возникающие за счет токов во время логических переходов, как правило, больше и вызывают больше беспокойств. Лучше всего стараться избегать передачи между платами тактирующих сигналов с большим коэффициентом разветвления, если это возможно; а провода заземления к отдельным платам сделать достаточно мощными. Если тактирующие сигналы все же передаются между платами, то целесообразно использовать на каждой плате вентиль в качестве входного буфера. В крайнем случае может понадобится ИС линейного формирователя и приемника, но об этом несколько позже. В любом случае критические схемы лучше располагать на одной плате: у вас появляется возможность контролировать индуктивность цепи земли и свести к минимуму емкость монтажа. Проблемы, с которыми вы столкнетесь при пересылке быстрых сигналов через несколько плат, трудно даже оценить; они могут обернуться настоящим бедствием для всего проекта.

9.13. Шины данных

Когда большое число подсхем объединяются в шину данных (более подробно об этом см. гл. 10 и 11), упомянутые проблемы становятся еще более острыми. Более того, появляются новые моменты — эффекты длинных линий, обусловленные длиной и индуктивностью самих сигнальных линий. Для самых быстрых ЭСЛ ИС (ECLIII, ECL100K с фронтом менее 1 нc) эти эффекты становятся настолько важными, что все сигнальные цепи длиной более 1 дюйма следует рассматривать как линии передачи и соответствующим образом их согласовывать.

Для шин данных любой существенной длины (1 фут и более) наилучшим подходом, по-видимому, является применение объединительной платы с «земляной плоскостью». Объединительная плата (см. гл. 12) представляет собой простую печатную плату, содержащую ряд разъемных соединителей под печатный монтаж для подключения отдельных схемных плат, составляющих всю логическую схему. Объединительные платы — это экономное решение проблемы объединения плат, а если они выполнены соответствующим образом, то и решение электрических проблем. Проводники, расположенные вблизи земли, имеют меньшую индуктивность и менее склонны к образованию емкостной связи с близлежащими сигнальными линиями, поэтому для создания простой объединительной платы все сигнальные линии следует расположить на одной стороне, а другую сторону отвести под основательную земляную плоскость (двухсторонние печатные платы имеют широкое распространение, но для сложных схем все чаще начинают применять многослойные печатные платы).

Последнее замечание на эту тему. Когда эффекты длинной линии типа «звонов» и выбросов по земле сильно вас допекут, вы, возможно, в отчаянии прибегнете к распространенному приему: подключить конденсатор прямо к вентилю, управляемому длинной линией. Мы сами делали это неоднократно, тем не менее мы не рекомендуем прибегать к этому малоизящному приему, поскольку он только усложняет проблему больших токов по земле во время логических переходов (см. разд. 9.11).

Оконечная нагрузка шин. Сигнальные линии шин большой длины принято нагружать на самом дальнем конце резисторами, подключенными к питанию или к земле. Длинные пары проводов или коаксиальные кабели обладают «характеристическим импедансом» Z0 (об этом пойдет речь в гл. 13). Сигнал, распространяющийся по кабелю, который нагружен этим импедансом (кстати, всегда резистивный), полностью поглощается без всяких отражений. Любая другая величина нагрузки, в том числе и холостой ход, вызывает отраженные волны, амплитуда и фаза которых зависит от рассогласования импедансов. Ширина печатных проводников и расстояние между ними таковы, что характеристический импеданс линий связи на печатной плате составляет примерно 100 Ом, что почти соответствует характеристическому импедансу скрученной пары из обычного изолированного провода 24-го калибра или другого, близкого сечения.

Распространенным способом завершения ТТЛ-шины является подключение делителя напряжения между +5 В и землей. Логический высокий уровень удерживается при этом на уровне +3 В, а это означает, что при переключении нужен меньший перепад напряжения и поэтому через емкость нагрузки протекает меньший ток. Обычно выбирают комбинацию из резисторов 180 и 390 Ом, подключенных соответственно к +5 В и земле (рис. 9.32).

Другой способ, хорошо работающий и для ТТЛ и для КМОП, состоит в том, чтобы использовать нагрузку по переменному току, состоящую из последовательной цепочки резистор-конденсатор между линией данных и землей (рис. 9.30).

Величина резистора обычно выбирается близкой к характеристическому импедансу шины (типовое значение 100 Ом); величина емкости должна быть выбрана из расчета низкого емкостного сопротивления на частоте, равной обратной величине времени подъема сигнала (в общем случае достаточно 100 пкФ).

Рис. 9.30. Нагрузка по переменной составляющей.

Шинные формирователи. Бели линии шин имеют большую длину или большой коэффициент разветвления, то необходимо использовать специальные логические элементы с высокой нагрузочной способностью по току. Ниже перечислены наиболее известные элементы этого типа.

«Односторонние» означает, что входные и выходные выводы ИС расположены на противоположных сторонах корпуса. Существуют также ИС-приемо/передатчиков с соответствующей нагрузочной способностью; они могут использоваться как буферы данных в любом направлении благодаря применению на каждой линии данных параллельных пар буферов с 3-я состояниями, включенных навстречу друг другу; вход «направление» определяет, в какую сторону будут передаваться данные. Другие типы приборов приведены в табл. 8.4 и табл. 8.5.

9.14. Кабельные связи

Передачу цифровых сигналов от одного устройства к другому нельзя осуществлять с помощью простого одиночного проводника, такое соединение подвержено влиянию взаимных помех. Цифровые сигналы обычно передаются по коаксиальным кабелям, скрученным парам, плоским кабелям (иногда с земляной поверхностью или в экране), многожильным кабелям и все чаще по оптоволоконным кабелям. Мы встретимся еще раз с коаксиальными кабелями (нежно называемыми «коаксами») в гл. 13 в связи с радиочастотной техникой; здесь же мы намерены рассмотреть некоторые способы передачи цифровых сигналов между коробками с электроникой, поскольку эти способы составляют важную часть цифрового сопряжения. В большинстве случаев существуют специализированные ИС формирователей/приемников, способные облегчить вашу работу.

Стандарт RS-232 . Для сравнительно медленной передачи сигналов (несколько тысяч бит в секунду) по многожильным кабелям обычно используют известный сигнальный стандарт RS-232C (или более новый RS-232D). Стандартом определены биполярные уровни от ±5 до ±15 В (для формирователей необходимы положительное и отрицательное напряжения питания, но приемники обычно этого не требуют); приемники допускают, как правило, управление гистерезисом и временем отклика под конкретную ситуацию с помехами; применяя стандарт RS-232, вы можете использовать многожильный кабель без всякой экранировки, так как максимальная скорость изменения напряжения формирователей для минимизации перекрестных помех намерено ограничена величиной 30 В/мкс. Кроме основного ТТЛ-совместимого элемента, состоящего из 4 пар «формирователь/приемник» (148 8/1489), в настоящее время имеется несколько улучшенных ИС, включая маломощные варианты (LT1032, 1039 и МС145406, см. разд. 14.47) и варианты, работающие от одного источника +5 В (серии МАХ-232 и LT1130, LT1080). Последние содержат преобразователь напряжения для формирования необходимого отрицательного напряжения. Типовая схема показана на рис. 9.31.

Рис. 9.31. Кабельные приемники и передатчики высокой помехоустойчивости; выполнены по стандарту RS-232 .

RS-232 широко используется для обеспечения связи между компьютерами и терминалами на стандартизованных скоростях передачи данных, входящих в диапазон от 110 до 38400 бит/с. Полный стандарт определяет даже распайку контактов 25-контактного субминиатюрного соединителя типа D и используется для передачи данных в коде ASCII (см. разд. 10.19).

Непосредственное управление от 5-вольтовой логики. Линиями средней длины, как и шинами данных, можно управлять непосредственно логическими уровнями; в общем случае необходимы вентили с большой нагрузочной способностью по току (см. приведенный выше перечень под заголовком «шинные формирователи»). На рис. 9.32 показано несколько способов управления. На первой схеме буфер (может иметь открытый коллектор) управляет нагруженной линией с ТТЛ-триггером Шмитта в качестве приемника для повышения помехоустойчивости. Если уровень помех высок, то можно использовать, как показано на второй схеме, замедляющую RС-цепь с подстройкой постоянной времени (и скорости передачи!) в соответствии с конкретной обстановкой. В этой схеме триггер Шмитта играет важную роль. В последней схеме мощный КМОП-буфер управляет линией с комплексной нагрузкой и КМОП-триггером Шмитта в качестве приемника.

Рис. 9.32. Оконечные цепи с формированием логических уровней.

Непосредственное управление с помощью логических уровней будет нормально работать на скрученной паре, плоском и коаксиальном кабелях средней длины (около 3 м). Из-за быстрых фронтов большое значение приобретает емкостная связь с соседними линиями. Обычное «лекарство» — это чередование с земляными линиями или спаривание сигнальных линий с земляными (скрученная пара). Проблема взаимосвязи сигналов практически лишает возможности осуществить непосредственное управление от логики с использованием многожильных кабелей. В следующем разделе мы покажем несколько интересных осциллограмм, иллюстрирующих эту проблему, и познакомим с другим эффективным «лекарством», дифференциальным логическим управлением.

Важное замечание: никогда не пытайтесь управлять длинными линиями от небуферированных тактируемых элементов (триггеров, одновибраторов, счетчиков и некоторых регистров сдвига); емкостная нагрузка и эффекты «длинных линий» могут вызвать неправильное поведение схемы. «Буферированные» элементы содержат выходные формирователи, включенные между внутренними регистрами и выходными контактами и поэтому «не видят» реальных сигналов (с плохими параметрами) на выходных линиях и не сталкиваются с этой проблемой.

Управление от высоковольтной логики. Если для передачи сигналов по кабелям вы используете непосредственное управление от логики, то вы можете повысить помехоустойчивость, увеличивая перепад сигналов. В примере, показанном на рис. 9.33, в качестве генератора 12-вольтового логического перепада для скрученной пары используется элемент 75361 «формирователь ТТЛ-МОП». Приемником является элемент 75152, который позволяет устанавливать входной порог (входное сопротивление составляет примерно 9 кОм, следовательно, резистор смещения 12 кОм установит порог на +5 В) и гистерезис (в данном случае до ±2 В). Нагрузка линии 120 Ом согласовывает характеристический импеданс скрученной пары.

Рис. 9.33. Повышение помехоустойчивости с помощью высоковольтного кабельного формирователя.

Трапецеидальное управление. Для снижения остроты проблемы емкостной связи с соседними линиями фирма National изготавливает линейные формирователи/приемники (серии DS3662, DS3890) с управляемым временем переключения формирователя в сочетании с управляемым временем отклика приемника. По существу это сводится к управлению линией, нагруженной на схему, показанную на рис. 9.32.

Дифференциальное управление; стандарт RS-422. Намного более высокую помехоустойчивость можно получить, используя дифференциальные сигналы, т. е. подавая Q и Q' на скрученную пару с дифференциальным приемником (рис. 9.34). Здесь парные ТТЛ-инверторы посылают в нагруженную скрученную пару прямой и инверсный сигналы, а дифференциальный линейный приемник 75115 воспроизводит чистые уровни ТТЛ.

Рис. 9.34. Быстродействующие дифференциальные кабельные ТТЛ-передатчики и приемники.

Мы выбрали биполярные ТТЛ-формирователи, а не КМОП, поскольку они менее склонны к разрушению от статического электричества и к тиристорному защелкиванию из-за отражений в линии. Эта схема обеспечивает высокую степень подавления синфазных помех и восстанавливает четкие логические уровни из линейных сигналов, которые могут выглядеть довольно устрашающе. Показанная на рисунке форма колебаний дает лишь общее представление о том, что можно увидеть на отдельных сигнальных линиях в сравнительной чистой системе; реальные сигналы могут быть довольно сильно искажены, хотя и будут оставаться монотонными (отсутствует обратная волна).

Примером линейного приемника с настраиваемым временем отклика является элемент 75115; другой дифференциальный приемник (75152) позволяет управлять гистерезисом. Для душевного спокойствия желательно использовать приемник с гистерезисом (и с настраиваемой постоянной времени); такие приемники как раз и призваны для того, чтобы разбираться с самыми причудливыми формами сигналов.

Формирователи с отводом тока. Элементы типа 75S110 и МС3453 имеют коммутируемые выходы с отводом тока, которые можно использовать как выходы для однопроводной схемы или, как показано на рис. 9.35, в дифференциальном режиме.

Рис. 9.35. Дифференциальная схема токовой связи с приемником.

Элемент 75107 является парным дифференциальным приемником, который обычно используется с согласующей нагрузкой, как показано на рисунке. Несколько формирователей могут совместно использовать одну дифференциальную линию в режиме «групповой линии», поскольку их выходы могут отключаться в 3-е состояние; в этом случае нагрузку на каждом формирователе не ставят, а переносят ее в самый дальний от приемника конец линии.

Наш опыт показывает, что дифференциальные формирователи с отводом тока позволяют достичь действительно впечатляющей скорости передачи данных. Это объясняется, по-видимому, тем, что высокоимпедансное управление с отдачей тока гарантирует возможность нагрузки кабеля на его характеристическое сопротивление для обоих состояний формирователя. В соответствии с техническими данными скорость передачи составляет более 1 Мбит/с на линии длиной 500 м и достигает 10 Мбит/с на линии длиной несколько десятков метров и менее.

Реальные осциллограммы, приведенные на рис. 9.36, показывают, насколько эффективным может оказаться дифференциальное управление с отводом тока при решении проблемы синфазных помех. На представленном примере сигнал с размахом 50 мВ «загрязнен» синфазной помехой с размахом 4 В.

Рис. 9.36. Осциллограммы, показывающие превосходную помехоустойчивость дифференциальной передачи данных (дифференциальный приемник 75108). (С разрешения фирмы Texas Instruments.) а — вход приемника (+); б — вход приемника (—); в — выход приемника.

Стандарт RS-422/423. Этот стандарт передачи данных, разработанный с целью замены распространенного стандарта RS-232, предназначен прежде всего для работы со скрученной парой или плоским кабелем. Его можно использовать как в несбалансированной схеме (RS-423, 100 кбит/с макс), так и сбалансированной схеме (RS-422, 10 Мбит/с макс). В несбалансированном режиме можно использовать биполярные сигнальные уровни (источники ±5 В) с управляемой скоростью нарастания, как и в RS-232. В сбалансированном режиме используются однополярные ТТЛ-уровни (и по одному источнику питания +5 В) без ограничения скорости нарастания. На рис 9.37 показана зависимость реальной скорости передачи данных от длины линии.

Рис. 9.37. Зависимость между скоростью передачи данных при последовательной связи и длиной кабеля.

Распространенной серией формирователей/приемников для RS-422/3 является серия 26LS30-34 фирмы AMD с расширенной вторичной поставкой от других изготовителей; более поздние элементы 75ALS192/4 и серия DS34F30/80 имеют повышенное быстродействие при меньшей мощности. Мы использовали RS-422 для плоского кабеля из скрученных пар в том случае, когда хотели объединить параллельные порты и управляющие сигналы набора из 144 микропроцессорных плат в схему типа «звезды». Мы изготовили 9 групп по 16 процессорных плат, каждая группа содержала также одну интерфейсную плату, и использовали ТТЛ-сигналы между процессорами и в интерфейсе; затем, объединив 9 интерфейсных плат, мы подключили их к внешнему компьютеру с помощью RS-422 (по дифференциальной схеме). Полная длина кабеля составила примерно 8 м с шунтированием каждой пары с обоих концов резисторами 100 Ом. Вся система чрезвычайно проста и надежно работает на нашей скорости передачи около 1 Мбит/с.

Мы предпочитаем использовать дифференциальную передачу сигналов в тех случаях, где важную роль играют надежность и хорошая помехозащищенность. За счет эффектов компенсации дифференциальный сигнал обеспечивает низкую степень связи с другими сигналами («перекрестные помехи»). Использование скрученной пары, а не плоского кабеля, даже улучшает работу. На рис. 9.38 показано несколько осциллограмм, полученных для RS-422 и для непосредственного управления от логики с использованием как плоского кабеля, так и плоской скрученной пары (последняя была в действительности вариантом, известным под названием «скрученный и плоский»; это соединение состоит из жгута скрученных пар, прерываемых на 0,05 м через каждые 0,5 м для того, чтобы сделать плоскую выводную площадку).

Рис. 9.38. Ухудшение параметров и перекрестные помехи цифровых сигналов.

а — прямоугольные импульсы с ТТЛ-уровнями частотой 1 МГц на 10 футах ненагруженного плоского кабеля с заземлениями через определенные интервалы, 1 В/дел.;

б — парный провод к а с низким ТТЛ-уровнем;

в , г — то же, что а и б , но с нагрузкой 220/330 Ом, подключенной к +5 В;

д , е — то же, что в, г , но с использованием скрученной пары вместо плоского кабеля;

ж , з — то же, что в, г , но с использованием плоского кабеля с земляной платой;

и — пара с низким уровнем для RS-422, на 100 футах плоского кабеля, смежного с парой, по которой проходят дифференциальные прямоугольные импульсы RS-422 частотой 100 кГц; 0,1 В/дел. (заметьте, что масштаб изменился);

к — то же, что и , но сигналы разделены заземленной парой;

л , м — тο же, что и, к , но вместо плоского кабеля используется «скрученная и плоская» пара.

Для RS-422 мы использовали 30-метровый кабель, по одной паре которого мы передавали сигнал с размахом 6 В частотой 100 кГц и наблюдали за перекрестными помехами на соседней паре; обе пары были нагружены. При непосредственном управлении от логики использовались формирователи 74LS244 на частоте 1 МГц с 3-метровым кабелем в двух вариантах: с нагрузкой и без нагрузки. Осциллограммы с очевидностью показывают, что RS-422 чрезвычайно надежен даже при передаче по длинному кабелю, в то время как непосредственное управление от логики весьма ограничено в своих возможностях даже на средних длинах, хотя его можно несколько улучшить, используя нагрузку и плоский кабель с общей земляной поверхностью. Вопреки ожиданиям, скрученная пара оказалась нисколько не лучше плоского кабеля при непосредственном управлении от логики.

Дифференциальные линейные приемники работают нормально до тех пор, пока принимаемые сигналы находятся в пределах допустимого диапазона синфазных напряжений, обычно в несколько вольт (для 75108 — ±3 В). При использовании длинных линий вы можете, однако, очутиться в ситуации либо высокочастотных синфазных помех, либо низкочастотных разностей напряжений между источником и линией, превышающими в обоих случаях синфазный диапазон приемника. Если эти проблемы встают слишком остро, можно использовать пару резистивных делителей на входе приемника, или использовать приемник с встроенным аттенюатором, например 26LS33, приемник для RS-422 с синфазным диапазоном ±15 В.

При передаче сигналов по действительно длинным кабелям или при передаче в условиях очень сильных помех обычно используют индуктивную связь. Применив трансформаторы, вы, разумеется, лишаетесь возможности передавать логические сигналы постоянного тока: вы вынуждены кодировать данные определенным способом, например с использованием «несущего» сигнала. Локальные сети (см. разд. 10.21) обычно используют индуктивную связь.

Кристалл TAXI фирмы AMD. Фирмой AMD разработана весьма интересная пара дифференциальных передатчиков/приемников, Ат7968/9, содержащая для облегчения применения все разновидности внутренних регистров (рис. 9.39).

Рис. 9.39. Набор кристаллов AMD TAXI для быстродействующей линий последовательной связи. (С разрешения фирмы Advanced Micro Devices), а — передатчик Am7968 ; б — приемник Am7969 .

Вы можете, например, рассматривать ИС передатчика как 8-битовую защелку со стробированием и квитированием; схема в таком применении преобразует байты в последовательные данные, дополняет эту последовательность соответствующими битами синхронизации, передает данные в последовательную линию связи и воспроизводит байты на другом конце. По отношению к пользователю линия выглядит как простой параллельный регистр. Эти ИС содержат кабельные формирователи и приемники для 50-омного кабеля, работающие от одного источника питания +5 В; они обладают достаточно высоким быстродействием: скорость передачи данных составляет 32-100 Мбит/с (от 4 до 12,5 Мбит/с). ИС TAXI предназначены для сверхскоростных линий передачи данных общего назначения со связью по переменному или постоянному току. Реальной средой передачи может быть простое соединение через провода, скрученные пары, коаксиальные кабели, кабели с трансформаторной связью или даже волоконно-оптические линии.

Формирователи для коаксиальных кабелей. Благодаря своей геометрии коаксиальные кабели обладают очень хорошей защитой от внешних влияний. Кроме того, однородность диаметра и внутренних размеров (по сравнению со случайными отклонениями в случае жгутов и скрученных пар) позволяет достаточно точно предсказывать величину характеристического импеданса и, следовательно, обеспечить превосходные условия для передачи; именно по этой причине только они используются для передачи аналоговых радиочастотных сигналов.

Существуют несколько пар формирователей/приемников, удобных для цифровой передачи по коаксиальному кабелю; пример показан на рис. 9.40.

Рис. 9.40. Передатчик и приемник для 50-омного кабеля.

Кабель нагружен на характеристическое сопротивление, в данном случае 51 Ом. Элемент 8Т23 может непосредственно управлять 50-омной нагрузкой, а 8Т24 обладает гистерезисом фиксированной величины для обеспечения помехоустойчивости и малым временем переключения выхода. Скорость передачи в такой схеме достигает 100 кбит/с на кабеле в 1609 м и до 20 Мбит/с на более коротких линиях. Другая пара формирователей/приемников входит в интерфейсные семейства 8Txx и 75ххх. Элементы 74F3037 (счетверенный) и 74F30244 (октальный) предназначены для управления кабелями с импедансом ниже 30 Ом (например, кабелем, нагруженным с двух концов). При управлении 50-омными коаксиальными линиями непременно используйте приемники с соответствующими техническими характеристиками, поскольку уровни напряжений на нагруженном кабеле могут оказаться меньше обычных логических уровней.

Различные семейства ЭСЛ содержат несколько пар формирователей/приемников для 50-омных коаксиальных линий, например 10128/10129. Превосходным коаксиальным формирователем является ИС10194; по существу это шинный приемопередатчик, предназначенный для одновременной передачи и приема по одной линии (дуплексная связь, рис. 9.41).

Рис. 9.41. Токовый приемопередатчик ЭСЛ (дуплексный).

При использовании этого способа каждая ИС может осуществлять передачу к другому приемопередатчику и одновременно принимать от него данные в асинхронном режиме без перекрестных помех на скорости 100 МГц и выше. С помощью одного эмиттерного npn-повторителя вы можете непосредственно управлять коаксиальным кабелем определенной длины от +5-вольтовой логики (рис. 9.42). Транзистор 2N4401 — это небольшой мощный транзистор с большим коэффициентом усиления по току в схеме с общим эмиттером при большом токе (h 21Э > 100 при I K = 150 мА). 10-омный резистор включен для защиты от короткого замыкания. По сравнению с тщательно спроектированным и дорогостоящими ИС-формирователями для 50-омных кабелей эта схема до удивления проста. Заметьте, что для нормальной работы выход с открытым эмиттером должен нагружаться на низкое сопротивление на землю, что справедливо и для некоторых интегральных кабельных формирователей.

Рис. 9.42. Простой формирователь для 50-омного кабеля.

Волоконно-оптические кабели. Новый многообещающий способ передачи сигналов основан на применении волоконно-оптических кабелей. Это кабели с превосходным пластиковым покрытием с согласующими соединителями, излучателями и детекторами. Высококачественные волоконно-оптические кабели могут осуществлять передачу в полосе частот до нескольких гигагерц на расстояния в десятки и сотни километров без потери дробных децибел на километр. По сравнению с коаксиальными кабелями, которые могут иметь разброс параметров (скорость распространения зависит от частоты, количество потерь также определяется частотой, что вызывает искажения колебаний), дисперсия волоконно-оптических кабелей незначительна. Кроме того, волоконно-оптические кабели являются изоляторами, поэтому их можно использовать для передачи сигналов между устройствами с изолированной землей, или на различных напряжениях. В отличие от обычных кабелей они не являются антеннами по отношению к радиочастотным и импульсным помехам. Они легче, безопаснее, обладают более высокой стойкостью, чем традиционные кабели, к тому же, они потенциально дешевле.

Существует несколько типов волоконно-оптических кабелей, позволяющих сделать выбор между стоимостью и производительностью (длина на ширину полосы). Самым дешевым является многомодовое волокно со ступенчатым изменением коэффициента преломления; обычно это пластиковое волокно диаметром 1 мм. Вы можете передавать по нему излучение инфракрасного светодиода (а не лазерного диода), а в качестве детектора использовать фототранзистор или р-i-n-диод.

Фирма Motorola производит недорогой набор формирователей/приемников (менее доллара за штуку); элементы этого набора прямо насаживаются на кабель в оболочке (серия MFOE71/MFOD71-73); с их помощью можно передавать данные со скоростью 5 Мбит/с по 10-метровому пластиковому кабелю, описанному выше (см. рис. 9.43).

Рис. 9.43. Недорогая оптоволоконная линия связи.

(на основе рис. 7 спецификации MFOD71 фирмы « Моторола »)

Кабели более высокого качества используют стекловолокна — многомодовые со ступенчатым изменением коэффициента преломления, многомодовые с плавным изменением коэффициента преломления (лучше) или одномодовые (самые лучшие). Используя стекловолокно 200 мкм со ступенчатым изменением коэффициента преломления, можно достичь скорости 5 Мбит/с на 1 км пути со стандартными волоконно-оптическими компонентами, включающими соединители, элементы связи, делители/объединители и детекторы с встроенными усилителями. Последним достижением в области широкополосной волоконно-оптической дальней связи является 4 ГГц на 120 км пути без повторителей.

 

Аналого-цифровое преобразование

9.15. Введение в аналого-цифровое преобразование

Кроме чисто «цифрового» сопряжения (ключи, лампы и т. п.), которое обсуждалось в предыдущих разделах, часто требуется преобразовать аналоговый сигнал в число, пропорциональное амплитуде сигнала и наоборот. Это играет важную роль в тех случаях, когда компьютер или процессор регистрируют или контролируют ход эксперимента или технологического процесса, или всякий раз, когда цифровая техника используется для выполнения традиционно аналоговой работы.

Аналого-цифровое преобразование следует использовать в областях, где для обеспечения помехоустойчивой и шумозащищенной передачи аналоговая информация преобразуется в промежуточную цифровую форму (например, «цифровая звукотехника» или импульсно-кодовая модуляция). Это требуется в самых разнообразных измерительных средствах (включая обычные настольные приборы типа цифровых универсальных измерительных приборов и более экзотические приборы, такие, как усреднители переходных процессов, «ловушки для выбросов» и осциллографы с цифровой памятью), а также в устройствах генерации и обработки сигналов, таких, как цифровые синтезаторы колебаний и устройства шифрования данных.

И наконец, техника преобразования является существенной составляющей способов формирования аналоговых изображений с помощью цифровых средств, например, показаний измерительных приборов или двухкоординатных изображений, создаваемых компьютером. Даже в относительно простой электронной аппаратуре существует масса возможностей для применения аналого-цифрового и цифро-аналогового преобразования, так что знакомство с различными способами и доступными модулями, используемыми в аналого-цифровом преобразовании, весьма полезно, тем более, что в настоящее время можно приобрести АЦП и ЦАП по 5 долл. за штуку.

Наше знакомство с различными методами преобразования не будет носить характер курса по проектированию преобразователей. Мы попытаемся показать преимущества и недостатки каждого метода, поскольку в большинстве случаев задача состоит в том, чтобы купить коммерчески доступный кристалл или модуль, а не построить его с начала до конца. Понимание техники преобразования и знание особенностей методов преобразования будут руководить вами при выборе блока из сотни доступных.

Коды. Здесь вы должны вспомнить разд. 8.03, в котором описаны различные числовые коды, используемые для представления чисел со знаком. В схемах А/Ц-преобразования используют обычно смещенный двоичный и дополнительный коды, время от времени появляются также прямой код со знаком и код Грея.

Дополним ваши воспоминания:

Погрешности преобразователей. Погрешности А/Ц- и Ц/А-преобразований — весьма сложная тема, которой можно посвятить целые тома. Как выразился Берни Гордон из фирмы Analogic, если вы полагаете, что система преобразования высокой точности живет в соответствии с объявленными техническими данными, то вы, вероятно, не достаточно близко с ней познакомились. Мы не будем следовать такому прикладному сценарию с тем, чтобы поддержать высказывание Берни, но покажем 4 наиболее общих типа погрешностей преобразования. Не желая утомлять вас умными разговорами, мы просто представим графики, не требующие пояснений, для 4-х наиболее распространенных типов погрешностей: погрешности сдвига, погрешности шкалы, нелинейность и немонотонность (рис. 9.44).

Рис. 9.44. Четыре основных типа погрешностей аналого-цифрового преобразования.

(С разрешения фирмы National Semiconductor .)

а — передаточная характеристика АЦП со сдвигом нуля на 1/2 МЗР;

б — линейная погрешность шкалы на 1 МЗР;

в — +1/2 МЗР нелинейности (включая возможную погрешность 1 МЗР); 1 МЗР дифференциальной нелинейности (при сохранении монотонности);

г — немонотонность (нелинейность должна быть больше ± 1/2 МЗР).

9.16. Цифро-аналоговые преобразователи (ЦАП)

Цель состоит в том, чтобы преобразовать количество, определенное в виде двоичного числа (или многоразрядного двоично-десятичного числа), в напряжение или ток, пропорциональное значению цифрового входа. Рассмотрим несколько распространенных способов преобразования.

Включение масштабирующих резисторов в суммирующее соединение. Как вы уже видели в разд. 4.09, подключая несколько резисторов к суммирующему входу операционного усилителя, на выходе можно получить напряжение, пропорциональное взвешенной сумме входных напряжений (рис. 9.45).

Рис. 9.45.

Напряжение на выходе этой схемы изменяется от 0 до —10 В, причем максимальный выход соответствует входному числу 64. Действительно, максимальное входное число всегда равно 2n — 1, т. е. все разряды находятся в «1». В данном случае максимальное входное число равно 63, а соответствующее выходное напряжение равно —10 x 63/64. Изменяя резистор обратной связи, можно добиться, чтобы выход изменялся от 0 до — 6,3 В (т. е. сделать так, чтобы выход в вольтах был бы численно равен —1/10 входного числа), можно добавить также инвертирующий усилитель или постоянное смещение на суммирующий вход, чтобы получить положительный выход. Изменяя значения входных резисторов, можно соответствующим образом преобразовать многоразрядный двоично-десятичный входной код, или любой другой взвешенный код. Входные напряжения должны соответствовать точным эталонам; чем меньше значение входного резистора, тем большую точность он должен иметь. Разумеется, сопротивление переключения должно быть меньше чем 1/2n величины самого маленького резистора; это важное замечание, поскольку переключение во всех реальных схемах выполняется с помощью транзисторов или ключей на МОП-транзисторах. Этот способ преобразования используется только в быстрых преобразователях низкой точности.

Упражнение 9.2. Спроектируйте 2-разрядный двоично-десятичный ЦАП. Используйте входы с перепадом от 0 до +1 В, выход при этом должен изменяться от 0 до 9,9 В.

Цепная К-2К-схема. Способ масштабирующих резисторов становится неудобным, если преобразованию подвергаются много разрядов. Например, для 12-разрядного преобразователя потребуется соотношение величин резисторов 2000:1 с соответствующей точностью самого маленького резистора. Цепная R-2R-схема показанная на рис. 9.46, приводит к изящному решению этой задачи. Здесь требуются только 2 значения резисторов, по которым R-2R-схема формирует токи с двоичным масштабированием. Резисторы, конечно, должны быть точно подобраны, хотя действительные их величины не так существенны. Приведенная схема формирует выходное напряжение от 0 до —10 В с полным выходом, соответствующим числу 16 (опять же максимальное входное число равно 15 при выходном напряжении 10 x 15/16). Для двоично-десятичного преобразования используется несколько модификаций R-2R-схемы.

Рис. 9.46. Схема лестничного типа R-2R .

Упражнение 9.3. Покажите, что приведенная выше R-2R -схема выполняет функцию преобразования правильно.

Источники масштабирующих токов. В схеме упомянутого выше R-2R-преобразователя операционный усилитель преобразует двоично-масштабированные токи в выходное напряжение. Во многих случаях выходное напряжение является наиболее удобным видом сигнала, но операционные усилители, как правило, составляют самую медленную часть преобразователя. Если вы используете преобразователь с токовым выходом, вы добьетесь лучших характеристик за более низкую цену. Рис. 9.47 иллюстрирует общую идею.

Токи можно сформировать с помощью матрицы транзисторных источников тока с масштабирующими эмиттерными резисторами, хотя проектировщики ИС предпочитают использовать цепную R-2R-схему из эмиттерных резисторов. В большинстве преобразователей этого типа источники тока включены все время, а их выходной ток подключается к выходному контакту или к земле под управлением цифрового входного кода. В ЦАП с токовым выходом следует принимать во внимание ограничение по размаху выхода; он может достигать всего 0,5 В, хотя типовое его значение составляет несколько вольт.

Рис. 9.47. Классическая схема ЦАП с коммутацией токов.

Формирование выходного сигнала напряжения. Существует несколько способов формирования выходного напряжения для токовых ЦАП. Некоторые из них показаны на рис. 9.48.

Рис. 9.48. Формирование напряжения по токовому выходу ЦАП

Если емкость нагрузки невелика, а требуемый перепад напряжения достаточно большой, то прекрасно работает схема с обычным резистором, подключенным к земле. При типовом полномасштабном выходном токе 1 мА нагрузочный резистор 100 Ом обеспечивает полномасштабное выходное напряжение 100 мВ с выходным импедансом 100 Ом. Если суммарная емкость выхода ЦАП и емкость нагрузки не превышает 100 пкФ, то время установки в предыдущем примере будет равно 100 не, предполагая, что быстродействие ЦАП несколько выше. Анализируя влияние постоянной времени RС-цепочки, не забывайте, что выходное напряжение установится с точностью до 1/2 МЗР за время, составляющее несколько постоянных времени. Например, время установления выхода с точностью 1/2048 для 10-разрядного преобразователя составляет 7,6 постоянных времени RС-цепочки.

Для того чтобы сформировать большой перепад напряжения или согласовать выход с низкоомной нагрузкой или с большой нагрузочной емкостью, можно использовать показанную на рисунке схему с резистивной обратной связью (усилитель тока с выходом по напряжению). Конденсатор, шунтирующий резистор обратной связи, необходим для обеспечения устойчивости, поскольку выходная емкость ЦАП в сочетании с резистором обратной связи создает запаздывающий фазовый сдвиг; это, к сожалению, снижает быстродействие усилителя. Схема обладает одной занимательной особенностью: для поддержания высокой скорости даже недорогого ЦАП может потребоваться относительно дорогой быстродействующий (с малым временем установки) операционный усилитель. На практике последняя схема обеспечивает лучшие характеристики, поскольку не требует компенсирующего конденсатора. Старайтесь избегать погрешностей напряжения сдвига — операционный усилитель усиливает входное напряжение сдвига в 100 раз.

Коммерчески доступные модули ЦАП обладают точностью от 6 до 18 бит и временем установления от 22 не до 100 мкc (ЦАП с самой высокой точностью). Цены на ЦАП колеблются от нескольких долларов до нескольких сотен долларов. Типовым широко распространенным блоком является AD7248, 12-разрядный преобразователь с защелкой и внутренним опорным источником и с временем установления для выхода по напряжению, равным 5 мкс. Цена его составляет около 10 долл.

9.17. Интегрирующие ЦАП

В прикладных задачах «цифровой» вход может представлять собой последовательность импульсов или колебание другого вида определенной частоты. В этом случае непосредственное преобразование в напряжение иногда оказывается более удобным, чем предварительный отсчет времени с последующим преобразованием двоичного числа по описанным выше способам. При прямом преобразовании частоты в напряжение на каждом входном цикле генерируется стандартный импульс; он может быть как импульсом напряжения, так и импульсом тока (т. е. фиксированным количеством заряда).

Импульсная последовательность усредняется RС-фильтром низких частот или интегратором, создавая выходное напряжение, пропорциональное средней входной частоте. Выход, разумеется, имеет пульсации и для того, чтобы их уменьшить до уровня точности ЦАП (т. е. до 1/2 МЗР) используют фильтр низкой частоты, который замедляет выходную реакцию преобразователя. Для того чтобы пульсации были меньше 1/2 МЗР, постоянная времени Τ простого RС-фильтра низких частот должна быть, по крайней мере, равной Т = 0,69(n + 1)Т 0 , где Т 0 — период выходного сигнала n-разрядного преобразователя частоты в напряжение, соответствующий максимальной входной частоте. Другими словами, время установления выхода до 1/2 МЗР будет примерно равно t = 0,5(n + 1)2Т 0 . 10-разрядный преобразователь частоты в напряжение с максимальной входной частотой 100 кГц при использовании сглаживающего RС-фильтра будет иметь время установления выходного напряжения 0,6 мс. Используя более сложный фильтр низких частот (с крутым срезом) можно добиться лучших результатов. Однако прежде чем увлекаться затейливыми схемами фильтров, вспомните, что очень часто преобразование частоты в напряжение используется, когда не требуется выход по напряжению. Ниже мы коснемся существенно инерционных нагрузок в сочетании с широтно-импульсной модуляцией.

Широтно-импульсная модуляция. В этом способе используется цифровой входной код для формирования последовательности импульсов фиксированной частоты с длительностью импульсов, пропорциональной входному числу. Легче всего это сделать с помощью счетчика, компаратора и высокочастотного генератора тактовых импульсов (см. упражнение 9.4). Как и прежде, можно использовать простейший фильтр низких частот для того, чтобы сформировать выходное напряжение, пропорциональное среднему времени пребывания в высоком состоянии, т. е. пропорциональное цифровому входному коду. Наиболее часто этот вид Ц/А-преобразования используется, когда сама нагрузка является системой с медленной реакцией; в этом случае широтно-импульсный модулятор генерирует точные порции энергии, усредняемые системой, подключенной в качестве нагрузки. Нагрузка, например, может быть емкостной (как в стабилизаторе с импульсным регулированием, см. гл. 6), термической (термостатированная ванна с нагревателем), механической (система автоматического регулирования скорости ленты) или электромагнитной (большой электромагнитный регулятор).

Упражнение 9.4. Постройте схему формирования импульсной последовательности 10 кГц с длительностью импульсов, пропорциональной 8-разрядному двоичному входному коду. Используйте счетчики и компараторы (с соответствующими расширителями).

Умножитель частоты с усреднением. Схему умножителя частоты, описанную в разд. 8.28, можно использовать для создания простого ЦАП. Параллельный двоичный или двоично-десятичный входной код преобразуется в последовательность выходных импульсов со средней частотой, пропорциональной цифровому входу; для формирования выхода по постоянному току, пропорционального цифровому входному коду, можно, как и для описанного выше преобразователя частоты в напряжение, использовать простое усреднение, хотя в данном случае величина постоянной времени выхода может оказаться недопустимо большой, поскольку время усреднения на выходе умножителя частоты должно быть равно наибольшему периоду выходного сигнала умножителя. Достоинства умножителей частоты как Ц/А-преобразователей особенно проявляются, когда выход усредняется за счет сильной инерционности самой нагрузки.

По-видимому, лучше всего применять такие преобразователи при цифровом управлении температурой, где по каждому выходному импульсу частотного умножителя происходит переключение полных периодов напряжения переменного тока на нагревателе. Частотный умножитель при этом организуется таким образом, чтобы его самая низкая выходная частота была бы равна целочисленному делителю 120 Гц, а для коммутирования напряжения переменного тока (при пересечении нуля) по логическим сигналам используется твердотельное реле (или симистор).

Обратите внимание, что последние три способа преобразования основывались на усреднении во времени, в то время как методы на основе цепной резисторной схемы и источников тока по существу «мгновенны». Эта особенность присуща и различным методам аналого-цифрового преобразования. Усредняет ли преобразователь входной сигнал или преобразует отсчеты мгновенно имеет, как вы вскоре убедитесь на некоторых примерах, большое значение.

9.18. ЦАП с умножением

Большинство из ранее рассмотренных способов можно использовать для построения ЦАП с умножением, в которых выход равен произведению входного напряжения (или тока) на входной цифровой код. В ЦАП с масштабируемыми источниками тока вы можете, например, отградуировать все внутренние источники тока с помощью входного программирующего тока. Умножающие ЦАП можно выполнить на ЦАП, которые не имеют внутреннего опорного источника, используя вход опорного напряжения для входного аналогового сигнала. Однако для этой цели пригодны не все ЦАП, поэтому следует изучить внимательно их паспортные данные. В паспортные данные на ЦАП с хорошими «множительными» свойствами (широкий диапазон входного аналогового сигнала, высокая скорость и т. п.) в верхний правый угол обычно вносится пометка «умножающий ЦАП». Примерами 12-разрядных умножающих ЦАП являются AD7541, 7548, 7845 и DAC1230, стоимость которых колеблется от 10 до 20 долл.

Умножающие ЦАП (и А/Ц-эквиваленты) открывают возможности для логометрических измерений и преобразований. Если некоторый датчик (например, резистивный датчик типа термистора) питается от эталонного напряжения, которое подается также на А/Ц- или Ц/А-преобразователь в качестве опорного напряжения, то изменения эталонного напряжения не повлияют на результаты измерений. Эта идея чрезвычайно плодотворна, поскольку позволяет проводить измерения и управление с точностью, превышающей стабильность эталонного источника напряжения или источника питания, и наоборот, смягчить требования по стабильности и точности источника питания.

Логометрический принцип в своей простейшей форме используется в классической мостовой схеме, где за счет сведения к нулю разностного сигнала между двумя выходами делителей напряжения устанавливается равенство двух отношений (см. разд. 15.02). Приборы типа 555 (см. разд. 5.14) позволяют добиться хорошей стабильности выходной частоты при значительных изменениях напряжения питания; это достигается благодаря применению логометрической схемы: напряжение на конденсаторе, формируемое с помощью RС-цепочки от источника питания, сравнивается с фиксированной долей напряжения питания (1/3 U КК и 2/3 U КК ). Результирующая выходная частота будет зависеть только от постоянной времени RС-цепи. К этой важной теме мы еще не раз вернемся и в этой главе в связи с АЦП и в гл. 15, когда мы будем обсуждать методы научных измерений.

9.19. Выбор ЦАП

В качестве справочного материала, необходимого для выбора ЦАП для конкретного применения, мы приводим табл. 9.4, в которой перечислены самые типичные ЦАП различной скорости и точности. Этот список ни коим образом не претендует на полноту, но он включает наиболее распространенные преобразователи и некоторые самые современные приборы, предназначенные для замены.

При поиске ЦАП для конкретного применения следует всегда помнить о некоторых наиболее важных моментах: а) точность; б) быстродействие; в) точность установки (требуется ли внешняя подстройка?); г) входная структура (память? КМОП/ТТЛ/ЭСЛ-совместимость?); д) опорный источник (внутренний, внешний?); е) выходная структура (токовый выход? размах выхода? выход по напряжению? диапазон?); ж) необходимые напряжения питания и мощность рассеивания; з) корпус (желательно с малым числом выводов «узкий DIP» шириной 0,3 дюйма); и) цена.

9.20. Аналого-цифровые преобразователи

Можно насчитать с полдюжины основных способов А/Ц-преобразования, каждый из которых обладает своими преимуществами и ограничениями. Поскольку вы обычно применяете готовые А/Ц-модули или ИС, а не разрабатываете их сами, мы по возможности кратко опишем различные способы преобразования главным образом для того, чтобы помочь сделать квалифицированный выбор для конкретного применения. В следующем разделе этой главы мы покажем несколько типовых приложений А/Ц-преобразования. В гл. 11 рассмотрим некоторые АЦП, использующие точно такие же методы преобразования, но выходы которых просто сопрягаются с микропроцессорами.

Параллельное кодирование. В этом методе напряжение входного сигнала подается на один из входов n компараторов одновременно; другие входы компараторов подключены к n опорным источникам с равномерно распределенными напряжениями. Шифратор с приоритетом формирует цифровой выходной сигнал, соответствующий самому старшему компаратору из активизированных входным сигналом (рис. 9.49).

Рис. 9.49. Параллельно кодированный АЦП.

Параллельное кодирование (иногда называемое «мгновенным» кодированием) — это самый быстрый метод А/Ц-преобразования. Время задержки от входа до выхода равно сумме времен задержки на компараторе и шифраторе. Параллельные преобразователи, выпускаемые промышленностью, имеют от 16 до 1024 уровней квантования (с выходами от 4 до 16 разрядов). При большем числе разрядов они становятся дорогими и громоздкими. Быстродействие их колеблется от 15 до 300 млн. отсчетов в секунду. Типовым мгновенным АЦП является TDC1048 фирмы TRW, это биполярный 8-разрядный преобразователь на 20 млн. отсчетов в секунду в 28-выводном корпусе, цена которого составляет 100 долл.; фирма ЮТ выпускает преобразователь 75С48, КМОП-эквивалент с улучшенными техническими данными.

Существует вариант простого параллельного шифратора, так называемый полумгновенный шифратор, в котором используется двухступенчатый процесс. В этом процессе осуществляется мгновенное преобразование входа до половинной заданной точности; внутренние ЦАП вновь преобразуют приближенное значение в аналоговую величину, а разность между ней и входной величиной подвергается мгновенному преобразованию для получения младших значащих разрядов (рис. 9.50).

Рис. 9.50. Полупараллельный АЦП.

Описанный способ лежит в основе дешевых преобразователей, которые обладают самым высоким быстродействием среди всех остальных, за исключением полностью мгновенных преобразователей. Он используется в недорогих преобразователях типа 8-разрядных ADC0820 (National) и AD7820/4/8 (Analog Devices). Целесообразно рассмотреть возможность использования мгновенных шифраторов в области преобразования колебаний в цифровую форму, даже при сравнительно низкой скорости преобразования; их быстродействие (точнее, малый апертурный интервал, в течение которого фиксируется выход компаратора) гарантирует, что входной сигнал за время преобразования существенно не изменится. Альтернативный вариант (более медленные преобразователи мы опишем ниже) обычно требует применения аналоговой схемы квантования и запоминания для того, чтобы зафиксировать входное колебание на время преобразования.

Последовательное приближение. В этом распространенном способе осуществляется опробование различных выходных кодов путем подачи их на ЦАП и сравнения результата с аналоговым входом с помощью компаратора (рис. 9.51).

Рис. 9.51. АЦП с последовательной аппроксимацией.

Обычно процесс начинается с установки всех разрядов в «0». Затем, начиная со старшего значащего разряда, каждый разряд по очереди временно устанавливается в «1». Если выходное напряжение ЦАП не превышает напряжения входного сигнала, то этот разряд остается в состоянии «1», в противном случае он возвращается в «0». Для n-разрядного АЦП потребуется n таких шагов. Происходящий процесс можно описать как процесс бинарного поиска, начинающегося с середины. А/Ц-модуль с последовательным приближением имеет вход «Начало преобразования» и выход «Конец преобразования». Цифровой выход всегда выдается в параллельной форме (все разряды сразу по n отдельным выходным линиям), а иногда и в последовательной форме (n последовательных выходных битов, начиная с СЗР, по одной выходной линии). В нашем курсе по схемотехнике студенты конструируют АЦП с последовательным приближением в полном объеме вместе с ЦАП, компаратором и управляющей логикой.

На рис. 9.52, а показано восемь импульсов синхронизации и выходные сигналы на ЦАП, следующие друг за другом по мере того как аналоговый выход, подвергаемый проверке, сходится к входному напряжению. На рис. 9.52, б показано полное 8-разрядное «дерево», — прекрасная картинка, которую вы можете получить, наблюдая за выходом ЦАП, при подаче на вход медленно меняющегося линейного напряжения по всему диапазону входного аналогового сигнала.

Рис. 9.52. Сигналы при 8-битовой последовательной аппроксимации. (С разрешения П. Эмери, Р. Ловетта и К. Рудина.) а — аналоговый выход, сходящийся к конечному значению; обратите внимание на синхроимпульсы; б — полное «дерево».

АЦП с последовательным приближением являются сравнительно точными и быстрыми и требуют всего n установок на ЦАП для обеспечения n-разрядной точности. Типичное время преобразования колеблется в диапазоне от 1 мкс до 50 мкс при точности от 8 до 12 разрядов; цена его составляет 10-400 долл. Этот тип преобразователя работает на коротких выборках из входного напряжения и если его входной сигнал меняется во время преобразования, то ошибка не превышает величину происходящего за это время изменения; однако выбросы на входном сигнале катастрофичны. Несмотря на общую вполне допустимую точность, эти преобразователи могут иметь довольно необычные нелинейности и «пропущенные коды».

Фирма National Semiconductor в своих преобразователях серии ADC0800 для исключения пропущенных кодов использует хитроумный прием: вместо многозвенного ЦАП "R-2R" используются цепочка из 2n резисторов и аналоговые ключи (рис. 9.53); эта схема генерирует проверочные аналоговые напряжения по типу мгновенного шифратора.

Существует вариант АЦП этого типа, известный как «следящий АЦП», в котором для формирования последовательных проверочных кодов используется реверсивный счетчик; он сравнительно медленный, если учитывать скачки входного сигнала, но быстрее отслеживает плавные изменения, чем преобразователь с последовательным приближением.

Рис. 9.53. ЦАП на основе резисторной лестничной цепи и дерева коммутаций: без пропуска кодов.

Преобразование напряжения в частоту. В данном методе входное аналоговое напряжение преобразуется в выходную импульсную последовательность, частота которой пропорциональна входному напряжению. Это можно осуществить простым зарядом конденсатора током, пропорциональным входному уровню, и последующим его разрядом при достижении заранее установленного порога. Для повышения точности обычно применяют обратную связь. По одному из способов выход схемы частота-напряжение сравнивается с входным аналоговым уровнем и осуществляется генерация импульсов на частоте, которая позволяет выравнять входные уровни компаратора. В более распространенных методах используется так называемый прием «выравнивания зарядов»; позже мы опишем это более подробно (в частности, метод «распределения заряда, накопленного на конденсаторе»).

Обычно частоты на выходе схемы напряжение-частота находятся в диапазоне от 10 кГц до 1 МГц (последнее значение для максимального входного напряжения). Выпускаются коммерческие преобразователи напряжения в частоту с разрешающей способностью, эквивалентной 12 разрядам (точность 0,01 %). Например, превосходный преобразователь AD650 фирмы Analog Devices (разд. 5.15) имеет типовую нелинейность 0,002 % при работе от 0 до 10 кГц. Он не дорогой и очень удобен для случаев, когда выходной сигнал должен передаваться в цифровом виде по кабелю или когда требуется выходная частота (а не цифровой код). Если скорость не играет большой роли, то путем подсчета выходной частоты за фиксированный интервал времени можно получить число в цифровом представлении, пропорциональное среднему входному уровню. Этот способ широко используется в цифровых измерительных приборах средней точности (3 цифры).

Одностадийное интегрирование. В этом способе в начале преобразования запускается внутренний генератор линейного напряжения и одновременно для подсчета импульсов стабильного генератора тактовых импульсов счетчик. Когда линейно меняющееся напряжение сравнивается с входным уровнем, компаратор останавливает счетчик; результат на счетчике будет пропорционален входному уровню, т. е. это и есть цифровой выход. Принцип работы представлен на рис. 9.54.

Рис. 9.54. Одностадийный АЦП.

В конце преобразования схема разряжает конденсатор и сбрасывает состояние счетчика; преобразователь готов к очередному циклу преобразования. Способ одностадийного интегрирования достаточно прост, но он не используется, если необходима высокая точность, поскольку в этом случае выдвигаются слишком жесткие требования к стабильности и точности конденсатора и компаратора. Метод «двухстадийного интегрирования» позволяет избавиться от этих проблем; в настоящее время его обычно применяют, если требуется высокая точность.

Одностадийное интегрирование все еще живет и благоденствует особенно, в тех областях, где не требуется абсолютная точность, а необходимо преобразование с хорошей разрешающей способностью и одинаковыми промежутками между смежными уровнями. Хорошим примером является применение для анализа амплитуд импульсов (см. разд. 15.16), где амплитуда импульса фиксируется с помощью пикового детектора и затем преобразуется в некоторый адрес. Существенную роль здесь играет равенство ширины каналов, поэтому применение преобразователя с последовательным приближением было бы в общем случае неудобно. Способ одностадийного интегрирования используется также при преобразовании временных интервалов в амплитуду.

9.21. Методы уравновешивания заряда

Существует несколько методов, общей особенностью которых является применение конденсатора для отслеживания отношения уровня входного сигнала к эталонному. Во всех этих методах осуществляется усреднение (интегрирование) входного сигнала на фиксированном интервале времени, относящемся к одному измерению. При этом есть два важных преимущества:

1. Поскольку в этих методах и для сигнала, и для эталона используется один и тот же конденсатор, они не предъявляют высоких требований к стабильности и точности конденсатора. Требования к компаратору также не слишком жесткие. В результате для компонентов эквивалентного качества можно получить более высокую точность или такую же точность, но за более низкую цену.

2. Выходной сигнал пропорционален среднему значению входного напряжения на (фиксированном) интервале времени интегрирования. Выбирая этот интервал времени равным кратному периода сетевого напряжения, можно сделать преобразователь нечувствительным к фону переменного тока 60 Гц (и его гармоник) на входном сигнале. Результирующая чувствительность к сигналам помех как функция от частоты показана на рис. 9.55 (интервал интегрирования 0,1 с).

Рис. 9.55. Подавление помех интегрирующим АЦП.

Такое подавление сетевых помех частотой 60 Гц требует точного управления временем интегрирования, поскольку ошибка в доли процента тактовой частоты приведет к неполному устранению фона. Одной из возможностей реализации является применение кварцевого резонатора. В разд. 9.29 вы познакомитесь с изящным методом синхронизации работы интегрирующего преобразователя с частотами, кратными частоте сетевого напряжения, для обеспечения полного подавления фона. Недостатком преобразования с интегрированием по сравнению с последовательным приближением является невысокая скорость преобразования.

Двухстадийное интегрирование. Этот изящный и очень распространенный способ избавляет вас от большинства проблем, связанных с конденсатором и компаратором и присущих одностадийному интегрированию. Принцип преобразования иллюстрируется рис. 9.56.

Рис. 9.56. Цикл двухстадийного преобразования.

Сначала в течение фиксированного интервала времени происходит заряд конденсатора током, точно пропорциональным входному уровню; затем конденсатор разряжается постоянным током до тех пор, пока напряжение на нем вновь не станет равным нулю. Время разряда конденсатора будет пропорционально входному уровню, оно используется для того, чтобы привести в действие счетчик, на который подаются тактовые импульсы фиксированной частоты. Окончательное состояние счетчика будет пропорционально входному уровню; т. е. это и есть цифровой выход.

С помощью двухстадийного интегрирования можно добиться очень хорошей точности, не предъявляя слишком жестких требований к стабильности компонентов. В частности, стабильность емкости конденсатора может быть не высокой, поскольку циклы заряда и разряда происходят со скоростью, обратно пропорциональной емкости. Более того, ошибки дрейфа и смещения компаратора компенсируются благодаря тому, что каждый цикл преобразования начинается и заканчивается на одном и том же напряжении, а в некоторых случаях и с одинаковым наклоном. В самых точных преобразователях циклу преобразования предшествует цикл «автокоррекции нуля», в течение которого на вход преобразователя подается нулевой сигнал. Поскольку на этой фазе используется тот же интегратор и компаратор, вычитание выходного значения «ошибки при нуле» из результата последующего измерения позволяет компенсировать ошибки, связанные с измерениями вблизи нуля. Однако при этом не происходит коррекция ошибок по всей шкале.

Заметьте, что в двухстадийном преобразовании не предъявляются жесткие требования даже к частоте тактовых импульсов, так как фиксированный интервал времени на первой фазе измерений формируется из тех же тактовых импульсов, которые используются для счета в прямом направлении. Если частота тактовых импульсов уменьшится на 10 %, то начальный наклон будет на 10 % выше нормального, а время спада на 10 % вырастет. Так как измерение осуществляется по тактовым меткам, а их частота снизилась на 10 % по сравнению с нормальной, окончательное состояние счетчика будет тем же самым! В двухстадийном преобразователе с автокоррекцией нуля жесткие требования к стабильности предъявляются только к току разряда. Прецизионные эталонные источники тока и напряжения получить довольно просто, причем в этом типе преобразователя масштабный коэффициент устанавливается регулируемым эталонным током.

При выборе компонентов для двухстадийного преобразования ориентируйтесь на высококачественный конденсатор с минимальной остаточной поляризацией диэлектрика (эффект «памяти»; см. модель на рис. 4.42) — полипропиленовые, полиэфирные или тефлоновые конденсаторы в этом отношении лучше. Хотя эти конденсаторы и не являются поляризованными, их внешнюю фольгу следует подключить к низкоимпедансной точке (выход операционного усилителя интегратора). Для минимизации ошибок величины R и С выбирайте таким образом, чтобы использовать весь аналоговый диапазон интегратора. На высокой частоте тактовых импульсов разрешающая способность улучшается, однако при сильном увеличении частоты период тактовых импульсов может стать короче времени отклика компаратора.

При использовании прецизионного двухстадийного преобразователя (как, впрочем, и любого прецизионного преобразователя) важно исключить цифровые помехи на пути прохождения аналоговых сигналов. Преобразователи обычно снабжаются для этих целей раздельными выводами «аналоговой земли» и «цифровой земли». Во многих случаях на цифровых входах полезно поставить буферы (скажем, октальный формирователь `244 с тремя состояниями, работающий только при считывании выхода) для того, чтобы защитить преобразователь от цифровых шумов микропроцессорной шины (см. следующую главу). В крайнем случае, для того чтобы «отгородиться» от помех очень «грязной» шины, можно использовать оптроны. Постарайтесь обеспечить соответствующую развязку по питанию на ИС преобразователе. Постарайтесь не вносить помех в конечной критической точке интегрирования, где линейное изменение достигает точки переключения компаратора: некоторые преобразователи, например, допускают проверку конца преобразования путем считывания выходного слова; не пользуйтесь этим! Лучше используйте отдельную соответствующим образом изолированную линию ЗАНЯТО.

Двухстадийное интегрирование находит широкое применение в цифровых универсальных измерительных приборах, а также в преобразовательных модулях с разрешающей способностью от 10 до 18 разрядов. Там, где не требуется высокое быстродействие, этот способ обеспечивает хорошую точность и высокую стабильность при низкой стоимости и обладает превосходной помехоустойчивостью к сетевым (и другим) помехам. Используя модуль на основе двухстадийного интегрирования, вы получаете наивысшую точность при заданных затратах. При увеличении входного сигнала коды цифрового выхода возрастают строго монотонно.

Дельта-сигма-преобразователи. Существует несколько методов А/Ц-преобразования, в основе которых лежит принцип нейтрализации входного тока (среднего) сигнала с помощью переключаемого внутреннего источника тока или заряда. На рис. 9.57 показана функциональная схема дельта-сигма-преобразователя.

Рис. 9.57. Дельта-сигма АЦП с уравновешиванием заряда

Входное напряжение поступает на интегратор, выходной сигнал которого сравнивается с любым фиксированным напряжением, например нулем. В зависимости от выходного сигнала компаратора импульсы тока фиксированной длительности (т. е. с фиксированным приростом заряда) подключаются при каждом изменении тактовых импульсов либо к суммирующему входу, либо к земле, что позволяет поддерживать нулевой средний ток на суммирующем входе. Это-принцип уравновешивания. Счетчик отслеживает число импульсов подключения к суммирующему входу в пределах некоторого заданного числа тактовых импульсов, допустим, 4096. Полученное число будет пропорционально среднему входному уровню за 4096 тактовых импульсов, т. е. это и будет выходным кодом.

В дельта-сигма-преобразователях можно использовать также импульсы тока, сформированные с помощью резистора и стабильного эталонного напряжения, поскольку суммирующая точка находится фактически на уровне потенциала земли. В этом случае необходимо, чтобы сопротивление замкнутого ключа было меньше последовательного резистора и его отклонения не вызывали дрейфа.

АЦП с коммутируемым конденсатором. С методом выравнивания заряда тесно связан метод «с распределением заряда, накопленного на конденсаторе» или А/Ц-преобразования с «коммутируемым конденсатором». В этом методе с помощью периодически повторяющегося заряда конденсатора от стабильного эталонного напряжения создается заряд определенной величины, затем происходит разряд на суммирующую точку. Как и ранее, к выходу интегратора подключен компаратор, который управляет частотой переключения конденсатора. Этот метод обладает определенными преимуществами для схем с питанием от одного источника напряжения, поскольку действующую полярность заряда, передаваемого от конденсатора к суммирующей точке, можно изменить с помощью ключей на полевых транзисторах, соединенных соответствующим образом (т. е. путем коммутации обеих обкладок конденсатора).

Примером преобразователя, основанного на этом методе, является преобразователь напряжения в частоту LM331, характерная особенность которого состоит в том, что он работает от одного источника +5 В. Мы рассказывали о его применении в качестве генератора, управляемого напряжением, в разд. 5.14.

Замечания по поводу интегрирующих АЦП. Как и в А/Ц-преобразователях на основе двухстадийного интегрирования, во всех преобразователях с уравновешиванием заряда происходит усреднение входного сигнала на фиксированных интервалах времени, поэтому их можно сделать нечувствительными к сетевым помехам на основной частоте 60 Гц и ее гармониках. Методы уравновешивания заряда характеризуются в основном точностью и низкой стоимостью (для их реализации не нужно, например, очень хорошего компаратора) и обеспечивают строго монотонный выход. Вместе с тем по сравнению с последовательным приближением они довольно медленны. Преобразователь AD1170 обеспечивает разрешающую способность 18 разрядов при времени преобразования 66 мс; стоит он около 100 долл. Для сравнения 16-разрядный преобразователь с последовательным приближением AD76 имеет время преобразования 15 мкс и стоит 120 долл. В отличие от двухстадийного интегрирования в методах дельта-сигма-преобразования и с коммутируемым конденсатором используются компараторы низкой точности, подключаемые к интеграторам, однако эти методы требуют точных схем коммутации зарядов. В то же время двухстадийные методы используют компараторы с высокой воспроизводимостью характеристик, но не предъявляют высоких требований к ключам, по крайней мере в отношении скорости и инжекции заряда.

Продолжая наше сравнение реальных приборов, отметим, что многостадийный 22-разрядный преобразователь AD1175K обладает временем преобразования 50 мс и стоит 800 долл (разд. 9.22).

Одной из интересных особенностей любого способа интегрирования (одно- и двухстадийное интегрирование и уравновешивание заряда), о которой следует помнить, является то, что интегратор может иметь вход как по току, так и по напряжению с последовательно включенным резистором. Действительно, некоторые преобразователи имеют два входных вывода, один — непосредственно подключенный к суммирующей точке для связи с устройством, представляющим собой источник тока. При использовании токового входа напряжение сдвига интегратора становится несущественным, в то время как вход по напряжению (с внутренним последовательным резистором) операционного усилителя интегратора дает ошибку, равную напряжению сдвига по входу. Поэтому токовый вход удобен для получения широкого динамического диапазона, особенно если АЦП используется вместе с устройством, имеющим какой-нибудь токовый выход, например фотоумножители и фотодиоды. Остерегайтесь таких образчиков «Попался!», как: точность АЦП может быть задана для токового входа, хотя преобразователь имеет и токовый вход и вход по напряжению; не рассчитывайте на хорошие параметры при малых сигналах, когда вы используете такой преобразователь по входу напряжения.

Следует отметить, что все методы уравновешивания заряда включают в себя точный преобразователь напряжения в частоту и могут использоваться в качестве таковых, если требуется частотный выход (рис. 9.58).

Рис. 9.58. Преобразователь напряжения в частоту с уравновешиванием заряда.

9.22. Некоторые необычные АЦП и ЦАП

Стоит кратко упомянуть о четырех последних разработках фирмы Analog Devices, признанного лидера в области преобразовательных ИС и модулей.

Комбинированный ЦАП/АЦП AD7569 . В монолитной ИС AD7569 на одном кристалле объединены 8-разрядные АЦП и ЦАП со схемой выборки и хранения, внутренним тактовым генератором и источником опорного напряжения (рис. 9.59).

Рис. 9.59. Комбинированный 8-разрядный ЦАП/АЦП AD7569 .

(С разрешения фирмы Analog Devices .)

АЦП с последовательным приближением осуществляет преобразование за 2 мкс, а ЦАП формирует выходное напряжение с типовым временем установки 1 мкс. Эта ИС предназначена в основном для микропроцессорных систем: преобразователи совместно используют один 8-разрядный цифровой порт с подходящими управляющими сигналами и быстрым тактированием (в отличие от большинства медленных ИС преобразователей, которые требуют дополнительных состояний «ожидания» и имеют не совсем подходящее время установки), а сам кристалл работает только от одного источника питания +5 В. Более того, не требуется внешних компонентов и подстройки; схема размещена в удобном 24-выводном корпусе типа «узкий DIP», имеет небольшое потребление (60 Вт) и подходящую цену (6 долл. в партии по 100 шт.).

22-разрядный интегрирующий АЦПАБ 1175 . В этом впечатляющем модуле (рис. 9.60) используется многостадийное интегрирование с автокоррекцией нуля для того, чтобы получить точность 22 разряда (6 и 1/2 цифр) при необычной скорости преобразования (20 преобразований в секунду).

Рис. 9.60. 22-разрядный интегрирующий АЦП AD1175K .

(С разрешения фирмы Analog Devices .)

Чтобы получить представление о том, что это значит, рассмотрите другой вариант — настольный (или стоечный) измерительный прибор, стоимость которого, как правило, достигает 4000 долл. и который выполняет 2 преобразования в секунду. Для сравнения: AD1175 занимает объем 10 куб. дюймов, потребляет 3 Вт и стоит 800 долл. Он содержит внутренний микропроцессор и допускает грубую установку усиления и сдвига по своей цифровой шине (которая используется и для ввода команд и для вывода преобразованных данных).

Преобразователи для видеосигналов HDG0807 и AD9502 . Эти преобразователи — это как раз то, что нужно для цифровых видеосигналов (рис. 9.61 и рис. 9.62).

Рис. 9.61. ЦАП композитного видеосигнала HDG0807 .

(С разрешения фирмы Analog Devices .)

Рис. 9.62. АЦП композитного видеосигнала типа AD9502 .

(С разрешения фирмы Analog Devices .)

Преобразователь HDG0807 представляет собой 8-разрядный ЦАП с уровнями стандартных видеосигналов и с выходным импедансом 75 Ом. Более того, он даже формирует правильные «композитные синхроимпульсы», совмещаемые с аналоговым видеосигналом для образования полного выходного видеосигнала. Преобразователь полностью готов к применению, обладает высоким быстродействием (до 50 МГц) и доступен. Монолитной основой этого гибридного преобразователя является схема AD9700; работает она на частотах до 100 МГц.

АЦП для видеосигналов AD9502 выполняет обратную работу, а именно, осуществляет дискретизацию входного видеосигнала. Он выделяет из аналогового композитного сигнала синхроимпульсы, использует контур ФАПЧ для формирования синхроимпульсов элементов изображения, синхронизированных с разверткой, и затем преобразует аналоговое напряжение в 8-разрядную цифровую величину. Он может выполнять преобразование на частоте до 13 МГц, генерируя выходы в цифровом виде с экранным разрешением 512x512.

9.23. Выбор АЦП

Как и в случае ЦАП, мы сгруппировали АЦП (табл. 9.5 и табл. 9.6) так, чтобы охватить весь диапазон технических характеристик и стоимости. Мы старались включить как наиболее распространенные блоки, так и те, которые появились недавно и выйдут победителями в следующем году.

При выборе АЦП следует учитывать ряд факторов: а) точность, б) быстродействие, в) точность установки (требуется ли подстройка, гарантируется ли монотонность), г) необходимые питающие напряжения (некоторые работают только от +5 В) и мощность рассеивания, д) небольшой корпус, е) источник опорного напряжения и генератор тактовых импульсов (внутренний или внешний? Если внешний опорный источник, то подойдет ли +5 В? Если внутренний, то доступен ли он снаружи, например для логометрических измерений? Хорошо ли это? Можно ли его нагрузить?), ж) входной импеданс и диапазон аналогового напряжения (однополярный, двухполярный или и то, и другое?), з) входная схема (дифференциальный? Внутренний мультиплексор или выборка с запоминанием? Инвертированная полярность, т. е. более отрицательный сигнал для большего выхода?), и) выходная схема (параллельный, последовательный, либо и то, и другое? Является ли параллельный выход совместимым с микропроцессором как часть отдельно активизируемых байтовых групп?) и, конечно, к) стоимость.

Полные А/Ц-подсистемы. Если вам нужны АЦП высокой точности, особенно с входным мультиплексором и выборкой с запоминанием, вы должны внимательно присмотреться к «А/Ц-подсистемам», которые предлагают ряд изготовителей. Они представляют собой обычно модули (а не ИС), выполненные в виде металлической коробки высотой 0,4 дюйма с размерами 2x4 дюйма (или 3x5); выводы модуля сопрягаются с помощью специальной колодки (или запаиваются непосредственно в печатную плату). Эти преобразователи не дешевы, но они исключительно просты в использовании. Более того, изготовители решили ряд действительно сложных проблем, которые не позволяли осуществить преобразование с высокой разрешающей способностью — наводки, изоляция цифровых и аналоговых узлов, стабильное опорное напряжение, сдвиги усилителя и т. п.

Типичным представителем этих устройств является DT-5716 фирмы Data Translation (рис. 9.63).

Рис. 9.63. Модульная АЦП-система DT5716 .

Этот модуль имеет 16 несимметричных (или 8 дифференциальных) входов с аналоговым мультиплексором на входе, за которым следуют схема выборки и запоминания, усилитель с регулируемым коэффициентом усиления и 16-разрядный АЦП. Он может осуществлять преобразование на частоте 20 кГц и имеет двухбайтовую организацию выхода, которая упрощает сопряжение с микропроцессорной шиной (см. гл. 10 и 11).

Модули А/Ц-подсистем выпускаются с разрашающей способностью от 12 до 16 разрядов как с входным мультиплексором, так и без него. Вы действительно платите за высокую точность и высокое быстродействие и большинство выпускаемых модулей существенно дешевле, чем упомянутые ранее блоки. К примеру, модули серии DAS1157-9 фирмы Analog Devices представляют собой одноканальные преобразователи с разрешающей способностью от 14 до 16 разрядов и пропускной способностью, соответствующей 18 кГц; стоят они меньше 300 долл. в партии из 100 шт. Вы можете приобрести преобразовательные модули нескольких фирм, включая Analog Devices, Analogic, Data Translation и Intech.

 

Примеры А/Ц-преобразования

9.24. 16-канальная А/Ц-система сбора данных

На рис. 9.64 показана схема, предназначенная для преобразования в цифровую форму любой из 16 аналоговых входных величин с 12-разрядным кодом на выходе. С ее помощью можно организовать «передний край» в эксперименте сбора данных под управлением микропроцессора.

Рис. 9.64. 12-разрядный 16-канальный АЦП последовательного приближения (50 мкс на преобразование).

ИС HI-506 представляет собой 16-канальный аналоговый МОП-мультиплексор с цифровыми входами, совместимыми с МОП-логикой. Этот своеобразный мультиплексор имеет несколько очень приятных свойств. В частности, его ключи являются разновидностью ключей с «размыканием перед срабатыванием». Это означает, что при смене адреса на мультиплексоре различные входные каналы не замыкаются друг с другом. Более того, входные сигналы могут уходить за пределы напряжения питания и при этом не будет возникать эффект «тиристорного защелкивания» или перекрестные помехи между входами. Учтите эти соображения, когда будете подыскивать себе линейные ключи. Они иногда могут породить проблемы. Например, «размыкание перед срабатыванием» снижает время переключения, поскольку «срабатывание» необходимо задержать для того, чтобы дать возможность ключу разомкнуться.

Единственный аналоговый выход мультиплексора поступает на схему LF398 — монолитный усилитель с выборкой и запоминанием (рис. 4.41) в удобном 8-выводном корпусе DIP (цена 2 долл.). Эта ИС используется как схема «слежения и запоминания», фиксирующая аналоговое колебание только с началом преобразования. С использованием конденсатора 1000 пФ выход схемы устанавливается до 1 МЗР за 0,5 мкс и снижается менее, чем на 3 мкВ за последующие 12 мкс преобразования. AD7572-3TO превосходный маломощный 12-разрядный АЦП с внутренними источником опорного напряжения и тактовым генератором; он имеет удобные управляющие сигналы для сопряжения с микропроцессором, включая возможность мультиплексирования 12-разрядного результата на 8 линий («байтовая шина данных») за два последовательных цикла.

Устройство, управляющее этой схемой, обычно назначает адрес для мультиплексора, затем инициирует преобразование с помощью сигналов . АЦП отвечает выдачей сигнала , который фиксирует аналоговый входной сигнал. Преобразование завершается через 12 мкс и сигнал  устанавливается на высоком уровне. С этого момента доступны все 12 разрядов результата, если вы хотите использовать все 12 линий D вых ; однако если у вас 8-разрядная шина, то вы можете первыми считать 8 младших значащих разрядов, а затем подать сигнал ВЫБОР СТАРШЕГО БАЙТА для того, чтобы передать на D 0 -D 3 4 старших значащих разряда.

После инициирования преобразования устройство, управляющее преобразователем, может заняться проверкой сигнала , чтобы увидеть, когда преобразование завершится. Более простой вариант — это ждать 12 мкс («временной цикл» программы потратит требуемое время; см. гл. 11). Управляющее устройство вынуждено ждать 4 мкс после завершения преобразования перед тем, как инициировать следующее преобразование; это-«время захвата» ИС LF398, т. е. время, необходимое для того, чтобы выход вновь отследил вход с точностью до 0,1 %. В течение этого времени устройство управления может, конечно, заняться считыванием цифрового выхода. Общее время преобразования составляет, таким образом, минимум 16 мкс, что равнозначно 60000 преобразованиям в секунду. По поводу этой схемы стоит сделать несколько замечаний: (а) Для получения полной 12-разрядной точности вы должны обеспечить подстройку сдвига для компенсации трех видов ошибок: 1) U сдв входа В/3 составляет 7 мВ (макс); 2) полевой транзистор входа В/3 вводит небольшую ступеньку напряжения в режиме ЗАПОМИНАНИЕ, обусловленную инжекцией заряда в затвор полевого транзистора (разд. 3.12), в данном случае относительно стабильную отрицательную ступеньку в 10 мВ; 3) сам АЦП имеет U сдв , определяемое как 4 МЗР (эквивалентно 5 мВ для диапазона входного сигнала 0–5 В). Мы включили схему подстройки для LF398, используя рекомендации изготовителя, (б) Емкость конденсатора запоминания определяется путем компромисса. Небольшая емкость сокращает время захвата, но приводит к большему спаду вершины импульса и большей ступеньке от инжекции заряда. Мы выбрали емкость, которая дает незначительный спад и приводит к ступеньке в режиме ЗАПОМИНАНИЕ, эквивалентной 8 МЗР; ступенька сравнительно стабильна и ее можно компенсировать соответствующей подстройкой с помощью регулятора «Подстройка сдвига», (в) Схема приспособлена под однополярные входные сигналы (0–5 В); если необходимо принимать биполярные входные сигналы, то следует добавить схему смещения операционного усилителя, позаботясь о том, чтобы удержать ошибки в пределах менее 1 МЗР (1 часть на 4000). Для того чтобы облегчить работу, схема AD7572 выдает прецизионное опорное напряжение, тем не менее потребуется еще несколько компонентов, (г) Прекрасным дополнением к такого сорта схемам является усилитель с программируемым коэффициентом усиления, так что управляющий микропроцессор может управлять коэффициентом усиления для того, чтобы приспособиться к диапазону амплитуд входного сигнала. ИС AD526 фирмы Analog Devices представляет собой однокристальный прибор с программируемым коэффициентом усиления 1, 2, 4, 8 и 16 и точностью усиления 0,02 % (точность 12 разрядов); альтернативный вариант — ИС LF13006/7 фирмы National содержит резисторы и ключи на полевых транзисторах (но не сам усилитель) для установки коэффициента усиления от 1 до 128 (с коэффициентами 2) или от 1 до 100 (в последовательности 1-2-5); эти компоненты имеют точность коэффициента усиления 0,5 % (точность 8 разрядов).

В этой схеме, естественно, используется АЦП с последовательным приближением, поскольку при переключении от одного входа к другому важную роль играет быстродействие. Мы выбирали компоненты, стараясь минимизировать стоимость. Показанная схема будет стоить около 50 долл. по ценам на сегодня; основной вклад в стоимость вносит преобразователь — 35 долл.

9.25. 3 1/2-знаковый цифровой вольтметр

На рис. 9.65 представлена схема, в которой использованы преимущества двухстадийного интегрирования. Почти вся схема цифрового вольтметра, за исключением внешних компонентов для интегратора и генератора тактовых импульсов, точного источника опорного напряжения и устройства отображения, выполнена на однокристальной КМОП БИС. Схема ICL7107 при работе использует цикл автоматического обнуления и даже, более того, формирует все 7-сегментные мультиплексируемые выходные сигналы для непосредственного запуска 4-цифрового дисплея на светодиодах. Используя на входе внешний аттенюатор (или эталонный источник), вы можете формировать другие полномасштабные диапазоны напряжений. Метод двухстадийного преобразования очень удобен для работы цифрового вольтметра: он обеспечивает хорошую точность (включая автокоррекцию нуля) и подавление сетевых помех в приборах с усреднением при низкой стоимости. Стоимость используемого здесь преобразователя не превышает 20 долл.

Рис. 9.65. Однокристальный «3 1/2-знаковый» цифровой вольтметр с двухстадийным интегрированием. В — высокий; Н — низкий.

9.26. Кулонометр

Схема, показанная на рис. 9.66, представляет собой токовый интегратор с уравновешиванием заряда, или «кулонометр». Этот прибор можно использовать для измерения интегрального тока (полного заряда) за определенный интервал времени; он может найти применение в области электрохимии или для электрофореза. Начнем с нижнего левого угла, где интегрируемый ток протекает через мощный прецизионный 4-проводный резистор, образуя пропорциональное напряжение. ИМС2 является сравнительно недорогим (менее 5 долл.) прецизионным операционным усилителем с одним источником питания, с низким начальным сдвигом напряжения (80 мкВ макс.) и малым дрейфом сдвига во времени и по температуре (менее 2 мкВ на градус и 0,5 мкВ в месяц).

Рис. 9.66. Кулонометр (счетчик накопленного заряда). К.Т.  — контрольная точка интегратора; Пр — предохранитель; НК — неподключенный контакт; МЗЦ — младшая значащая цифра; СЗЦ — старшая значащая цифра.

Он формирует выходной ток, программируемый измеряемым током и запускает зарядоуравновешивающий интегратор на ИМСЗ. С помощью поворотного переключателя на входе выбирается один из пяти декадных пределов чувствительности, причем на любом диапазоне полному входному сигналу соответствует ток 200 мкА в коллекторе Τ 1 . Транзистор Τ 1 — это полевой МОП-транзистор (а не биполярный плоскостной транзистор), используемый для исключения ошибки управляющего тока.

Схема уравновешивания заряда является обычной дельта-сигма-схемой с полевым p-канальным транзистором Т 2 , работающим в режиме обогащения, который выдает порции заряда в соответствии с состоянием триггера ИМС5а после каждого такта синхронизации. ИМС5б работает как одновибратор, увеличивая состояние двоичной пересчетной схемы ИМС7 на каждом такте, в течение которого Т 2 находится в проводящем состоянии. Эта схема не подсчитывает какое-то определенное число тактов синхронизации, а просто накапливает до тех пор, пока не остановится. 4-разрядные счетчики ИМС9 и ИМС10 отслеживают общий заряд и управляют 8-разрядным дисплеем на светодиодах.

Если измеряемый ток превышает максимальный ток выбранного диапазона, то ток Т 2 не способен уравновесить ток Т 1 , даже если транзистор будет постоянно включен; при этом зафиксированное на счетчиках значение заряда будет содержать ошибку. ИМС4а проверяет условие выхода за пределы диапазона и зажигает светодиод, если выходной сигнал интегратора превышает фиксированный уровень опорного напряжения (который выбирается с запасом по отношению к нормальным условиям работы интегратора).

Некоторые подсчеты при проектировании. При проектировании схемы типа этой следует принять несколько решений. Например, большинство элементов КМОП-логики работают от напряжения +15 В для того, чтобы упростить коммутацию транзистора Т 2 . Поскольку 4-разрядные счетчики работают от напряжения +5 В, для сопряжения высокоуровневых сигналов КМОП-логики с уровнями счетчика использована схема 4049. ИМС4 работает от одного источника питания и ее выходной сигнал изменяется от нуля до +15 В, что упрощает подключение к ИМС5а.

Для того чтобы обеспечить достаточный диапазон работы транзистора Т 1 , опорное напряжение для интегратора и компаратора устанавливается с помощью стабилитрона D 2 на уровне +4,7 В; здесь подойдет самый простой стабилитрон, поскольку точность не требуется. Обратите внимание на то, что прецизионное опорное напряжение зависит от напряжения +4,7 В, использованного для масштабирования тока, коммутируемого в интеграторе. Рабочий ток источника REF-02 используется заодно и для смещения стабилитрона.

Ключ (Т 2 ) может оказать существенное влияние на общую точность прибора. Если он обладает слишком большой емкостью, то дополнительный заряд на его стоке приведет к погрешности. Схемное решение, использованное в предыдущем примере (коммутация на землю во время циклов отклонения тока), в данном случае не подойдет, поскольку ошибки напряжения сдвига ИМСЗ приведут к постоянной ошибке при очень малых токах. Используя однополюсный однонаправленный переключатель, показанный на схеме, можно увеличить динамический диапазон за счет некоторого снижения точности (что вызвано избыточным зарядом на стоке транзистора Т 2 , который интегрируется на каждом такте). Выбранный операционный усилитель интегратора представляет собой усилитель на полевых МОП-транзисторах с малыми токами смещения и поэтому пренебрежимо малой погрешностью по току (10 пА тип.). Поскольку операционные усилители на полевых транзисторах имеют, как правило, большие напряжения сдвига, чем усилители на биполярных транзисторах, такой выбор усилителя только обострит только что рассмотренную проблему динамического диапазона при использовании однополюсного ключа на два направления.

Динамический диапазон. Важно понимать, что этот прибор спроектирован в расчете на большой динамический диапазон с точным интегрированием тока, изменяющегося в процессе эксперимента на несколько порядков по величине. Именно по этой причине большое внимание уделяется схеме «переднего края» на прецизионном операционном усилителе с цепью подстройки сдвига, обеспечивающей прецизионную регулировку (обычная схема подстройки имеет, как правило, полный диапазон в несколько милливольт, что затрудняет точную подстройку сдвига на нуле). При подстройке ИМС2 на сдвиг 10 мВ или менее динамический диапазон прибора будет превышать 10000:1.

 

Схемы фазовой автоподстройки частоты

9.27. Введение

Система фазовой автоподстройки частоты (ФАПЧ) — это весьма важный и полезный узел, выпускаемый в виде отдельной интегральной схемы многими изготовителями. ФАПЧ содержит фазовый детектор, усилитель и генератор, управляемый напряжением (ГУН), и представляет собой сочетание в одном корпусе аналоговой и цифровой техники. Мы рассмотрим в дальнейшем применение ФАПЧ для тонального декодирования, демодуляции AM- и ЧМ-сигналов, умножения частот, частотного синтеза, импульсной синхронизации сигналов от шумящих источников (например, магнитной ленты) и восстановления «чистых» сигналов.

Существует традиционное предубеждение против ФАПЧ, связанное отчасти со сложностью реализации ФАПЧ на дискретных компонентах, а отчасти с сомнениями относительно ее надежной работы. С появлением недорогих и простых в применении устройств ФАПЧ первое препятствие для их широкого применения было преодолено. При правильном проектировании и корректном применении устройства ФАПЧ становятся такими же надежными элементами схемы, как операционные усилители или триггеры. На рис. 9.67 показана классическая схема ФАПЧ.

Рис. 9.67. Схема фазовой автоподстройки частоты.

Фазовый детектор — устройство, которое осуществляет сравнение двух входных частот, и формирует выходной сигнал, пропорциональный их фазовой разности (если, например, частоты различаются, то на выходе появится периодический сигнал на разностной частоте). Если fвх не равна f ГУН , то отфильтрованный и усиленный сигнал фазовой ошибки будет воздействовать на частоту ГУН, изменяя ее в направлении f вх . При нормальных условиях ГУН быстро производит «захват» частоты f вх , поддерживая постоянный фазовый сдвиг по отношению к входному сигналу.

Поскольку отфильтрованный выходной сигнал фазового детектора является сигналом постоянного тока, а управляющий входной сигнал ГУН — мерой входной частоты, совершенно очевидно, что ФАПЧ можно применять для ЧМ-детектирования и тонального декодирования (используемое при цифровой передаче по телефонным линиям). Выходной сигнал ГУН — это сигнал местной частоты, равной f вх , таким образом, ГУН выдает чистый опорный сигнал, который может содержать шумы. Поскольку выходной сигнал ГУН может иметь любую форму (треугольную, синусоидальную и т. п.), это позволяет формировать, допустим, синусоидальный сигнал, синхронизированный с последовательностью входных импульсов.

В одном из часто встречающихся применений ФАПЧ между выходом ГУН и фазовым детектором включают счетчик по модулю n, обеспечивая, таким образом, умножение входной эталонной частоты f вх . Это — идеальный метод генерации импульсов синхронизации на частотах, кратных частоте сетевого напряжения, для интегрирующих АЦП (двухстадийных и с уравновешиванием заряда) с полным подавлением помех на сетевой частоте и ее гармониках. Подобные схемы являются основными при построении частотных синтезаторов.

Компоненты ФАПЧ. Фазовый детектор. Существуют два основных типа фазовых детекторов, которые иногда называют тип 1 и тип 2. Фазовый детектор типа 1 предназначен для работы с аналоговыми сигналами или цифровыми сигналами прямоугольной формы, а детектор типа 2 — для работы по логическим переходам (фронтам). Типичным представителем детекторов типа 1 является детектор 565 (линейный), а детектор КМОП 4096 можно отнести и к тому, и к другому типу. Самым простым фазовым детектором является детектор типа 1 (цифровой), который представляет собой простой вентиль ИСКЛЮЧАЮЩЕЕ ИЛИ (рис. 9.68).

Рис. 9.68. Фазовый детектор (тип 1), выполненный по схеме Исключающее ИЛИ .

На рисунке показана зависимость выходного напряжения от разности фаз при использовании фильтра низких частот и прямоугольного входного колебания со скважностью 50 %. Фазовый детектор типа 1 (линейный) имеет аналогичную зависимость выходного напряжения от фазовой разности, хотя его схема представляет собой «четырехквадрантный умножитель», известный также под названием «балансный смеситель». Фазовые детекторы этого типа, обладающие высокой линейностью, находят широкое применение в синхронном детектировании, которое мы рассмотрим в разд. 15.15.

Фазовый детектор типа 2 обладает чувствительностью только по отношению к расположению фронтов сигнала и входного сигнала ГУН, как показано на рис. 9.69.

Рис. 9.69. Фазовый детектор (тип 2) опережения — отставания, работающий «по фронтам».

Схема фазового компаратора генерирует выходные импульсы либо отставания, либо опережения в зависимости от того, когда появляются логические переходы выходного сигнала ГУН, после или до переходов опорного сигнала соответственно. Ширина этих импульсов равна промежутку времени между соответствующими фронтами, как показано на рисунке. Во время действия этих импульсов выходная схема либо отводит, либо отдает ток, а в промежутках между импульсами находится в разомкнутом состоянии, формируя зависимость между выходным напряжением и разностью фаз, показанную на рис. 9.70.

Рис. 9.70.

Процесс абсолютно не зависит от скважности импульсов на входе в отличие от ситуации с рассмотренным ранее фазовым компаратором типа 1. Другой привлекательной особенностью этого фазового детектора является то, что импульсы на выходе полностью исчезают, когда два сигнала засинхронизированы. Это означает, что на выходе отсутствуют «пульсации», которые вызывают периодическую фазовую модуляцию в контуре, как это имеет место при использовании фазового детектора типа 1.

Сравним свойства фазовых детекторов двух основных типов.

Существует еще одно различие между этими двумя типами фазовых детекторов. Детектор типа 1 всегда генерирует выходное колебание, которое в дальнейшем должно фильтроваться с помощью фильтра контура регулирования (более подробно обсудим это позже). Таким образом, ФАПЧ с фазовым детектором типа 1 содержит контурный фильтр, работающий как фильтр нижних частот, сглаживающий логический выходной сигнал полной амплитуды. В таком контуре всегда присутствует некоторая остаточная пульсация и, следовательно, периодические фазовые изменения. В тех схемах, где ФАПЧ используется для умножения или синтеза частот, к выходному сигналу добавляются еще и «боковые полосы фазовой модуляции» (см. разд. 13.18).

Фазовый детектор типа 2, наоборот, генерирует выходные импульсы только тогда, когда между опорным сигналом и сигналом ГУН имеется фазовая разность. Поскольку в противном случае выход фазового детектора выглядит как разомкнутая цепь, конденсатор контурного фильтра работает как элемент запоминания напряжения, поддерживая напряжение, сохраняющее требуемую частоту ГУН. Если опорный сигнал «уходит» по частоте, то фазовый детектор генерирует последовательность коротких импульсов, заряжая (или разряжая) конденсатор до нового напряжения, необходимого для того, чтобы вновь вернуть ГУН в синхронизм.

Генераторы, управляемые напряжением . Важным компонентом ФАПЧ является генератор, частотой которого можно управлять, используя выходной сигнал фазового детектора. Некоторые ИМС ФАПЧ содержат ГУН (например, линейный элемент 565 и КМОП-элемент 4046). Кроме того, имеются отдельные ИМС ГУН, перечисленные в табл. 5.4. Интересный класс ГУН составляют элементы с синусоидальным выходом (8038, 2206 и т. п.), поскольку они позволяют генерировать чистое синусоидальное колебание, засинхронизированное с входным колебанием «страшного» вида. Следует упомянуть еще один класс ГУН, — «преобразователи напряжения в частоту», которые обычно проектируются с оптимальной линейностью; они имеют, как правило, скромную максимальную частоту (до 1 МГц) и вырабатывают импульсы с логическими уровнями (см. разд. 5.15).

Следует помнить о том, что частота ГУН не ограничивается скоростью срабатывания логических схем. Можно, например, использовать радиочастотные генераторы, настраиваемые с помощью варактора (диод с изменяемой емкостью) (рис. 9.71).

Рис. 9.71.

Продвигаясь в соответствии с этой идеей еще на один шаг, можно было бы даже использовать такой элемент, как отражательный клистрон, — микроволновый (гигагерцевый) генератор, с электрической настройкой за счет изменения напряжения на отражателе. Разумеется, ФАПЧ, использующая такие генераторы, потребует радиочастотный фазовый детектор.

Зависимость частоты от управляющего напряжения ГУН, используемого в ФАПЧ, может не обладать высокой линейностью, однако в случае большой нелинейности коэффициент усиления в контуре будет изменяться в соответствии с частотой сигнала и придется обеспечивать больший запас устойчивости.

9.28. Проектирование ФАПЧ

Замыкание контура регулирования. Фазовый детектор вырабатывает сигнал ошибки, соответствующий фазовому рассогласованию между входным и опорным сигналами. Частотой ГУН можно управлять, подавая на его вход соответствующее напряжение. Казалось бы, что здесь можно поступить также, как и в любом другом усилителе с обратной связью, вводя контур регулирования с некоторым коэффициентом передачи; мы поступали точно также в схемах с операционными усилителями.

Однако имеется одно существенное отличие. Ранее, регулируемая с помощью обратной связи величина совпадала с величиной, измеряемой с целью формирования сигнала ошибки или была по крайней мере ей пропорциональна. В усилителе напряжения, например, мы измеряли выходное напряжение и соответствующим образом подстраивали входное. В системах ФАПЧ осуществляется интегрирование; мы измеряем фазу, а регулируем частоту, но фаза является интегралом от частоты. За счет этого в контуре регулирования появляется фазовый сдвиг 90°.

Такой интегратор, включенный в контур обратной связи, существенным образом влияет на работу схемы — дополнительное запаздывание по фазе на 90° на частотах, где коэффициент усиления равен единице, вызывает возникновение самовозбуждения. Простое решение заключается в том, чтобы не включать в контур компоненты, которые дают дополнительное запаздывание по фазе, по крайней мере на тех частотах, где коэффициент усиления близок к единице. В конце концов операционные усилители имеют запаздывание по фазе 90° на большинстве частот своего диапазона, однако они превосходно работают. Это — один из подходов и он приводит к тому, что называется «контуром первого порядка». Блок-схема в этом случае выглядит точно также, как ранее приведенная блок-схема ФАПЧ без фильтра нижних частот.

Хотя контуры первого порядка во многих ситуациях очень удобны, они не обладают необходимыми свойствами «маховика», которые позволяют генератору, управляемому напряжением, сглаживать помехи и флуктуации входного сигнала. Более того, контур первого порядка не сохраняет постоянным фазовое соотношение между опорным сигналом и сигналом ГУН, так как выход фазового детектора непосредственно управляет ГУН. В «контур второго порядка» вводится дополнительная фильтрация на низкой частоте с целью предотвращения неустойчивости. Такой контур обладает свойством «маховика» и, кроме того, уменьшает «диапазон захвата» и увеличивает время захвата. К тому же, как будет показано ниже, при использовании фазовых детекторов типа 2 контур второго порядка гарантирует фазовую синхронизации при нулевой разности фаз между опорным сигналом и сигналом ГУН. Практически во всех системах применяют контуры второго порядка, поскольку в большинстве применений система ФАПЧ должна обеспечивать малые флуктуации фазы выходного сигнала, а также обладать некоторыми свойствами памяти или «маховика». Контуры второго порядка могут иметь высокий коэффициент передачи на низких частотах, что обеспечивает повышенную устойчивость (по аналогии с достоинствами высокого коэффициента усиления в усилителях с обратной связью). Вернемся к делу и рассмотрим применение ФАПЧ на примерах.

9.29. Пример разработки: умножитель частоты

Формирование частоты, кратной фиксированной входной частоте, является одним из наиболее распространенных применений ФАПЧ. В частотных синтезаторах частота выходного сигнала формируется за счет умножения частоты стабильного низкочастотного (допустим, 1 Гц) сигнала на целое число n; число n можно задавать в цифровом виде, т. е. вы получаете гибкий источник сигналов, которым можно управлять даже с помощью компьютера.

Можно использовать ФАПЧ в более прозаических системах, например, для того чтобы генерировать тактовую частоту, синхронизированную с некоторой другой эталонной частотой, которая уже имеется в приборе. Предположим, что мы хотим получить тактовые сигналы частотой 61440 Гц для двухстадийного АЦП. Такая частота обеспечивает производительность 7,5 измерений в секунду, причем на первой стадии (подъеме) потребуется 4096 периодов синхронизации (напомним, что в двухстадийном преобразовании используется постоянный временной интервал) и на второй стадии (разряд постоянным током) может потребоваться до 4096 периодов. Уникальная особенность схемы ФАПЧ заключается в том, что тактовую частоту 61440 кГц можно засинхронизировать с сетевой частотой 60 Гц (61440 = 60x1024), полностью подавив тем самым помехи на частоте 60 Гц, которые, как мы уже обсуждали в разд. 9.21, присутствуют на любом сигнальном входе преобразователя.

Начнем со стандартной схемы ФАПЧ, в которой между выходом ГУН и фазовым детектором включен счетчик-делитель на n (рис. 9.72).

Рис. 9.72. Блок-схема умножителя частоты.

На этой схеме для каждого функционального блока указан коэффициент передачи. Это понадобится нам для проведения расчетов по устойчивости. Обратите особое внимание на то, что фазовый детектор преобразует фазу в напряжение, а ГУН — напряжение в производную фазы по времени (т. е. частоту). Отсюда важное следствие — если фазу в самой нижней части схемы рассматривать как переменную, то ГУН будет действовать как интегратор. Фиксированное входное напряжение рассогласования приводит к линейно возрастающему фазовому рассогласованию на выходе ГУН. Фильтр нижних частот и делитель на n имеют коэффициенты передачи меньше единицы.

Устойчивость и фазовые сдвиги. На рис. 9.73 показаны диаграммы Боде, с помощью которых можно оценить устойчивость ФАПЧ второго порядка. ГУН работает как интегратор с характеристикой 1/f и запаздывающим фазовым сдвигом 90° (т. е. его характеристика пропорциональна 1/fω, а конденсатор заряжается от источника тока). Для того чтобы иметь приличный запас по фазе (разность между 180° и фазовым сдвигом на частоте, при которой общий коэффициент передачи контура равен 1), в фильтр нижних частот последовательно с конденсатором включают резистор для того, чтобы приостановить спад характеристики на некоторой частоте (с причудливым названием «нуль»).

Комбинация этих двух характеристик дает показанную на рисунке характеристику контура. До тех пор пока спад коэффициента передачи контура будет составлять 6 дБ/октава (в области единичного коэффициента передачи), контур будет устойчив. Это делается с помощью фильтра нижних частот по типу «опережение — отставание» с соответствующим образом выбранными свойствами (точно также, как компенсация опережения-отставания в операционных усилителях). Дальше вы увидите, как это делается.

Рис. 9.73. Диаграммы Боде ФАПЧ.

Расчет коэффициента передачи. На рис. 9.74 приведена схема ФАПЧ для синтезатора частоты 61440 Гц. Фазовый детектор и ГУН входят в состав КМОП ИМС ФАПЧ 4046. В этой схеме мы использовали вариант фазового детектора с запуском по фронту (в ИМС 4046 имеются оба варианта).

Рис. 9.74. Применения умножителя ФАПЧ для формирования тактовых сигналов, синхронных с частотой сети переменного тока.

Его выходной сигнал вырабатывается двумя КМОП-транзисторами, которые формируют насыщенные импульсы с уровнями U CC или 0 В. Фактически, это выход с тремя состояниями, как было изложено выше, поскольку он находится в состоянии высокого импеданса, за исключением интервала времени, когда действует импульс фазового рассогласования.

Минимальная и максимальная частоты ГУН, соответствующие управляющим напряжениям 0 В и U CC , устанавливаются подбором величин R 1 , R 2 и С 1 согласно некоторым схемным характеристикам. Выбранные нами величины показаны на рисунке. Следует отметить, что ИМС 4046 страдает «хроническим заболеванием» — повышенной чувствительностью к напряжению питания, поэтому проверяйте характеристики по паспортным данным. Остальные компоненты контура выбираются по стандартным для ФАПЧ процедурам.

После того как необходимый диапазон ГУН выбран, остается лишь произвести расчет фильтра нижних частот. Это очень ответственная часть. Начнем с того, что выпишем составляющие коэффициента передачи контура, учитывая каждую компоненту (табл. 9.7 и рис. 9.72).

Придерживайтесь одних и тех же единиц измерения; не переходите с f на ω, или, что еще хуже, с герц на килогерцы. Нам осталось определить только К ф . Сделаем это, записав общее выражение для коэффициента передачи контура, но не забывая, что ГУН — это интегратор,

Y вых = U2K ГУН dt

Общий коэффициент передачи контура равен

Теперь наступает этап выбора частоты, на которой коэффициент передачи контура должен проходить через единицу. Идея заключается в том, что частота единичной передачи выбирается достаточно высокой, чтобы контур мог должным образом отслеживать изменения входной частоты, но и достаточно низкой, чтобы обеспечить свойства «маховика» и сглаживать помехи и скачки входного сигнала.

Например, система ФАПЧ, предназначенная для демодуляции входных ЧМ-сигналов или декодирования последовательностей высокоскоростных тональных сигналов, должна иметь высокое быстродействие (для входных ЧМ-сигналов полоса пропускания контура должна соответствовать входному сигналу, т. е. равняться максимальной частоте модуляции, а для декодирования тональных сигналов время отклика должно быть меньше, чем продолжительность тонального сигнала). С другой стороны, контур, предназначенный для генерации фиксированной частоты, кратной некоторой стабильной и медленно меняющейся входной частоте, должен иметь низкую частоту единичной передачи. Это позволит уменьшить фазовый шум на выходе и сделать систему ФАПЧ нечувствительной к шумам и выбросам на входном сигнале. Будут едва заметны даже кратковременные пропадания входного сигнала, поскольку напряжение, запоминаемое на конденсаторе фильтра, заставит ГУН продолжать формирование той же самой выходной частоты.

В данном случае мы выбрали частоту единичной передачи f 2 , равной 2 Гц или 12,6 рад в секунду. Это значительно ниже опорной частоты и вряд ли можно ожидать, что реальные отклонения сетевой частоты превысят эту величину (следует учитывать, что электроэнергия вырабатывается крупными генераторами с огромной механической инерцией). По негласному правилу точку излома характеристики фильтра нижних частот (ее «нуль») следует выбрать на частоте по крайней мере в 3–5 раз ниже, чтобы обеспечить достаточный запас по фазе. Вспомните, что фазовый сдвиг простой RC-цепи меняется от 0 до 90° в диапазоне частот от 0,1 до 10 относительно частоты — 3 дБ («полюс»), при которой сдвиг равен 45°. Выберем частоту нуля f 1 равной 0,5 Гц, или 3,1 рад/с (рис. 9.75).

Рис. 9.75.

Точка излома f 1 определяет постоянную времени R 4 C 2 : R 4 C 2 = 1/2πf 1 . Попробуем взять С 2 = 1 мкФ и R4 = 330 кОм. Осталось лишь выбрать R 3 так, чтобы коэффициент передачи контура был равен 1 на частоте f 2 . Полученный результат: R 3 = 4,3 МОм.

Упражнение 9.5. Покажите, что при выбранных компонентах фильтра единичный коэффициент передачи контура получается действительно на частоте f 2 = 2 Гц.

Иногда параметры фильтра могут оказаться не совсем подходящими и вам придется подстраивать их или смещать частоту единичной передачи. Полученные значения соответствуют ФАПЧ на КМОП-элементах (типовой входной импеданс ГУН составляет 1012 Ом). Для ФАПЧ на биполярных транзисторах (например, типа 4044) возможно потребуется согласование импедансов с помощью внешнего операционного усилителя.

В этом примере для упрощения фильтра мы использовали фронтовой (типа 2) фазовый детектор. На практике возможно это и не самое лучшее решение для ФАПЧ, синхронизированной с сетевой частотой 60 Гц, поскольку сигналы с частотой 60 Гц содержат сравнительно высокий уровень шума. При тщательном выборе аналоговой входной схемы (например, после фильтра нижних частот включить триггер Шмитта) можно добиться хорошей работы схемы; в противном случае следует использовать фазовый детектор типа 1 со схемой ИСКЛЮЧАЮЩЕЕ ИЛИ.

Метод проб. Для некоторых людей искусство схемотехники заключается в том, чтобы подбирать компоненты фильтра до тех пор, пока контур не заработает. Если вы относитесь к их числу, то мы вынуждены просить вас пересмотреть свои взгляды. Мы представили детальный расчет контура ФАПЧ потому, что, как мы подозреваем, плохая репутация ФАПЧ — это следствие как раз такого подхода. Тем не менее не можем удержаться, чтобы не дать совет фанатикам метода проб и ошибок: R 3 C 2 определяет время сглаживания контура, a R 4 /R 3 — демпфирование, т. е. отсутствие перегрузки при скачкообразном изменении частоты. Можете начинать с R4 = 0,2R 3 .

Формирование тактовых импульсов для видеотерминала. Другим полезным применением высокочастотного генератора, синхронизированного с сетевой частотой 60 Гц, является формирование видеосигналов для буквенно-цифрового терминала компьютера. Стандартная скорость смены изображения в терминалах составляет 30 кадров в 1 с. Если отсутствует точная синхронизация частоты синхроимпульсов по вертикали и сетевой частоты, то в связи с неизбежными сетевыми наводками изображение будет испытывать медленную «боковую качку». Система ФАПЧ превосходно решает эту проблему. Высокочастотный ГУН (около 15 МГц) синхронизируется заранее определенной частотой, кратной 60 Гц; путем деления этой тактовой частоты можно последовательно сформировать точки каждого отображаемого символа, число символов в каждой строке и число строк, в каждом кадре.

9.30. Захват и слежение в системе ФАПЧ

Очевидно, что, войдя в синхронизм, система будет в нем оставаться до тех пор, пока входной сигнал не выйдет за пределы допустимого диапазона сигналов обратной связи. Интересно знать, как система ФАПЧ входит в синхронизм в первый раз. Ведь начальное частотное рассогласование вызывает появление периодического выходного сигнала на фазовом детекторе разностной частоты. После фильтра нижних частот этот сигнал уменьшается до медленно меняющихся колебаний небольшой амплитуды, но никак не является хорошим постоянным сигналом рассогласования.

Процесс захвата. Ответ на этот вопрос не так уж и прост. Контур первого порядка всегда будет синхронизироваться, поскольку там отсутствует ослабление сигнала рассогласования на низкой частоте. Синхронизация контура второго порядка зависит от типа фазового детектора и полосы пропускания фильтра нижних частот. Кроме того, фазовый детектор по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ (типа 1) имеет ограниченный диапазон захвата, зависящий от постоянной времени фильтра (это обстоятельство можно использовать, если вы хотите сделать систему ФАПЧ, синхронизация которой происходит в пределах определенного частотного диапазона).

Процесс захвата происходит следующим образом: когда сигнал фазового рассогласования приближает частоту ГУН к опорной частоте, его изменения становятся более медленными и наоборот. Сигнал рассогласования поэтому является асимметричным и меняется более медленно в той части цикла, в течение которой fГУН ближе подходит к f оп . В результате появляется ненулевая средняя компонента, т. е. постоянная компонента, которая и вводит ФАПЧ в синхронизм. Если внимательно посмотреть на управляющее напряжение ГУН в процессе захвата, то можно увидеть что-то похожее на сигнал, показанный на рис. 9.76. Последний всплеск на этом сигнале имеет весьма интересную причину. Даже в том случае, когда частота ГУН достигает требуемого значения (об этом можно судить по правильному управляющему напряжению ГУН), в системе не обязательно происходит захват (из-за несоответствия фазы). Это и может быть причиной всплеска. Каждый процесс захвата индивидуален и каждый раз он выглядит по-разному!

Рис. 9.76.

Полоса захвата и слежения. При использовании фазового детектора по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ (тип 1) полоса захвата ограничена постоянной времени фильтра нижних частот. В этом есть определенный смысл, так как, если различие по частоте велико, сигнал рассогласования будет ослабляться фильтром настолько, что контур никогда не сможет осуществить захват. Очевидно, что увеличение постоянной времени фильтра уменьшает полосу захвата, так как это приводит к пониженному коэффициенту передачи контура. Оказывается, что фронтовой фазовый детектор не имеет подобного ограничения. Полоса слежения для обоих типов детекторов определяется диапазоном управляющих напряжений ГУН.

9.31. Некоторые примеры применения систем ФАПЧ

Мы уже упоминали об использовании ФАПЧ для умножения частот. Целесообразность такого применения, как это следует из рассмотренного примера, настолько очевидно, что сомнений в применении ФАПЧ не должно быть. В простых умножителях (например, для генерации более высокой тактовой частоты в цифровых системах) не возникает никаких проблем, связанных с помехами на опорном сигнале, поэтому здесь можно использовать системы первого порядка.

Рассмотрим еще несколько примеров применения ФАПЧ, интересных с точки зрения разнообразия областей использования.

Детектирование ЧМ-сигналов. При частотной модуляции кодирование информации осуществляется путем изменения частоты несущего сигнала пропорционально изменению информационного сигнала. ЧМ и другие виды модуляции мы рассмотрим в гл. 13 более подробно. Существуют два метода восстановления информации из модулированного сигнала с помощью фазовых детекторов или систем ФАПЧ. Под термином «детектирование» мы будем понимать процесс демодуляции.

Самым простым методом является синхронизация системы ФАПЧ приходящим сигналом. Напряжение, управляющее частотой ГУН, пропорционально входной частоте и, следовательно, является требуемым модулирующим сигналом (рис. 9.77).

Рис. 9.77. ЧМ-дискриминатор с ФАПЧ.

Полосу пропускания фильтра в такой системе можно сделать достаточно широкой для того, чтобы пропустить модулирующий сигнал, т. е. время реакции ФАПЧ должно быть меньше, чем минимальное время отклонения восстанавливаемого сигнала. Как показано в гл. 13, сигнал, используемый в ФАПЧ, не должен быть реально передаваемым колебанием; он может быть сигналом «промежуточной частоты» (ПЧ), формируемым в приемной системе с помощью смесителя при преобразовании. Для того чтобы избежать в этом методе ЧМ-детектирования искажений на звуковых частотах, следует обеспечить высокую линейность ГУН.

Второй метод ЧМ-детектирования использует фазовый детектор, но не в составе контура ФАПЧ. Принцип реализации этого метода показан на рис. 9.78.

Рис. 9.78. Квадратурное ЧМ-детектирование.

Входной сигнал и его копия со сдвинутой фазой подаются на фазовый детектор, который вырабатывает некоторое входное напряжение. Фазосдвигающая схема должна быть так хитроумно сделана, чтобы фазовый сдвиг линейно зависел от частоты в диапазоне входных частот (это достигается обычно с помощью резонансных LC-схем). Выходное напряжение будет зависеть, таким образом, от входной частоты. Этот метод называют «двойным балансным квадратурным ЧМ-детектированием». Он применяется во многих ИМС усилителей/детекторов промежуточной частоты (например, САЗ 189).

Детектированием АМ-сигналов. Требуется: способ формирования выходного сигнала, пропорционального мгновенной амплитуде высокочастотного сигнала. Обычно используется выпрямление (рис. 9.79).

Рис. 9.79. АМ-детектирование.

На рис. 9.80 показан весьма своеобразный метод на основе ФАПЧ («гомодинный прием»).

Рис. 9.80. Гомодинное детектирование.

ФАПЧ вырабатывает прямоугольные сигналы с частотой, совпадающей с модулированной несущей. С помощью умножения входного сигнала на это прямоугольное колебание формируется выпрямленный двухполупериодный сигнал; остается только пропустить его через фильтр нижних частот для того, чтобы удалить остатки несущей и выделить огибающую. Если в системе ФАПЧ используется фазовый детектор по схеме ИСКЛЮЧАЮЩЕГО ИЛИ, то выходной сигнал сдвигается на 90° относительно опорного сигнала. В связи с этим на пути сигнала к умножителю следует ввести фазовый сдвиг 90°.

Синхронизация импульсов и восстановление сигнала. При цифровой передаче сигналов по каналу связи передается битовая последовательность, содержащая информацию. Информационные сигналы могут быть по своей природе цифровыми или аналоговыми сигналами, представленными в цифровом виде, как, например, в «импульсно-кодовой модуляции» (ИКМ, см. разд. 13.20). Очень похожей ситуацией является декодирование цифровой информации, считываемой с магнитной ленты или диска. В обоих случаях могут появляться помехи и изменения частоты следования импульсов (например, за счет растягивания ленты), поэтому желательно иметь чистый сигнал синхронизации на той же частоте, что и считываемые информационные сигналы. Система ФАПЧ будет работать здесь превосходно. Фильтр нижних частот исключил бы только дрожание и помехи на входной синхронизирующей последовательности, но медленные изменения скорости ленты остались бы.

В качестве другого примера синхронизации сигналов можно взять схему из разд. 8.31, в которой для получения превосходного синусоидального сигнала используется точный сигнал «60 Гц», сформированный цифровым способом (в действительности его частота находится где-то между 50 и 70 Гц). Для того чтобы преобразовать прямоугольное колебание в синусоидальное мы использовали в этой схеме 6-звенный фильтр нижних частот Баттерворта. Здесь заманчиво было бы использовать ИМС ГУН с синусоидальным выходным сигналом (например, ИМС 8038), работающей синфазно с точным прямоугольным сигналом. Это гарантировало бы постоянную амплитуду синусоидального сигнала, обеспечило широкий диапазон изменения частоты и позволило бы избавиться от «дрожания» на выходе умножителя частоты.

LC-генератор. На рис. 9.81 показан пример системы ФАПЧ, в которой использован LC-генератор и цифровое сравнение по фазе на более низкой частоте.

Рис. 9.81. ФАПЧ с варакторной настройкой.

При этом потребовался стабильный прецизионный источник частоты 14,4 МГц, работающий синхронно с задающим генератором 10 МГц. Варактор (настроечный диод, см. разд. 5.18) осуществляет точную настройку LC-генератора на полевом транзисторе в соответствии с выходным сигналом фазового детектора типа 2 (`НС4046). Обратите внимание на то, что диапазон настройки варактора 18–30 пФ (от 5 до 1 В соответственно) обеспечивает изменение параллельной емкости LC-цепи в пределах 2 пФ (от 8,2 до 10 пФ), что дает диапазон настройки ±0,5 % частоты генератора. Мы намеренно сделали диапазон настройки узким для того, чтобы обеспечить хорошую стабильность генератора.

Частоты опорного и выходного сигналов с помощью цифровых средств делятся до частоты 400 кГц, на которой фазовый детектор работает лучше. Заметьте, что для преобразования синусоидального сигнала в сигнал с логическими уровнями используется вентиль типа `НС со смещением на логическом пороге с помощью резистора обратной связи большого номинала. Обратите внимание также на выходную ступень обычного эмиттерного повторителя (с ограничением по току), предназначенную для работы на 50-омный кабель, как показано на рис. 9.42. При настройке схемы ферритовый сердечник генератора подстраивается до получения полного размаха на выходе фильтра фазового детектора.

Фирма Motorola выпускает прекрасную серию недорогих ИМС «ФАПЧ-синтезатор частоты» МС145145-59, которые содержат фазовые детекторы типа 2 и делители по модулю n и для входного и для опорного сигналов; оба делителя программируются, точность 14 разрядов и более. Держите эти схемы на примете на тот случай, когда вам потребуется синтезировать какие-нибудь необычные частоты.

 

Псевдослучайные двоичные последовательности и генераторы шума

9.32. Цифровые методы генерации шума

Псевдослучайные двоичные последовательности являют собой пример гармоничного сочетания аналоговой и цифровой техники. Оказывается, можно необычайно просто генерировать последовательности бит (или слов), с хорошими стохастическими свойствами, т. е. последовательности, которые будут обладать такими же вероятностными и корреляционными свойствами, какими обладает идеальная машина для подбрасывания монеты. Поскольку эти последовательности генерируются стандартными элементами детерминированной логики (если быть точнее, регистрами сдвига), получающиеся двоичные последовательности на самом деле являются предсказуемыми и повторяемыми, хотя любой фрагмент такой последовательности во всех отношениях выглядит как случайная последовательность 0 и 1. Всего с помощью нескольких ИМС можно получить последовательности, которые тянутся буквально на столетия без повторения; это очень простой и привлекательный способ получения цифровых двоичных последовательностей или аналоговых сигналов шума.

Действительно, существует даже недорогая ИМС «цифровой источник шума», выпускаемая в корпусе мини-DIP (ММ5437 фирмы National), а генераторы шума на регистрах сдвига входят в состав технических средств многих ИМС, создающих звуковые эффекты.

Аналоговый шум. С помощью простой фильтрации нижних частот псевдослучайной двоичной последовательности (ПСП) можно получить гауссов белый шум с ограниченной полосой, т. е. напряжение шума с плоским энергетическим спектром до некоторой частоты среза (более подробно о шумах см. гл. 7). С другой стороны, с помощью взвешенного суммирования содержимого регистров сдвига (с использованием набора резисторов) можно осуществить цифровую фильтрацию. С помощью этого способа можно легко получить плоский спектр шума в пределах нескольких мегагерц. Позже вы увидите, что источники аналогового шума, синтезированные цифровым способом, имеют целый ряд преимуществ перед чисто аналоговыми способами, использующими шумящие диоды или резисторы.

Другие области применения. Кроме таких очевидных применений, как аналоговые или цифровые источники шума, ПСП полезны в целом ряде других областей, ничего общего не имеющих с шумами. Их можно использовать для шифрования сообщений или данных, поскольку идентичный генератор ПСП на приемном конце дает ключ к шифру. ПСП широко используются в кодах, обнаруживающих и исправляющих ошибки, так как они позволяют видоизменить блоки данных таким образом, что правильные кодовые сообщения будут находится друг от друга на максимально возможном «расстоянии Хэмминга» (измеряется числом позиций с разными данными). Обладая хорошими автокорреляционными свойствами, они являются идеальными как коды для радиолокационных систем, в которых ответный сигнал сравнивается (точнее взаимно коррелируется) с передаваемой битовой последовательностью. Их можно использовать даже как компактные делители по модулю n.

9.33. Последовательности, генерируемые регистрами сдвига с обратными связями

Наиболее известным (и самым простым) генератором ПСП является регистр сдвига с обратной связью (рис. 9.82).

Рис. 9.82. Генератор псевдослучайной двоичной последовательности.

Регистр сдвига длины m работает от тактовых импульсов с частотой f 0 . Входная последовательность формируется с помощью вентиля ИСКЛЮЧАЮЩЕЕ ИЛИ, на вход которого поступают сигналы от n-го и последнего (m-го) разрядов регистра сдвига. Такая схема проходит через некоторое множество состояний (совокупность состояний регистра сдвига после каждого тактового импульса), которые после К тактов начинают повторяться, т. е. последовательность состояний является циклической с периодом К.

Максимальное число возможных состояний m-разрядного регистра равно К = 2m , т. е. числу m-битовых двоичных комбинаций. Однако состояние «все нули» является «тупиком» для этой схемы, поскольку на выходе вентиля ИСКЛЮЧАЮЩЕЕ ИЛИ появляется 0, который вновь поступает на вход схемы. Таким образом, последовательность максимальной длины, которую может сформировать данная схема, содержит 2m — 1 бит. Оказывается, что такую последовательность максимальной длины можно получить только при правильном выборе m и n, причем полученная последовательность будет псевдослучайной. (Критерием максимальной длины является неприводимость и примитивность многочлена 1 + х n + хm над полем Галуа). В качестве примера рассмотрим 4-разрядный регистр сдвига с обратной связью, показанный на рис. 9.83.

Рис. 9.83.

Начиная с состояния 1111 (можно было бы начать с любого другого состояния, за исключением 0000), можно записать состояния в порядке их следования:

Мы записали эти состояния как 4-разрядные числа QAQBQCQD. Здесь 15 = (24 - 1) различных состоянии, затем они повторяются вновь. Значит, это регистр максимальной длины.

Упражнение 9.6 . Покажите, что 4-разрядный регистр с обратной связью от второго и четвертого разрядов не является регистром максимальной длины. Сколько существует различных последовательностей? Сколько состояний в каждой последовательности?

Отводы обратной связи. Сдвиговые регистры максимальной длины можно выполнить с числом отводов в цепи обратной связи больше 2 (в этом случае используются несколько вентилей ИСКЛЮЧАЮЩЕЕ ИЛИ, соединенных в виде стандартного дерева четности, т. е. в виде суммы по модулю 2 нескольких разрядов). На самом деле, для некоторых значений m регистр максимальной длины можно сделать только в том случае, когда число отводов будет больше 2. Ниже перечислены все значения m до 40, для которых регистр максимальной длины реализуется с использованием ровно двух отводов, т. е. с обратной связью от n-го и m-го (последнего) разрядов по типу регистра, приведенного ранее.

Представлены также значения n и длина цикла К по числу тактов. В некоторых случаях подойдут и другие значения n и во всех случаях n можно заменить на m — n; таким образом, для предыдущего примера можно использовать отводы n = 1 и m = 4.

Длина регистров сдвига обычно кратна 8 и, возможно, как раз такую длину вы захотите использовать. В этих случаях может потребоваться более двух отводов. Вот эти магические числа:

В ИМС ММ5437 (генератор шума) используется 23-разрядный регистр с отводом от 18-го разряда. Внутренний тактовый генератор обеспечивает работу на частоте около 160 кГц; схема генерирует белый шум в диапазоне до 70 кГц (затухание 3 дБ) с временем цикла около 1 мин. На рис. 7.61 эта ИМС была использована в схеме генератора «розового шума». При использовании 33-разрядного регистра, работающего на частоте 1 МГц, время цикла будет около 2 ч. Время цикла 100-разрядного регистра, работающего на частоте 10 МГц, будет в миллион раз больше, чем возраст Вселенной!

Свойства последовательностей максимальной длины. Псевдослучайную последовательность двоичных символов мы получаем путем тактирования одного из таких регистров и наблюдения последовательных выходных двоичных символов. Выход можно взять от любого разряда регистра; обычно в качестве выхода используют последний (m-й) разряд. Последовательность максимальной длины обладает следующими свойствами:

1. В полном цикле (К тактов) число «1» на единицу больше, чем число «0». Добавочная «1» появляется за счет исключения состояния «все нули». Это свидетельствует о том, что «орлы» и «решки» равновероятны (дополнительная «1» большой роли не играет; 17-разрядный регистр будет вырабатывать 65 536 «1» и 65 535 «0» за один цикл).

2. В одном цикле (К тактов) половина серий из последовательных «1» имеет длину 1, одна четвертая серий — длину 2, одна восьмая — длину 3 и т. д. Такими же свойствами обладают и серии из «0» с учетом пропущенного «0». Это говорит о том, что вероятности «орлов» и «решек» не зависят от исходов предыдущих «подбрасываний» и поэтому вероятность того, что серия из последовательных «1» или «0» закончится при следующем подбрасывании равна 1/2 (вопреки обывательскому пониманию «закона о среднем).

3. Если последовательность полного цикла (К тактов) сравнить с этой же последовательностью, но циклически сдвинутой на любое число символов n (n не является нулем или кратным К), то число несовпадений будет на единицу больше, чем число совпадений. Научно выражаясь, автокорреляционная функция этой последовательности представляет собой дельта-функцию Кронекера при нулевой задержке и равна — 1/К при любой другой задержке. Отсутствие «боковых лепестков» автокорреляционной функции — это как раз то свойство, которое делает ПСП очень полезными в радиолокационных системах.

Упражнение 9.7. Покажите, что последовательность, полученная с помощью 4-разрядного регистра сдвига (с отводами n = 2, m = 4), удовлетворяет этим свойствам. В качестве «выхода» возьмите Q Α : 100010011010111.

9.34. Формирование аналогового шума с использованием последовательностей максимальной длины

Преимущества шума, полученного цифровым способом. Как ранее уже отмечалось, цифровой выход регистра сдвига с обратной связью, вырабатывающего последовательность максимальной длины, можно преобразовать в белый шум с ограниченной полосой, используя фильтр нижних частот, частота среза которого существенно ниже тактовой частоты регистра. Прежде чем вдаваться в детали, покажем некоторые преимущества аналогового шума, полученного цифровым способом. Помимо всего прочего, при таком подходе появляется возможность генерировать шум с заданными спектром и амплитудой с подстройкой полосы (путем подстройки тактовой частоты), используя надежные и простые в обращении цифровые схемы.

Здесь отсутствуют нестабильность генераторов на шумящих диодах, проблемы взаимовлияния и помех, которые не дают покоя чувствительным маломощным аналоговым схемам диодных или резисторных генераторов шума. Наконец, цифровые схемы генерируют повторяемый «шум»; если его отфильтровать с помощью взвешенного цифрового фильтра (более подробно об этом несколько позже), то можно получить повторяемые колебания шума, независящие от тактовой частоты.

9.35. Энергетический спектр последовательности, сформированной при помощи регистра сдвига

Спектр выходного сигнала, генерируемого регистром сдвига максимальной длины, составляют колебания шума от частоты повторения всей последовательности f такт /K до тактовой частоты и выше. До частоты 12 % от тактовой спектр имеет плоскую часть с неравномерностью ±0,1 дБ, затем наблюдается быстрое падение до уровня —0,3 дБ на частоте 44 % /такт. Таким образом, фильтр нижних частот с частотой среза в верхней области 5-10 % от тактовой частоты будет преобразовывать выходной сигнал регистра сдвига в аналоговое напряжение шума с ограниченной полосой. Для этой цели достаточен даже простой RC-фильтр, хотя, если возникает необходимость в точной полосе шума, то желательно использовать активные фильтры с крутой характеристикой на частоте среза (см. гл. 5).

Для того чтобы эти утверждения звучали более убедительно, обратимся к выходному сигналу регистра сдвига и его спектру. Обычно желательно исключить постоянную составляющую в цифровом сигнале, формируя выходной сигнал, в котором «1» соответствует напряжение +а В, а «0» — а В (рис. 9.84).

Рис. 9.84.

Это можно легко сделать с помощью двухтактного транзисторного каскада, показанного на рис. 9.85.

Рис. 9.85. Прецизионная биполярная выходная ступень с низким Z вых .

Можно также использовать МОП-транзисторы, схемы стабилизации напряжения с фиксирующими диодами, быстродействующий операционный усилитель с регулировкой тока постоянной составляющей в точке суммирования или КМОП-ключ `4053, работающий от ±а В, с двумя входами, подключенными к источникам питания.

Как мы отмечали выше, автокорреляционная функция последовательности символов на выходе содержит один пик. Если состояния на выходе представить числами +1 и —1, то цифровая автокорреляционная функция будет иметь вид, показанный на рис. 9.86; (цифровая автокорреляция — это сумма произведений соответствующих разрядов при сравнении последовательности двоичных символов с ее сдвинутой копией). Не путайте ее с непрерывной автокорреляционной функцией, которую рассмотрим несколько позже.

Рис. 9.86. Дискретная автокорреляционная функция для полного цикла максимальной последовательности.

Функция на этом графике определена только для сдвигов, соответствующих целому числу тактов. Для всех ненулевых сдвигов и сдвигов, не кратных общему периоду К, автокорреляционная функция постоянна и имеет значение — 1 (поскольку в последовательности есть дополнительная 1); по сравнению со значением функции при нулевом сдвиге (К) величина —1 пренебрежимо мала.

Если же неотфильтрованный выход регистра сдвига рассматривать как аналоговый сигнал (принимающий только два значения +а и — а), то нормализованная автокорреляционная функция будет, как показано на рис. 9.87, непрерывной. Другими словами, при сдвигах более чем на один такт вправо и влево корреляция между значениями сигнала полностью отсутствует.

Рис. 9.87. Непрерывная автокорреляционная функция для полного цикла максимальной последовательности.

Энергетический спектр неотфильтрованного сигнала на выходе регистра сдвига можно получить по автокорреляционной функции, используя стандартные математические средства. В результате получаются равноудаленные серии пичков (дельта-функций), начинающихся с частоты повторения всей последовательности f такт /K и затем идущих через равные интервалы f такт /K. То, что спектр состоит из совокупности дискретных спектральных линий, отражает тот факт, что последовательность время от времени (периодически) повторяется. Пусть вас не удивляет странный вид спектра; он будет выглядеть непрерывным при любых изменениях и приложениях, которые занимают время, меньшее чем время цикла регистра. Огибающая спектра неотфильтрованного сигнала на выходе регистра показана на рис. 9.88. Она пропорциональна квадрату функции (sin х)/х. Обратите внимание на одно необычное свойство-на тактовой частоте и ее гармониках энергия шума равна нулю.

Рис. 9.88. Энергетический спектр неотфильтрованного сигнала на выходе регистра сдвига.

Напряжение шума. При генерации аналогового шума используется, разумеется, только часть низкочастотной области спектра. Оказывается, что удельную мощность шума на герц несложно выразить через половинную амплитуду а и тактовую частоту f такт . Мощность, выраженная через среднеквадратичное напряжение шума, будет

Это относится к нижней части спектра, т. е. к той части, которая обычно используется (для того чтобы определить плотность мощности в любой части спектра, можно использовать огибающую).

Предположим, например, что регистр сдвига максимальной длины работает на частоте 1,0 МГц и организован таким образом, что выходное напряжение изменяется от +10,0 до —10,0 В. Выходной сигнал пропускается через RC-фильтр нижних частот с затуханием 3 дБ на частоте 1 кГц (рис. 9.89).

Рис. 9.89. Простой источник псевдослучайного шума.

Можно точно вычислить среднеквадратичное напряжение шума на выходе. Из предыдущего выражения мы знаем, что среднеквадратичное напряжение на выходе преобразователя уровней равно 14,14 мВ/Гц1/2. Из разд. 7.21 мы знаем также, что полоса шума НЧ-фильтра составляет (π/2) (1,0 кГц) или 1,57 кГц. Поэтому выходное напряжение шума будет равно U cp.кв = 0,01414·(1570)1/2 = 560 мВ, а его спектр будет соответствовать низкочастотному RС-фильтру.

9.36. Низкочастотная фильтрация

Аналоговая фильтрация. Полезный спектр шума, создаваемого генератором псевдослучайной последовательности, простирается от низкочастотной границы, обратной периоду повторения (f такт /K), до высокочастотной границы, равной примерно 20 % от тактовой частоты (на этой частоте мощность шума на герц падает на 0,6 дБ).

Простая низкочастотная фильтрация с использованием RС-звеньев, как показано в предыдущем примере, равнозначна установке точки 3 дБ намного ниже тактовой частоты (например, ниже 1 % f такт ). Для того чтобы использовать часть спектра более близкую к тактовой частоте, желательно применить фильтры с более крутым срезом, например фильтры Баттерворта или Чебышева. В этом случае плоскость результирующего спектра будет определяться параметрами фильтра, которые должны быть измерены, поскольку отклонения в параметрах могут вызывать колебания коэффициента передачи в полосе пропускания. С другой стороны, если требуется точное значение напряжения шума на Гц-1/2, то необходимо измерить реальный коэффициент передачи фильтра по напряжению.

Цифровая фильтрация. Недостаток аналоговой фильтрации заключается в том, что если тактовая частота изменяется в несколько раз, то требуется подстройка частоты среза фильтра. В тех случаях, где это необходимо, изящное решение дает цифровая фильтрация, которая осуществляется с помощью взвешенной аналоговой суммы последовательных выходных разрядов (нерекурсивная цифровая фильтрация). С ее помощью эффективная частота среза подстраивается под изменение тактовой частоты. Кроме того, цифровая фильтрация позволяет спуститься до предельно низких частот среза (доли герца), где аналоговая фильтрация становится практически беспомощной.

Для того чтобы осуществить взвешенное суммирование одновременно нескольких последовательных выходных разрядов, можно просто воспользоваться различными параллельными выходами разрядов регистра сдвига и использовать резисторы различного номинала, подключенные к суммирующей точке операционного усилителя. Для НЧ-фильтра весовые коэффициенты должны быть пропорциональны (sin x)/x; обратите внимание, поскольку весовые коэффициенты могут быть обоих знаков, потребуется инвертирование некоторых уровней. Так как в этой схеме не используются конденсаторы, выходной сигнал будет состоять из набора дискретных уровней выходного напряжения.

Используя весовую функция для большого числа разрядов последовательности, можно улучшить приближение к гауссову шуму. Более того, в этом случае аналоговый выходной сигнал становится фактически непрерывным сигналом. По этим причинам желательно использовать как можно больше выходов регистра сдвига, используя в случае необходимости дополнительные ступени регистра сдвига, включенные в обратную связь с вентилем ИСКЛЮЧАЮЩЕЕ ИЛИ. Как и ранее, для задания стабильных цифровых уровней напряжения следует использовать резисторную «подвеску» к питанию или КМОП-ключи (для этих целей КМОП-логика является идеальным решением, поскольку выходы при этом точно соответствуют U CC и земле).

Схема, показанная на рис. 9.90, генерирует псевдослучайный аналоговый шум, полосу которого можно менять с использованием рассмотренного способа в огромном диапазоне.

Рис. 9.90. Лабораторный генератор шума с широким частотным диапазоном.

Сигнал кварцевого генератора с частотой 2,0 МГц поступает на 24-разрядный программируемый делитель 14536, который формирует тактовую частоту от 1,0 МГц до 0,12 Гц с коэффициентом деления кратным 2. 32-разрядный регистр сдвига охвачен обратной связью от 31- и 18-го разрядов и генерирует последовательность максимальной длины с миллиардом состояний (на максимальной тактовой частоте полный цикл регистра проходит за полчаса). Здесь мы использовали взвешенное суммирование с функцией (sin x)/x на 32 последовательных разрядах последовательности. Элементы Y 1 и Y 2 усиливают инвертированные и неинвертированные выходы соответственно и запускают дифференциальный усилитель Y 3 . Коэффициенты усиления выбираются таким образом, чтобы сформировать на 50-омной нагрузке напряжение 1,0 В ср. кв. без постоянной составляющей (2,0 В ср. кв. на холостом ходу). Обратите внимание на то, что эта амплитуда шума не зависит от тактовой частоты, т. е. от общей полосы. Такой цифровой фильтр имеет частоту среза на 0,05 f такт и формирует спектр белого шума от полосы постоянный ток ÷ 50 кГц (максимальная тактовая частота) до полосы постоянный ток ÷ 0,006 Гц (минимальная тактовая частота) на 24 диапазонах. Схема вырабатывает выходной сигнал от +1,0 до -1,0 В. Относительно этой схемы можно сделать несколько важных замечаний.

Обратите внимание на то, что в этой схеме в обратной связи используется инвертирующий вентиль ИСКЛЮЧАЮЩЕЕ ИЛИ, поэтому инициализацию регистра можно осуществить простым обнулением. Использование инверсии входных последовательных сигналов исключает состояние «все единицы» (а не «все нули» как при использовании обычного вентиля ИСКЛЮЧАЮЩЕЕ ИЛИ), но все другие свойства остаются в силе.

Взвешенное суммирование конечного числа битов не может сформировать настоящий гауссов шум из-за ограничения по амплитуде пика. Можно показать, что выходная амплитуда пика (на 50 Ом) составляет ±4,34 В, что дает коэффициент формы 4,34. Эти цифры имеют важное значение, поскольку для того, чтобы исключить эффект ограничения, коэффициент усиления Y 1 необходимо с помощью Y 2 поддерживать достаточно низким. Внимательно приглядитесь к методам, используемым для формирования выходных сигналов с нулевой постоянной составляющей из уровней КМОП со средним значением +6,0 В (низкий уровень — 0 В, высокий — +12 В).

Описанный метод цифровой низкочастотной фильтрации последовательностей максимальной длины используется во многих коммерческих генераторах шума.

9.37. Краткое заключение

Несколько заключительных замечаний относительно последовательностей, генерируемых регистрами сдвига, как источников аналогового шума. На основании трех перечисленных ранее свойств регистров максимальной длины вы, возможно, склонны заключить, что выходная последовательность «чересчур случайна» в том смысле, что она имеет точное число серий заданной длины и т. п. Настоящая случайная машина для подбрасывания монеты не генерировала бы на единицу больше «орлов», чем «решек», а ее автокорреляционная функция не была бы абсолютно плоской для конечной последовательности. Посмотрите на это с другой стороны. Если бы вы использовали единицы и нули, вырабатываемые регистром сдвига, для управления случайным блужданием, двигаясь вперед на один шаг при получении единицы и назад на один шаг при получении нуля, то оказались бы на расстоянии ровно в один шаг от начальной точки после того, как регистр пройдет весь цикл. Этот результат уж никак нельзя назвать случайным!

Вместе с тем упомянутые свойства регистра сдвига верны только для всей последовательности из 2n — 1 бит, взятой как одно целое. Если вы используете фрагмент полной битовой последовательности, то его свойства будут довольно точно аппроксимировать случайный автомат для подбрасывания монеты. Представьте себе аналогичный процесс — извлечение красных и синих шаров наугад из урны, в которую вначале помещены К шаров (половина красных, половина синих). Если вы вытаскиваете шары без возвращения, то сначала вы рассчитываете получить почти случайную статистику. По мере убывания шаров в урне статистика изменяется за счет того, что общее число красных и синих шаров должно оставаться тем же самым.

Представление о том, как это происходит, можно получить, вновь вернувшись к случайному блужданию. Если предположить, что единственным «неслучайным» свойством последовательности является точное равенство «1» и «0» (не обращая внимание на одну лишнюю «1»), то можно показать, что описанное случайное блуждание после r вытаскиваний из общей «популяции» К/2 единиц и К/2 нулей приведет к среднему расстоянию от начальной точки, равному

Х = [r(К — r)/(К — 1)]1/2.

(Этим выражением мы обязаны Ε. М. Purcell.) Поскольку при полностью случайном блуждании X равно корню квадратному из r, коэффициент (К — r /(К — 1) отражает влияние конечных содержимых урны. Пока r << К, случайность блуждания чуть-чуть отличается от случая абсолютно случайного блуждания, и генератор псевдослучайной последовательности практически неотличим от реального автомата. Мы проверили это на нескольких тысячах случайных блужданий под управлением ПСП (каждое в несколько тысяч шагов) и обнаружили идеальную случайность по этому простому критерию.

Тот факт, что генераторы ПСП выдерживают этот тест, разумеется, не гарантирует, что они будут удовлетворять и более сложным тестам на случайность, например тестам на корреляцию более высокого порядка. Такие корреляционные зависимости также оказывают влияние на свойства аналогового шума, генерируемого путем фильтрации ПСП. Несмотря на то что амплитуда шума имеет гауссово распределение, возможно наличие корреляции амплитуд более высокого порядка, не свойственной настоящему случайному шуму. По этому поводу сейчас принято считать, что чем больше отводов участвует в обратной связи (предпочтительно порядка m/2), тем «лучше» шумовые свойства (при использовании для формирования последовательных входов дерева четности на элементах ИСКЛЮЧАЮЩЕЕ ИЛИ).

Те, кто проектирует генераторы шумов, должны познакомиться со сдвиговым регистром переменной длины в КМОП-логике 4557 (от 1 до 64 разрядов); конечно, вы должны использовать его в сочетании с регистром с параллельным выходом (типа `4015 или `164) для того, чтобы обеспечить n отводов.

В разд. 7.20 обсуждается вопрос о шумах и приводится пример генератора «розового» шума на ИМС регистра максимальной длины ММ5437.

9.38. Цифровые фильтры

Последний пример затронул интересную тему цифровой фильтрации, в данном случае формирование НЧ-сигнала путем взвешенного суммирования 32 значений псевдослучайной последовательности, каждое из которых соответствует уровню напряжения 0 или +12 В. На вход такого «фильтра» поступают сигналы, которые могут иметь только два уровня напряжения. Вообще говоря, то же самое можно сделать с аналоговым сигналом на входе, образуя взвешенную сумму его значений (x i ), распределенных во времени через равные интервалы

Здесь x i являются дискретными выборками из входного сигнала, h k — весовые коэффициенты, а y i - значения выходного сигнала. В реальных условиях цифровой фильтр будет суммировать только конечное множество входных значений, как, например, в генераторе шума, где было использовано 32 члена. На рис. 9.91 схематично показано, как это происходит.

Рис. 9.91. Нерекурсивный цифровой фильтр.

Заметьте, что такой фильтр может обладать интересным свойством симметричности во времени, т. е. усреднением прошлого и будущего для того, чтобы сформировать текущее значение выхода.

Разумеется, реальные аналоговые фильтры умеют лишь смотреть в прошлое и соответствуют цифровым фильтрам с ненулевыми весовыми коэффициентами только при k >= 0.

Частотная характеристика симметричного фильтра. Можно показать, что частотная характеристика симметричного фильтра (h k = h -k ) имеет вид

где t отс — время между выборками (отсчетами). Нетрудно заметить, что h k   представляют собой коэффициенты разложения в ряд Фурье требуемой частотной характеристики. Это объясняет, почему в случае представленной ранее схемы генератора весовые коэффициенты были выбраны в соответствии с функцией (sin x)/x: они являются компонентами Фурье заграждающего НЧ-фильтра. В таких симметричных фильтрах фазовый сдвиг на любой частоте либо равен 0, либо 180°.

Рекурсивные фильтры. Можно получить интересный класс цифровых фильтров, если на вход фильтра в дополнение к внешнему входному сигналу подать собственный выходной сигнал фильтра. Такой фильтр можно рассматривать как фильтр с обратной связью. Он имеет причудливое название рекурсивный фильтр (или с бесконечной импульсной характеристикой) в противоположность рассмотренному выше нерекурсивному (с конечной импульсной характеристикой) фильтру. Можно, например, сформировать выходной сигнал в соответствии со следующим выражением:

yi = Ay i-1 + (1 — A)x i

Это соответствует низкочастотной характеристике, эквивалентной той, которой обладает простой низкочастотный RC-фильтр

А = е- t отс / RC

где t отс - интервал времени между последовательными выборками х i из входного сигнала. Эта ситуация, конечно, не является идентичной ситуации с аналоговым низкочастотным фильтром, работающим с аналоговым сигналом, по причине дискретной природы отсчетов.

Пример НЧ-фильтра. В качестве числового примера предположим, что вам требуется отфильтровать ряд числовых значений, соответствующих сигналу с затуханием 3 дБ на частоте f 3 дб = 1/20t отс . Таким образом, постоянная времени соответствует интервалу времени 20 последовательных отсчетов. В этом случае А = 0,95123, а выходной сигнал определяется по выражению y i = 0,95123y i-1 + 0,04877х i . С увеличением постоянной времени относительно времени между отсчетами t отс приближение к реальному НЧ-фильтру улучшается.

Для обработки данных уже представленных в виде дискретных отсчетов, как, например, массив данных в компьютере, вы, возможно, предпочтете использовать такой фильтр. Рекурсивный фильтр при этом будет реализовываться с помощью однократного прохода по данным с тривиальной арифметической обработкой. Программа НЧ-фильтра на языке Фортран будет выглядеть следующим образом:

A = exp(- TS / TC )

В = 1. — А

DO 10 I = 2, N

10 X ( I ) = A * X ( I — 1) + B * X ( I ),

где X — матрица данных, TS — интервал времени между отсчетами (т. е. TS = 1/t отс ), а ТС — выбранная постоянная времени фильтра. Эта маленькая программа осуществляет фильтрацию на месте, т. е. она заменяет первоначальные данные отфильтрованными. Можно, конечно, создавать из отфильтрованных данных отдельный массив.

НЧ-фильтр с коммутацией. Такой же фильтр можно построить аппаратным путем, используя схему, показанную на рис. 9.92.

Рис. 9.92. Рекурсивный фильтр на коммутируемых конденсаторах.

Ключи на полевых транзисторах S 1 и S 2 коммутируются с некоторой тактовой частотой, периодически заряжая конденсатор С 1 до входного напряжения и затем передавая его заряд на конденсатор С 2 . Если С 2 имеет напряжение U 2 , а С 1   заряжается до входного уровня U 1 , то при подключении С 1 к С 2 напряжение на обоих конденсаторах будет определяться соотношением U = (С 1 U 1 + С 2 U 2 )/(C 1 + С 2 ), что эквивалентно рассмотренному ранее рекурсивному фильтру при

уi = С 2 /(C 1 + C 2 )у i-1 + С 1 /(C 1 + C 2 )x i .

Приравнивая эти коэффициенты к заданному ранее значению А, получим

f 3 дB = (1/2π)f отс ln(C 1 + C 2 )/C 2 .

Упражнение 9.8. Покажите, что этот результат правилен.

Этот фильтр практичен во всех отношениях и обладает одной привлекательной особенностью — электронной настройкой посредством тактовой частоты f отс . В обычных схемах используются КМОП-ключи, а емкость С 1 берется много больше С 2 . Поэтому сигнал переключения должен быть несимметричным и большую часть времени тратить на замыкание S 1 .

Приведенная схема представляет собой простой пример фильтра с коммутацией; в этот класс фильтров входят фильтры, выполненные на матрицах коммутируемых конденсаторов. Они имеют периодическую частотную характеристику, что делает их удобными для использования в качестве гребенчатых и узкополосных режекторных фильтров.

Для всех фильтров классического типа (Баттерворта, Чебышева и т. п.) можно построить их приближенные дискретные аналоги в форме ВЧ, НЧ, полосовых и заграждающих фильтров, как симметричных во времени, так и с истинным временем запаздывания. Такие фильтры очень удобны при обработке квантованных данных, перед которыми, безусловно, большое будущее.

В настоящее время выпускают большое число недорогих ИМС фильтров с коммутируемыми конденсаторами. ИМС MF4 фирмы National, например, является 4-звенным НЧ-фильтром Баттерворта, размещенным в корпусе мини-DIP; он не требует внешних компонентов и работает от одного источника питания с напряжением от +5 до +14 В. Частота среза фильтра (0,1 Гц мин. и 20 кГЦ макс.) устанавливается с помощью внешней тактовой частоты f такт = 100f 3 дB . ИМС MF5 и MF10 («универсальные фильтры с коммутируемыми конденсаторами») работают несколько иначе. С помощью внешних резисторов устанавливаются тип фильтра (ВЧ, НЧ, полосовой, заграждающий) и характеристика фильтра (Баттерворта, Чебышева и т. п.), а с помощью тактовой частоты, как и раньше, устанавливается частота среза. Другими изготовителями фильтров с коммутируемыми конденсаторами являются фирмы American Microsystems (AMI), Linear Technology (LTC) и Reticon. Фирма LTC как всегда использовала несколько хитроумных приемов для улучшения технических характеристик. Ее фильтры LTC1062 и МАХ280 похожи на MF4, но являются 5-звенными и имеют нулевую ошибку на постоянном токе! Последнее свойство реализовано путем размещения фильтра вне пути постоянного тока (рис. 9.94).

Рис. 9.94. Цифровой НЧ-фильтр с малым сдвигом по постоянному току.

Гибкие фильтры серии МАХ260 допускают управление важными параметрами фильтра от микропроцессора. Вообще говоря, такие фильтры с коммутируемыми конденсаторами работают только на верхнем конце звукового диапазона. В них также наблюдается существенное проникновение тактовой частоты на выход обычно в пределах 10–25 мВ. Это ограничивает их динамический диапазон в тех применениях, где тактовая частота находится внутри полосы пропускания (например, ВЧ-фильтры). Они могут иметь значительный шум, ограничивающий динамический диапазон до 80 дБ и менее (сравните со 140 дБ и выше для хорошего операционного усилителя). С другой (положительной) стороны, фильтры на коммутируемых конденсаторах просты в применении и позволяют осуществлять эффективную настройку (с помощью тактовой частоты). Фильтры такого типа широко используют в модемах (при передаче данных по телефонным линиям) и в других областях связи. См. разд. 5.11.

Формирование синусоидальных колебаний цифровым способом. С нерекурсивной цифровой фильтрацией связан интересный способ синтеза синусоидальных колебаний с использованием взвешенных сумм сигналов с выходов счетчика Джонсона (кольцевой счетчик с коэффициентом пересчета, вдвое превышающим число разрядов). Схема на рис. 9.93 показывает способ реализации такого генератора.

Рис. 9.93. Цифровой генератор синусоидальных сигналов.

ИМС 4015 представляет собой 8-разрядный регистр сдвига с параллельным выходом. Подавая на вход инвертированный сигнал с последнего разряда, можно организовать счетчик Джонсона, который будет проходить через 16 состояний (в общем случае 2n состояний для n-разрядного регистра сдвига). Начиная с состояния «все нули», происходит заполнение счетчика слева направо «1» (марш «1») до полного заполнения всеми единицами, затем начинается марш «0» и т. д. Показанное на рисунке взвешивание формирует 8-уровневое приближение к синусоидальному колебанию с частотой, равной 1/16 тактовой частоты, и с первым ненулевым членом искажения на 15-й гармонике, имеющей затухание 24 дБ.

 

Схемы, не требующие пояснений

9.39. Удачные схемы

На рис. 9.95 приведено несколько примеров сопряжения логических и линейных схем.

Рис. 9.95. а — преобразователь отрицательных уровней в уровни ТТЛ; б — управление нагрузкой; подключенной на землю;

Рис. 9.95. в — амплитудный дискриминатор;  г — схема управления соленоидом;

Рис. 9.95.   д — 8-канальный мультиплексор с дифференциальным входом;

Рис. 9.95.  е — фазовый детектор с подавлением 60 дБ; ж — прецизионный триггер Шмитта.

9.40. Негодные схемы

На рис. 9.96 показаны схемы с основными грубыми ошибками сопряжения. Для каждой схемы попытайтесь объяснить, в чем состоит ошибка и как ее устранить.

Рис. 9.96. а — формирователь задержанного фронта; б — индикатор логического состояния;

Рис. 9.96. в — сопряжение элемента ТТЛ с высокоомным выходом (две неудачные схемы); г — повышение нагрузочной способности элемента ТТЛ с помощью повторителя;

Рис. 9.96. д — проводное ИЛИ на вентилях с активной нагрузкой; е — счетчик пересечений нуля;

Рис. 9.96. ж — RS-триггер; з — сопряжение элемента ТТЛ со схемами высоких уровней.

 

Дополнительные упражнения

( 1 ) Постройте схему для обнаружения кратковременного пропадания напряжения питания +5 В. Схема должна иметь кнопку СБРОС и светодиод для индикации НЕПРЕРЫВНОГО ПИТАНИЯ. Сделайте так, чтобы она работала от напряжения +5 В.

( 2 ) Почему нельзя построить 2 n -разрядный ЦАП с помощью двух n -разрядных ЦАП и пропорционального суммирования их выходов ( ВЫХ 1 + ВЫХ 2 /2 n )?

( 3 ) Убедитесь в том, что максимальное значение сигнала на выходе псевдослучайного генератора шума на рис. 9.90 равно +8,68 В.

( 4 ) Эксперимент осуществляется под управлением программируемого вычислителя, соединенного с различными исполнительными и измерительными приборами. Вычислитель дает приращение различным переменным, находящимся под его управлением (например, длине волны излучения, поступающего от монохроматора), и обрабатывает результаты соответствующих измерений (например, количество переданного света, скорректированное с учетом известной чувствительности детектора). В результате образуются пары значений х, у . Задача состоит в том, чтобы спроектировать схему для вычерчивания графика на аналоговом графопостроителе. Выходы вычислителя для каждой пары значений представляют собой два 3-разрядных (двоично-десятичных) символа. Для уменьшения количества связей числа представляются по одному в единицу времени («бит — параллельно, символ — последовательно») в сопровождении 2-разрядного адреса. Импульс СИМВОЛ ВЕРЕН показывает, что данные и адрес правильны и их можно, например, зафиксировать. Уровень х' / у сообщает о том, какому числу принадлежит выводимый символ ( х или у ). Это показано на рис. 9.97.

Рис. 9.97.

Данные передаются в следующем порядке: х n (МЗЦ)… х n (СЗЦ), y n (МЗЦ)… у n (СЗЦ); таким образом, после поступления СЗЦ величины у ( Α 1 = 0, А 2 = 1, х' / у = 1) известно, что вы получили всю пару х, у . В этот момент вы должны обновить цифры, поступающие на ЦАП (не обновляйте их по одной). Нет необходимости присваивать ИМС отдельные номера; дайте им общее наименование, например D-триггер или дешифратор «1 из 10». Укажите, в каких местах входы или выходы инвертируются (с помощью маленьких кружочков). Считайте, что в вашем распоряжении имеются ЦАП, которые воспринимают 3-разрядные двоично-десятичные символы с логическими уровнями и обладают токовыми выходами от 0 до 1 мА, соответствующие входным кодам от 000 до 999. Поскольку двухкоординатный графопостроитель имеет 10-вольтовую полную шкалу, вам придется преобразовать ток в напряжение. Проверьте свою изобретательность, введя дополнительное усложнение: предположите, что размах выходного сигнала ЦАП всего 1 В.