Я познаю мир. Живой мир

Целлариус А. Ю.

Бактерии и протисты

 

image l:href="#image67.png"

 

Кто есть кто

За три с половиной миллиарда лет эволюция произвела на свет неисчислимое множество разнообразных живых существ. Окинуть их единым взглядом просто невозможно. И чтобы не запутаться в полчищах мышей, лягушек, амеб, сосен, стафилококков и динозавров, их требуется разложить по полочкам. Вообще, классификация – основа любой науки, и классификация живых существ – основа биологии. Занимается классификацией организмов одна из самых старых и почтенных биологических дисциплин – систематика. Классифицировать объекты можно по самым разным признакам, например по размеру. Или по окраске. Кстати сказать, даже такая классификация лучше, чем никакой. Но систематика недаром так называется – она строит систему. Это значит, что во внимание принимаются в первую очередь родственные связи организмов. На одну полочку укладываются живые существа, сходные па происхождению, а следовательно – сходные по строению. Такая система называется филогенетической, от слова филогенез: фила – по–гречески – племя, и генезис – происхождение. Вообще же, строение и происхождение не совсем одно и то же. Строение может быть в чем–то сходным в результате обитания в сходных условиях. Киты похожи на рыб, а летучие мыши на птиц. Однако киты и летучие мыши довольно близкие родственники, а летучие мыши и птицы – весьма дальние. Так что раскладывание живых существ по полочкам отнюдь не простое занятие. Нужно учитывать не внешнее сходство и не функцию органа, а его внутреннее строение, его принципиальную конструкцию. Довольно часто принцип устройства можно понять, только рассмотрев в деталях развитие органа в ходе эмбриогенеза – развития зародыша. При таком подходе становится ясным, что в основе китового плавника, крыла летучей мыши и собачьей лапы лежит одна схема, а в основе птичьего крыла – несколько другая. И обе схемы не имеют ничего общего с крылом мухи или бабочки. Однако и этого иногда оказывается мало. В некоторых случаях установить степень родства позволяет только сравнение строения молекул – белка, ДНК или РНК. В некоторых случаях пролить свет на происхождение какой–либо группы организмов позволяет их распространение на планете. Так что хороший систематик должен быть не только хорошим анатомом и представлять себе строение той группы живых существ, которую он систематизирует. Он должен ещё быть в курсе исследований эмбриологов, биогеографов, генетиков, биохимиков и даже экологов, поскольку правильно оценить некоторые особенности строения или распространения животных и растений можно, только зная их образ жизни.

Об одном из основных понятий систематики – виде, и о том, как эти виды выделяют, мы подробно рассказали в главе «Становой хребет биологии». Повторим ещё раз: вид – это совокупность организмов самой близкой степени родства. Особи одного вида всегда способны скрещиваться и производить на свет плодовитое потомство, если для этого вида вообще характерно половое размножение. Близкие виды объединяются в роды, близкие роды – в семейства. А вот группы близкородственных семейств ботаники и зоологи называют по–разному, ботаники – порядками, а зоологи – отрядами. Родственные отряды (или порядки) объединяются в классы, а родственные классы в типы (зоологи) или отделы (ботаники). Высшая категория – это царство, объединяющее родственные типы (отделы). Впрочем, так обстояло дело до недавнего времени. Около десяти лет назад американец немецкого происхождения Карл Вёзе ввел ещё одну, высшую категорию – домен.

 

Шесть или семь царств

Некогда все произведения природы натуралисты делили на три царства – царство минералов, царство растений и царство животных. Надо сказать, что даже при таком простом разделении в классификации царила изрядная путаница. Скажем, примитивных животных, таких как губки или актинии, одно время относили к растительному царству. Но где–то к концу XVIII столетия границу между растениями и животными удалось провести довольно четко. Однако не надолго. В дело вмешались микробиологи, точнее те, кто назывался тогда микроскопистами, и дело опять запуталось. Мало того что микроскоп позволил обнаружить массу мельчайших существ, не видимых простым глазом, так ещё их изучение показало, что разделить их на растения и животных зачастую просто невозможно. Во второй половине XIX века Эрнст Геккель попробовал решить проблему, введя третье царство – царство протист. К протистам стали относить все одноклеточные создания.

На этом, однако, дело не кончилось. Изучение протист показало, что они делятся на две четко различающиеся группы. Одни одноклеточные имели ядро, подобное ядру клеток всех растений и животных, а другие – бактерии – обходились без него. Мало того, у бактерий обнаружилось довольно много других особенностей, их строение и физиология имели мало общего со строением и физиологией клеток, обладающих ядром. В первой половине XX века американец Герберт Купеланд предложил ввести четвертое царство – царство бактерий. Довольно быстро стало ясно, что наиболее резкая граница пролегает не между царствами, а между бактериями и всеми прочими. Мир живых существ распался на две части – те, кто обладает клеточным ядром (и некоторыми другими внутриклеточными структурами), и те, кто этих структур лишен. Первых стали называть эукариотами (полноядерными), вторых – прокариотами (доядерными).

Но и это ещё не конец. Систематиков давно смущали грибы, которые с незапамятных нремен обретались в царстве растений. С развитием физиологических и цитологических исследований становилось всё яснее и яснее, что грибы и прочие растения имеют не больше общего, чем растения и животные. В 1958 г. ситуация «прорвалась» – Роберт Виттакер предложил выделить грибы в особое царство, что и было сделано.

Очередной сюрприз человечеству преподнесли бактериологи. Среди бактерий довольно давно была известна группа так называемых метанообразующих бактерий. Они сильно отличаются от всех прочих бактерий строением клеточной оболочки и особенностями метаболизма. В семидесятых годах XX столетия обнаружилось, что у всех этих бактерий последовательность оснований в рибосомной РНК совершенно другая, чем у всех прочих. Эту группу назвали архебактериями. Затем выяснилось, что к архебактериям относится, помимо метанообразующих, и множество других прокариот. Карл Вёзе показал, что дистанция между обычными бактериями (их теперь называют эубактерии) и архебактериями столь же велика, как между эубактериями и эукариотами» Он выделил архебактерий в отдельное царство (и всего царств стало шесть) и, кроме того, предложил ввести новый, высший таксон – домен.

По современным представлениям, мир живых существ разделяется на три домена: археи, бактерии и эвкарии. Домены архей и бактерий содержат по одному царству, архебактерии и эубактерии соответственно, а домен эвкарий – четыре: протисты, грибы, растения и животные. Происхождение эубактерий и архебактерий – вопрос крайне темный. Существует две гипотезы. Согласно одной, эти организмы возникли независимо друг от друга, то есть это вообще разные формы жизни. Большинство микробиологов склоняется, однако, к мнению, что архебактерии и эубактерии произошли от одного предка, причем разошлись эти ветви вскоре после возникновения жизни вообще, то есть около четырех миллиардов лет назад. При этом архебактерии сохранили больше древних и примитивных черт, свойственных первым живым существам планеты. Не менее темный вопрос – происхождение эвкарий, точнее, самого древнего их царства, породившего все остальные – протист. Наиболее вероятным считается, что эвкарии, точнее эукариотная клетка, – плод симбиоза нескольких видов бактерий и архебактерий. То есть две формы жизни, разделившись, потом опять слились, породив третью. Об этом мы ещё поговорим чуть позже, а пока скажем несколько слов об ещё одной группе, скажем так, органических комплексов – о вирусах.

image l:href="#image68.png"

Современные представления о систематике царств и доменов

Вирусы, на первый взгляд, не имеют ничего общего с другими живыми существами и находятся, строго говоря, между миром живых организмов и миром минералов. Обычно их вообще не включают в систему классификации живых существ. Вопрос – почему не считать их седьмым царством? Дело в том, что вирусы, о которых мы расскажем чуть поподробней в следующей главе, по всей вероятности, произошли из каким–то образом получивших независимость «кусков» нормальных клеток, причем клеток представителей всех трёх доменов.

 

Беспризорники

Строго говоря, вирус не более живой, чем какой–нибудь антибиотик или органический яд, которые вмешиваются в биохимические реакции наших клеток и заставляют их выделывать нечто непотребное. Вирусы могут даже кристаллизоваться, что живому организму совершенно не свойственно. Разница лишь в том, что токсины, блокируя одни реакции и вызывая другие, ведут себя в живой клетке как слон в посудной лавке, а вирус заставляет эту клетку производить собственные копии. Причем если одни вирусы в конце концов разрушают клетку или заставляют её выделять вредные вещества, то множество других ведет себя в клетке довольно прилично. Состоят вирусы из молекулы ДНК или РНК и белковой оболочки, которая может включать несколько десятков белковых молекул, а может – и несколько тысяч. У некоторых, особо изощренных, в состав оболочки могут входить липиды. Клетка, в которую проникают вирусы, забывает о своих обязанностях и начинает синтезировать совсем другие белки и нуклеиновые кислоты, штампуя новые вирусы. В результате вирусы вызывают самые разнообразные заболевания, от насморка до бешенства, СПИДа и некоторых форм рака. Но, между прочим, даже от вирусов есть польза. Поскольку они умеют профессионально встраиваться в геном посторонних организмов, их используют для «пересадки генов» в генной инженерии.

image l:href="#image69.png"

Вирус табачной мозаики

Первая задача вируса – попасть в клетку хозяина. Для этого оболочка вируса связывается с определенным участком на плазматической мембране клетки и «заставляет» эту мембрану впустить вирус внутрь. Вопрос решается чисто биохимически – происходит определенная реакция. Поэтому вирус может проникнуть не во всякую клетку, у его оболочки должно быть «сродство» с определенным участком мембраны клетки–хозяина. Вирус может проникать в клетку целиком, а может оставить белковую оболочку снаружи. У некоторых вирусов, поражающих бактериальные клетки, дело проникновения поставлено ещё более основательно. Вирусы под названием бактериофаги имеют довольно сложную структуру и напоминают какого–то робота из мультиков. Они имеют головку, сидящую на толстой «рукоятке», которую называют хвостовым отростком. На конце отростка – шесть длинных нитей, напоминающих паучьи ножки. Ножки прикрепляются к клеточной стенке бактерии и подтягивают к ней все остальное сооружение, прижимая основание отростка к поверхности клетки. Затем отросток сокращается, впрыскивая, как шприц, внутрь бактерии нить ДНК. Пустой белковый «скафандр» остается снаружи, а вирусная ДНК принимается за свое черное дело.

image l:href="#image70.png"

Бактериофаг: I – общий вид вирусной частицы; 2 – проникновение ДНК вируса в клетку

Механизм действия вирусов на клетку сложен и у разных типов вирусов отличается. Но принцип всегда один и тот же – генетическая программа вируса подменяет часть клеточных программ, и клетка начинает синтезировать совершенно не нужные ей белки и нуклеиновые кислоты и собирать из них новые и новые вирусы. Некоторые вирусы заставляют клетку синтезировать не только то, что нужно для их сборки, но и ферменты, которые эту клетку разрушают. Клетка кончает жизнь самоубийством, чтобы новое поколение вирусов могло свободно выбраться наружу. Метаболизм клетки изменяется иногда таким образом, что это выходит боком не столько ей самой, сколько всем окружающим. Некоторые совершенно безобидные для нас бактерии, будучи инфицированы определенными вирусами, становятся смертельно опасными. Однако вирусы могут также перетаскивать от одних бактерий к другим гены, определяющие всякие полезные для этих бактерий свойства.

image l:href="#image71.png"

Развитие вируса в клетке (схема): / – прикрепление вируса к мембране клетки; 2 – нуклеиновая кислота вируса; 3 – белковая оболочка вируса; 4 – белки вируса , синтезированные клеткой; 5 – новые вирусные частицы покидают клетку; 6 – ДНК клетки

Что такое вирусы – мы в двух словах рассказали. А вот откуда они взялись? Среди неспециалистов довольно широко распространено даже не убеждение, а некое смутное ощущение, что вирусы, стоящие на грани живого и неживого, это некий прообраз первых форм жизни. На самом деле – ничего подобного. Вирусы – продукт весьма продвинутых созданий, стоящих на высокой ступени эволюционного развития. Предполагается, что вирусы – это куски генома вполне добропорядочных клеточных организмов, прокариот и эукариот, утерянные в результате различных несчастных случаев. Некоторые из этих беспризорных обрывков генома оказались способными, встретившись с благополучной здоровой клеткой, «втираться в доверие» дружной семьи макромолекул. По–видимому и сейчас из хромосом и матричной РНК различных организмов продолжают возникать новые типы вирусов. Однако главный источник новых вирусов – все же изменения старых. Вирусы способны мутировать ничуть не хуже клеточных организмов. Кроме того, захватывая или теряя куски генома, а у вирусов с этим делом довольно просто, они также способны приобретать новые свойства.

 

Блеск и нищета прокариот

А теперь вернемся к прокариотам. Хотя эубактерии и архебактерии, как выяснилось#! две большие разницы, но по строению клетки, размножению и образу жизни многие из них необыкновенно похожи. Точнее – представители обоих доменов проявляют одинаковое разнообразие. Недаром, чтобы понять, что это очень разные формы жизни, пришлось углубляться в молекулярное строение и особенности обмена этих существ. Поэтому для начала мы расскажем об общих чертах прокариот. Размер большинства этих существ – около одного микрона. То есть на миллиметровом делении линейки можно уложить около тысячи прокариот. Прокариота – клетка, но клетка примитивная, гораздо более примитивная, чем любая клетка нашего с вами организма. Как и у всякой клетки, у прокариоты имеется плазматическая мембрана – это такая хитрая пленка, которая не дает содержимому клетки растекаться, обеспечивает поступление в клетку одних веществ и удаление других, и кроме всего прочего служит местом протекания множества биохимических реакций. Плазматическая мембрана – вещь недостаточно прочная, и большинство прокариот одето поверх мембраны клеточной оболочкой. Оболочка также имеет сложный состав, и, как и мембрана, это не просто пузырь, предохраняющий клетку от различного рода неприятностей, подобно скорлупе созревшего ореха. Клеточная оболочка, скорее, похожа по своему назначению на кожу позвоночного. Она участвует в газообмене, в поглощении и выделении различных веществ; в клеточных оболочках часто идут процессы «пищеварения» бактериальной клетки – поглощение и ферментативная обработка питательных веществ. Поверх оболочки многие бактерии имеют ещё слизистую капсулу. Некоторые бактерии способны в неблагоприятных условиях отращивать особо толстую оболочку и «впадать в спячку». Такие «спящие» бактерии называются цистами. Другие создают внутри себя толстостенную капсулу, содержащую в «сжатом» виде копию материнской клетки. Это образование называется эндоспорой. В случае всякого рода неприятностей носители эндоспор гибнут, но сами споры могут сохранять жизнеспособность в самых невообразимых условиях десятки, сотни и даже тысячи лет, выжидая, пока судьба повернется к ним лицом.

image l:href="#image72.png"

Строение клетки прокариот: I клеточная стенка; 2 – клеточная мембрана; 3 – рибосомы; 4 – кольцевая молекула ДНК в цитоплазме; 5 – складки наружной мембраны; 6 – жгутики

image l:href="#image73.png"

Прорастающие споры бактерий

Внутри прокариотической клетки содержится всё необходимое для обмена веществ: вода, белки, углеводы, нуклеиновые и рибонуклеиновые кислоты, о которых мы уже писали в главе «Содружество молекул». Но вот внутренних мембран в прокариотных клетках нет и, соответственно, нет и органелл – митохондрий, пластидов, эндоплазматической сети и самого ядра. Впрочем, наружная мембрана образует глубокие складчатые впячивания – мезосомы. Именно на мезосомах идет большинство реакций синтеза. Всё это не значит, однако, что метаболизм у прокариот менее сложен, чем у эукариот, у которых есть и ядро, и митохондрии, и всё прочее. Мало того, в области синтеза прокариоты способны на такие штуки, которые недоступны их потомкам, эукариотам. Например, только прокариоты (не все) могут фиксировать атмосферный азот. Поскольку азот – одна из важнейших составляющих белковых молекул, то существование всех остальных организмов планеты зависит от азот–фиксирующих бактерий. Серы в живых организмах содержится, конечно, меньше, чем азота. Но и сера – необходимый компонент ряда аминокислот и, соответственно, белков. И ни один живой организм, кроме прокариот, не может использовать серу в каком–либо ином виде, кроме как в виде солей серной кислоты – сульфатов. А практически все сульфаты в почвах – продукт деятельности Прокариот.

И наконец, только среди прокариот есть создания, способные извлекать энергию из минеральных веществ: азота, серы, железа, водорода и сероводорода.

Форма «тела» прокариот довольно разнообразна, но в целом бактериологи делят их на четыре группы – бациллы (палочковидные формы), кокки (сферические), спириллы (длинные, закрученные спиралью) и вибрионы (изогнутые палочки). Бывают ещё нитевидные клетки, которые особого названия почему–то не получили. Разделение это условно, родства прокариот не отражает никоим образом и принято более для удобства. Хотя прокариоты по преимуществу одноклеточные существа, но многие из них склонны к образованию групп или колоний. Некоторые кокки после деления образуют устойчивые пары – диплококки. К диплококкам, кстати, относится возбудитель пневмонии. Многие кокки образуют цепочки (стрептококки) или гроздья (стафилококки). У некоторых прокариот деление идет не до конца, и цепочки связанных друг с другом клеток образуют длинные нити, достигающие метра в длину. Есть прокариоты, которые образуют сложные колонии, состоящие из миллионов клеток, одетых общей слизистой оболочкой.

Некоторые прокариоты неподвижны, они разносятся движением воды и воздуха, и их благополучие зависит от счастливого случая. Но многие способны активно передвигаться. Некоторые спирохеты и вибрионы передвигаются за счет изгибов тела. Есть эубактерии, которые выделяют обильную слизь и волнообразными движениями оболочки гонят её назад, создавая своего рода «реактивную тягу». Но есть у прокариот и специальные органы передвижения – жгутики, играющие ту же роль, что и у эукариот, но устроенные совершенно иначе.

image l:href="#image74.png"

Формы клеток бактерий: 1 – кокки; 2 – стафилококки; 3 – стрептококки; 4 – спирохета; 5 – вибрионы; 6 – палочки

Скорость движения бактерий, обладающих жгутиками, порядка 20 микрон в секунду – весьма приличная скорость, аналогичная скорости 20–30 метров в секунду (более 70 км/час) для лошади. Движутся прокариоты не абы как. Они способны различать присутствие в окружающей среде определенных веществ, как полезных для них, так и опасных, и двигаются в соответствующем направлении. На наружной поверхности плазматической мембраны бактерий обнаружено около трех десятков различных белковых комплексов, играющих роль хеморецепторов – «органов» обоняния (или, если хотите, вкуса). Часть этих рецепторов реагирует на различные «привлекательные» вещества, другая – на непривлекательные. А вот как информация с хеморецепторов передается на жгутики – этого пока никто не знает.

Как–то принято считать, что общественная жизнь и коллективные действия – удел существ высокоразвитых. На самом же деле склонность к объединению обнаруживается уже у прокариот. Миксобактерии – бациллы, двигающиеся «реактивным скольжением» в собственной слизи. Они вполне способны вести одиночную жизнь, каковую и ведут сплошь и рядом в почве, в разлагающихся растительных остатках и в мелких лужах. Однако чаще они встречаются скоплениями. Такое скопление – тонкая слизистая пленка, в которой содержатся тысячи и миллионы бактерий – согласованно движется по поверхности субстрата и, встретив что–либо съедобное, накрывает собою и переваривает при помощи дружно выделяемых ферментов. Попав в неблагоприятные условия, такое скопление стягивается и выпячивается сначала бугорком, а потом этот бугорок превращается в деревце, на ветвях которого сидят округлые «плоды». Размер «деревца» не так уж и мал, «деревце» может достигать миллиметра в высоту. Ствол и ветви состоят из огромного числа погибших бацилл, а плодовые тела содержат споры – часть членов колонии, впавших в спячку до лучших времен.

Форма клетки, строение клетки, способ передвижения, способ размножения – разнообразие всех этих признаков и свойств у прокариот, в общем, невелико. С точки зрения нормального человека, привыкшего классифицировать объекты по их строению, разложить прокариот по полочкам не составляет труда. Увы, это приятное заблуждение профана. Другой такой запутанной области, как систематика прокариот, в естественных науках, пожалуй, не существует. Дело в том, что привычные мерки, с которыми систематики подходят к грибам, паукам, крокодилам и прочим эукариотам, в мире прокариот не годятся. Разнообразие эукариот – это действительно в основном разнообразие строения, биохимическая же основа у всей этой публики одинакова до противного. А вот у прокариот – всё наоборот. Их разнообразие – это разнообразие биохимических процессов и, соответственно, разнообразие процессов питания и дыхания.

Прежде всего прокариоты способны получать энергию не двумя, а тремя разными способами: использовать энергию солнечного света (фототрофы); использовать энергию окисления минеральных веществ (хемотрофы); получать энергию за счет окисления органических веществ (органотрофы).

Изучение прокариот продвигается медленней, чем хотелось бы, как раз потому, что они способны существовать в самых немыслимых условиях. От дохлой прокариоты бактериологу мало пользы, поскольку внешне все они довольно однообразны. А вот чтобы изучить особенности их обмена, их нужно вырастить в культуре. А вы представляете себе, что такое создать культуру организмов, живущих в абсолютной темноте, при давлении в 500 атмосфер, питающихся водородом и требующих температуры 200’? Именно поэтому, например, анаэробные бактерии до сих пор изучены существенно хуже кислородных, а хемосинтетики – хуже органотрофов. Иной раз у бактериологов просто фантазии не хватает, чтобы создать условия, в которых будет расти какой–либо вид бактерий. И потому эти бактерии науке до сих пор не известны.

Среди фототрофов есть автотрофы, которые синтезируют органику из минеральных соединений. Одни производят углеводы из углекислого газа и воды, подобно зеленым растениям. А есть и такие, которые вместо воды пользуются совершенно другими соединениями, например сероводородом. Ну, это ещё куда ни шло. Так ведь некоторые фототрофы используют в качестве источника углерода углекислый газ, но источником водорода вместо воды сероводорода или другого минерального соединения у них служат спирты или органические кислоты. То есть они «фото», но уж; никак не «авто», поскольку нуждаются в готовой органике. Для этой публики придумано название «фотогетеротрофы», хотя с гетеротрофными эукариотами всё это имеет очень немного общего. Мало того. Есть среди фототрофных прокариот совершенно уникальные существа, которые используют энергию солнечного света не для синтеза топлива, а только для «зарядки» АТФ, а питательные вещества потребляют готовые. Эти создания настолько не лезут ни в какие ворота, что для их способа питания–дыхания даже названия соответствующего не смогли придумать.

image l:href="#image75.png"

Фототрофное питание

Хемотрофы получают энергию, окисляя неорганические вещества – аммиак, серу и её соединения, соединения железа, водород. К хемотрофам относят и прокариот, окисляющих метан, хотя, строго говоря, метан – органическое соединение и большая часть метана на нашей планете есть результат деятельности метанообразующих архебактерий. Часть хемотрофов использует в качестве окислителя кислород. Но есть среди них и анаэробы, у которых окислителем служат другие вещества. Получаемая энергия аккумулируется в молекулах АТФ и далее обычно используется не для синтеза универсального топлива, а напрямую обеспечивает биохимическую кухню прокариоты. Вообще, хемотрофы в качестве источника углерода используют углекислый газ, поэтому к ним вполне применим термин «автотрофы». Но на самом деле у некоторых из них, например у метанообразующих архебактерий, механизм фиксации углерода настолько замысловат и необычен, что никаких аналогий с привычной схемой синтеза у автотрофных эукариот углядеть невозможно. И многие бактериологи предпочитают термин « хемолитотрофы».

image l:href="#image76.png"

Хемотрофное питание

К органотрофам относятся прокариоты, которые получают энергию, окисляя органические вещества, и эти же вещества используют в качестве источника углерода. Собственно, в этой части своей жизнедеятельности они подобны нормальным гетеротрофам: привычных нам всем слонам, мухам, грибам и аскаридам. Однако, строго говоря, сходство это во многих случаях очень и очень поверхностное, потому бактериологи часто предпочитают термины « органотрофы » или « хемогетеротрофы ». Дело в том, что у прокариот, это касается не только органотрофов, существуют такие наборы ферментов, такие метаболические пути и такие продукты метаболизма, которые эукариотам не приснятся и в страшном сне.

image l:href="#image77.png"

Органотрофное питание

В Антарктиде, в пробах льда, взятых с глубины более 500 м, обнаружены вполне жизнеспособные бактерии, «оживающие» при повышении температуры. Возраст этих отложений – около 20 ООО лет, то есть, вполне вероятно, бактерии вмерзли в лед, когда по Европе ещё бродили стада мамонтов и шерстистых носорогов, на которых охотились наши волосатые предки. В той же Антарктиде существуют озера, укрытые толстым слоем нетающего льда. Сквозь лед и снег туда проникает некоторое количество света, и здесь существуют сообщества прокариот, группирующихся вокруг фотосинтезирующих цианобактерий.

 

Кто такие протисты

Первое царство домена эукариот – это царство протист. Некогда в царство протист согнали всех одноклеточных, включая прокариот. Потом прокариот отделили и стали ломать голову, что делать с теми существами, которые в царстве остались. Беда заключалась в том, что провести пусть не совсем четкую, но хоть какую–то мало–мальски определенную границу между протистами и другими царствами домена эвкарий не удавалось. Это только кажется, что всё так просто – протисты одноклеточные, а все прочие многоклеточные. На самом деле между теми и другими существует масса переходных форм, от простых колоний, состоящих из пары десятков совершенно одинаковых клеток, до весьма сложных образований, включающих сотни и тысячи клеток, выполняющих разную работу. Как вы помните, многоклеточные формирования имеются даже у прокариот.

Смутное время в домене эвкарий продолжалось до самого недавнего времени, до тех пор, пока в царство протист не депортировали множество подданных высших царств, которые не обладали хорошо выраженными тканями. Ткань – это группа специализированных клеток, одного типа или разных, выполняющая определенную работу – например, обеспечивающих перенос питательных веществ, или дающих опору и защиту телу или отдельным органам (соединительная ткань), или обеспечивающих движение (мышечная ткань) и так далее. Было принято решение: все эукариоты, не обладающие тканями, – протисты. Когда депортация была завершена, границы стали гораздо более четкими, и пограничные конфликты в среде биологов пошли на убыль.

Хотя, надо сказать, всё далеко не так просто – посмотрел на организм, не обнаружил тканей, отправил в царство протист. Мы уже не раз говорили, что биология особая наука, она имеет дело с объектами, которые эволюционируют, изменяются, причем медленно и постепенно. И провести грань между «уже тканью» и «ещё не тканью» бывает невозможно. Поэтому принимаются во внимание признаки, которые характеризуют группу в целом – «главные» признаки, составляющие её сущность. Например, некоторые водоросли обладают системой клеток, очень похожей на проводящую ткань растений. Но их ближайшие родственники могут таких «тканей» не иметь и при этом сохранять все фамильные признаки водорослей.

image l:href="#image78.png"

Строение листа растения (А) и слоевища водоросли (Б)

И если у продвинутых членов группы эти «ткани» отобрать, они просто превратятся в своих «бестканевых» родичей. Иногда это можно проделать буквально, хирургическим путем, и водоросль будет благополучно существовать. А вот лишить тканей дуб, папоротник или мышь невозможно. Мышь – это система тканей, без них она перестанет быть мышью.

Мало того, существует царство грибов, у которых, хоть тресни, настоящей тканевой организации нет. Но и от всех прочих «бестканевых» организмов они отличаются, отличаются механизмом клеточного деления, которого нет ни у одной другой группы живых существ. Так что наиболее точный ответ на вопрос, кто такие протисты, следующий – это все живые существа, которые обладают клеточным ядром, не имеют нормальных тканей и не относятся к грибам. Смех смехом, но такой подход к делу очень упростил ситуацию.

Теперь в царстве протист благополучно существуют многие группы, которые раньше относили, скажем, к грибам – но эти грибы были настолько на грибы непохожи, что было совершенно непонятно, куда их в этом царстве приткнуть – и которые прозябали на роли каких–то деклассированных элементов. Из царства растений ушли все организмы, которые называются водорослями. Среди них есть как одноклеточные, что вносило путаницу, так и многоклеточные, даже очень многоклеточные, но которые с большинством других растений не имели совершенно ничего общего не только по строению, но, главное, по биохимии и структуре нуклеиновых кислот. Объединяла их только эукариотность и способность к фотосинтезу. Кстати, в царстве растений в свое время пытались пригреть даже фотосинтезирующих прокариот – цианобактерий, которые в память о тех временах до сих пор носят в качестве второго имени имя синезелёных водорослей. С облегчением вздохнули и зоологи, которым теперь не надо втискивать в систему животного царства амеб и инфузорий, которые в эту систему никак не лезут просто потому, что не имеют к настоящим животным никакого отношения.

На этом, однако, проблемы не закончились. Предками протист, несомненно, были какие–то древние прокариоты. Но, судя по строению и биохимии разных групп протист, представляется очень вероятным, что эти группы произошли от весьма разных прокариот и, быть может, некоторые из них приобрели особенности эукариотной организации независимо друг от друга. А это значит, что царство протист вовсе не царство, а, так сказать, конфедерация. И быть может, грибы – вовсе не член триумвирата высших царств, а как раз входят в эту конфедерацию. Попытки разделить протист на несколько царств предпринимаются регулярно, но единой точки зрения, куда кого относить, пока не выработано. Проблема заключается ещё и в том, что часть протист ранее входила в епархию зоологов, у которых совсем иные подходы к классификации организмов, чем у ботаников, в ведении которых находилась остальная часть. Ныне протистологи выделяют в царстве протист от полутора до трех десятков отделов, в основном руководствуясь «ботаническими» критериями – особенностями деления клетки и её биохимией. Зоологи, по привычке обращая основное внимание на строение организма, обычно норовят всех подведомственных им неавтотрофных протист свалить в один отдел (тип). Получается у них это плохо, и мы следовать им не будем.

 

Дополнительные конструкции

Протисты – эукариоты, и у них есть все, что положено нормальной эукариотной клетке. Однако типовой проект часто дополняется различными конструкциями, которые позволяют одноклеточной протисте существовать в этом непростом мире. Прежде всего, большинство протист одето, помимо цитоплазматической мембраны, клеточной оболочкой. 1)та оболочка, как и клеточная оболочка прокариот, прежде всего защищает клетку от повреждений. Но её роль этим не ограничивается. Клеточная оболочка активно участвует н поглощении, транспорте и выделении веществ, то есть это не мертвая броня, как раковина у моллюсков, а вполне жизнедеятельный орган, подобный коже животных.

У некоторых протист, в основном фотоавтотрофных, эта «кожа» состоит из полисахаридов, её основой являются волокна из молекул целлюлозы или хитина, сплетенных в более или менее плотный каркас. Клеточная оболочка может для прочности пропитываться известью или кремнеземом, превращаясь в настоящий панцирь. У других, в основном гетеротрофных, под цитоплазматической мембраной лежит густое сплетение белковых молекул – пелликула.

«Кожа» – вещь хорошая, но фагоцитоз при её наличии, как вы сами понимаете, затруднителен. И у протист, которые обзавелись нлотной «кожей», но не захотели отказываться от питания крупными частицами (например, многие жгутиковые, инфузории), возник «рот» – постоянное отверстие в оболочке.

Рот одноклеточных называется цитостомом. Здесь. цитоплазматическая мембрана впячивается внутрь клетки конусом. Называется этот конус глоткой, и именно на конце глотки и образуется пищеварительная вакуоль. Пища в глотку загоняется часто жгутиками или ресничками, а у некоторых протист в глотке есть даже «зубы» – палочки из микротрубочек. Этими «зубами» протиста разрывает клеточную оболочку бактерий, которыми питается.

Для очень многих протист характерна особая органелла – сократительная вакуоль. В отличие от вакуолей пищеварительных, сократительная вакуоль – постоянное образование. Это своего рода орган выделения, прежде всего выделения излишков воды.

image l:href="#image79.png"

Инфузория бурсария

Цитоплазма – это концентрированный водный раствор всяческих веществ. Соответственно, согласно законам осмоса, вода стремится проникнуть в клетку, и ей это удается. Чтобы не разбухнуть и не лопнуть, клетка и обзавелась сократительной вакуолью, в которую накачивается вода вкупе с отходами клеточного метаболизма. Время от времени вакуоль сокращается и выбрасывает свое содержимое наружу, подобно тому, как выбрасывает непереваренные остатки пищеварительная вакуоль.

 

Амебы и их родня

Амеба, известная каждому из школьного учебника зоологии, относится к отделу саркодовых, классу корненожек. Саркодовые – один из отделов протист, ранее безраздельно принадлежавших царству животных. Амебы – убежденные одноклеточные одиночки. Найти их можно практически повсюду, где есть вода и пригодные в пищу частицы. В общем, неважно какие. Бактерии, мелкие собратья протисты, частички мертвой органики – все идет в дело, корненожки не привередливы. Они живут в почве, на дне морей и озер, ползают по водным растениям, некоторые с комфортом устроились в кишечнике позвоночных. О внутреннем строении амеб рассказывать, наверное, не стоит – оно достаточно подробно описано в учебнике. В общем, это типичная эукариотическая гетеротрофная клетка, окруженная мембраной и не имеющая плотной клеточной стенки. Поскольку амеба существо, по сути, жидкое, то и передвигается она путем «перетекания». В направлении движения вытягивается отросток – псевдоподия. Содержимое клетки переливается в отросток, и амеба смещается вперед на длину псевдоподии. Псевдоподии используются и для захвата пищевых частиц. Размножение наблюдалось только бесполое – путем простого митотического деления. Ближайшие родственники амеб – раковинные амебы. Это жители пресных вод, которые отличаются от своих «голых» родственников главным образом наличием панциря. Этот панцирь, или раковина, имеет вид кувшинчика, из отверстия которого высовываются псевдоподии. Состоит раковина из хитина, часто в состав панциря включаются частицы песка.

image l:href="#image80.png"

Амёба

image l:href="#image81.png"

Раковинные амёбы

Ещё одна группа амебиных родственников, уже не столь простых, это фораминиферы – обитатели морей. Эти существа тоже пользуются раковиной, которая у разных видов имеет самую разную форму – кувшинчика, трубочки, конуса, «улитки» и множество других, для описания которых нет слов.

В простейшем случае раковина состоит из хитина или из хитина, инкрустированного зернами песка. Но у продвинутых фораминифер раковина пропитана углекислым кальцием, веществом, из которого состоят раковины моллюсков и кости позвоночных. Такая раковина прочнее и легче инкрустированной. Псевдоподии фораминиферы, высовывающиеся из устья раковины, тонкие и длинные, способные сокращаться и вытягиваться, как положено приличным псевдоподиям. Псевдоподии ветвятся, переплетаются и сливаются друг с другом, образуя вокруг фораминиферы сложную сеть. Основное назначение этой сети – улавливание добычи, главным образом одноклеточных водорослей и бактерий. Большинство видов фораминифер – жители дна, но есть среди них и виды, которые «парят» в толще воды.

image l:href="#image82.png"

Фораминиферы

Раковины фораминифер – довольно прочное образование. Когда фораминифера гибнет, пропитанная известью раковина опускается на морское дно. Накапливаясь на протяжении тысяч и миллионов лет и постепенно уплотняясь, фораминиферовый ил превращается в тонкозернистые известняки. В частности, писчий мел состоит почти целиком из спрессованных раковинок этих созданий, живших в морях более ста миллионов лет назад.

Вообще же фораминиферы очень древние существа, их раковинки находят в отложениях докембрия, имеющих возраст свыше полумиллиарда лет. Для каждого периода земной истории характерен свой набор видов фораминифер, и по форме раковин можно определить, к какому периоду относятся те или иные отложения.

Кроме корненожек, в отдел саркодовых входят ещё радиолярии и солнечники. Солнечники – немногочисленная, плохо изученная группа, обитающая как в пресных, так и в морских водах. Радиолярии – исключительно морские организмы, парящие в толще воды. Эти протисты обзавелись внутренним скелетом, конструкцией необыкновенно изящных и причудливых форм. Скелет может иметь вид вложенных друг в друга ажурных шаров, колокола, двойной короны, шлема, пирамиды и Бог знает чего ещё. Это сооружение обычно дополняется расходящимися радиально длинными иглами. Некоторые из этих игл образуют внутренний стержень тонких псевдоподий, некоторые просто торчат наружу из шарообразного тела радиолярии. Все это сооружение выполняет одновременно несколько функций. Прежде всего это арматура, позволяющая сохранять постоянную форму полужидкому, довольно крупному (часто несколько миллиметров в диаметре), одноклеточному телу радиолярии. Тонкие иглы, подобно пуху семян тополя, позволяют радиолярии парить в толще воды. Кроме того, иглы оказываются довольно эффективной защитой, во всяком случае от мелкой живности, сравнимой с радиолярией по размеру. Скелет состоит из окисла кремния, то есть, по сути, из вещества, аналогичного кварцу.

image l:href="#image83.png"

Солнечник: Л – участок поверхности клетки при сильном увеличении; /> – общий вид клетки; I – пищеварительные вакуоли; 2 – сократительные вакуоли; 3 – многочисленные ядра; 4 – лучи с псевдоподиями

image l:href="#image84.png"

Радиолярия: А – общий вид; Б – участок клетки при сильном увеличении ; 1 – ядро; 2 – слой плотной цитоплазмы; 3 – пенистый слой цитоплазмы; 4 – псевдоподии

Но у некоторых оригиналов, относящихся к порядку акантарий, скелет формируется из сернокислого стронция.

 

Всякий сброд со жгутиками

Многие протисты обладают во взрослом состоянии жгутиками и способны активно передвигаться. Всех таких протист некогда объединяли в одну группу – жгутиковые, они же флагелляты, они же мастигофоры. Но постепенно, по мере того как становились известны подробности строения и метаболизма этих созданий, группа разваливалась на части. Оказалось, что многие жгутиковые вообще, по–видимому, не состоят друг с другом в близком

родстве. Похоже, что жгутики были приобретены ещё самыми первыми эукариотами, и, соответственно, эти жгутики имелись у предков всех групп современных протист. Часть из них, например амебы, эти жгутики утеряла полностью, другая часть сохранила жгутики только для жизни на определенной стадии цикла. Обычно жгутики сохраняются у гамет, которым требуется перемещаться в поисках пары. А некоторые протисты, самого разного происхождения, от жгутиков отказываться не стали. Вот этих–то разноплеменных созданий и свалили некогда в одну кучу, назвав жгутиковыми (флагеллятами, мастигофорами).

Из сбродной толпы жгутиковых мало–помалу отделялись самостоятельные отделы. Например, отдел хризофитов (золотистые водоросли) выделился из мастигофор. Довольно многие жгутиковые, как оказалось, являются членами древнего и почтенного отдела зеленых водорослей. А всё, что осталось, оказалось сваленным в один отдел зоомастигофор (то есть «животноподобных жгутиковых»).

Один из наиболее важных признаков протисты – это наличие или отсутствие у нее клеточной оболочки, а также из чего эта оболочка строится. Все протисты, которые «ушли» из отдела зоомастигофор, имели жесткую клеточную стенку из целлюлозы или подобных целлюлозе полисахаридов. Все они вдобавок оказались фотосинтетиками, хотя с разным типом митоза и разным составом хлорофилла. Л вот все, кто остался в отделе зоомастигофор, жесткой клеточной стенки не имеют. Вместо нее у них под цитоплазматической мембраной существует более или менее плотная сетка из переплетающихся белковых молекул – пелликула. Это, да ещё наличие жгутиков – вот и всё, что объединяет зоомастигофор. Близкое родство всех этих созданий не доказано, как не доказано и происхождение от разных предков. Среди зоомастигофор есть фотоавтотрофы (всем известная эвглена), есть свободные гетеротрофы, есть симбионты, помогающие пищеварению своего содержателя, есть злостные паразиты, вызывающие опасные заболевания. Последних, увы, весьма много. Изысканными жизненными циклами зоомастогофоры не блещут – размножаются простым делением, половой процесс для большинства видов неизвестен.

Эвглена, которую в школьных учебниках до сих пор пытаются отнести то к животным, то к растениям, на самом деле ни то и ни другое. Она относится к классу эвгленоидных из отдела зоомастигофор. Эвгленоидные – группа протист, почти исключительно пресноводных, в которую входит около 800 видов и которая от всех прочих зоомастигофор отличается по большому счету только одним – наличием хлоропластов. Наличие хлоропласт тов и состав хлорофилла, такой же как у зеленых водорослей и растений, сбивает с толку. Но, по–видимому, эвглены приобрели свои хлоропласты независимо от зеленых водорослей, просто они заглатывали тех же бактерий, что и предки этих водорослей.

Точнее, не тех же, а похожих.

image l:href="#image85.png"

Эвглена

Запасы топлива у эвглен откладываются не в виде крахмала, как у зеленых водорослей и растений, а в виде полисахарида парамилона. Никто другой, кроме эвглен, этого вещества не синтезирует. Митоз у эвглен идет таким образом, что ядерная оболочка не разрушается. Центриоли, веретено и все прочие прибамбасы формируются внутри ядра, затем ядро делится вместе со всей остальной клеткой. Этот вариант митоза абсолютно чужд растениям и животным, но довольно обычен в самых разных группах протист.

Заглатывать бактерий эвглены продолжают и сейчас. Многие виды способны прекрасно существовать в полной темноте только за счет гетеротрофного питания. Мало того, есть виды, живущие в отложениях ила, у которых хлоропластов не бывает вообще. Забавней всего, что, когда пищи много, некоторые эвглены начинают делиться быстрее, чем хлоропласты. Появляются лишенные хлоропластов особи, которые могут благополучно существовать и размножаться. Пока еда не кончится. У зеленых эвглен в основании жгутика есть особое фоточувствительное вздутие, экранированное с одной стороны специальным тельцем – стигмой. Стигма содержит оранжевый пигмент, в результате эвглена способна различать, с какой стороны на нее падает свет. С помощью этого «глаза» эвглена ориентируется и может выбирать места с подходящей освещенностью. У бесцветных эвглен, лишенных хлоропластов, стигмы нет. И это понятно: зачем она им нужна, если они не занимаются фотосинтезом и в темноте им не хуже, чем на свету.

Среди пяти–шести отрядов (или классов?) чисто гетеротрофных зоомастигофор большинство видов, к сожалению, паразиты, причем иногда весьма опасные. Лейшмании, трипаносомы, трихомонады, лямблии – все это жгутиковые, которые вызывают массу неприятнейших заболеваний, в том числе смертельных, вроде сонной болезни или лихорадки калаазар. Правда, не все гетеротрофные зоомастигофоры столь зловредны. Есть среди них честные симбионты, например многожгутиковые гипермастигины. Это обитатели кишечника тараканов и термитов, для которых они переваривают целлюлозу. Поскольку термиты (и многие тараканы) питаются сухой травой, листьями, древесиной и тому подобной постной пищей, в которой кроме целлюлозы почти ничего и не осталось, то без своих симбионтов они бы просто погибли с голоду, так как собственных ферментов, разлагающих целлюлозу, они не имеют. Есть среди гетеротрофных зоомастигофор и свободные охотники. Например, жгутиковые из рода Бодо – ближайшие родственники трипаносом.

Это жители в основном пресных луж, в которых они питаются одноклеточными водорослями и бактериями. Чем грязнее лужа, тем лучше чувствует себя бодо.

image l:href="#image86.png"

Трипаносома

Рай земной, с его точки зрения, это лужи навозной жижи около коровников и выгребные ямы. Здесь эти жгутиконосцы прямо кишмя кишат.

 

Профессиональные паразиты

Ещё две группы протист, ранее относившихся к царству животных, – споровики и книдоспоридии – ведут исключительно паразитический образ жизни. Мы расскажем здесь только о некоторых споровиках. К споровикам относятся завоевавшие мрачную славу возбудители малярии и менее известные широкой публике грегарины, саркоспоридии и кокцидии. Грегарины – паразиты кишечника беспозвоночных. С позвоночными они дела иметь не желают, вреда человечеству не приносят и потому эти странные существа известны только узкому кругу зоологов. Нормальный человек, встретив грегарину (а некоторые из них достигают полутора сантиметров в длину), никогда не подумает, что перед ним одноклеточное. Больше всего грегарины напоминают червей – и тело у многих длинное, да ещё вдобавок и членистое, и ползать они умеют, извиваясь, и передний отдел вооружен крючочками, которыми грегарина цепляется за стенки кишечника. Тем не менее грегарина – вполне добропорядочная одноклеточная протиста. Крючки и нити, которыми она прикрепляется к стенкам кишечника, образованы внешним уплотненным слоем эктоплазмы. Этот слой – кутикула – одевает и все тело грегарины. Передняя часть тела (язык не поворачивается назвать его клеткой) несет органы прикрепления, называется эпимеритом и отделена перетяжкой от всей остальной грегарины. Несколько назад имеется ещё одна перетяжка, отделяющая второй членик – протомерит. Задний, самый большой членик, называется дейтомеритом и несет нормальное эукариотическое ядро. В студенистой эктоплазме, лежащей под кутикулой, у многих грегарин расположены кольцевые и продольные волокна, за счет сокращения которых грегарина и ползает. Но некоторые из них передвигаются не за счет изгибов тела, а реактивным способом, выделяя слизь на заднем конце тела. Дыхание у грегарин анаэробное, извлечение энергии ограничивается в основном гликолизом. Процесс этот, как вы помните, малоэффективный, и пищи грегаринам требуется много.

image l:href="#image87.png"

Грегарина

Надо сказать, что грегарины, в общем, самые безвредные из споровиков. Почти все остальные члены этого племени – внутриклеточные паразиты, доставляющие своим хозяевам массу неприятностей. Большинство из них, как и положено профессиональным паразитам, обладает сложными жизненными циклами, со сменой полового и бесполого размножения и со сменой хозяев. Вполне типичным для этой группы циклом обладает малярийный пренеприятнейшей болезни. Одни формы протекают чуть полегче, другие тяжелее, но, в общем, хрен редьки не слаще. В жизненном цикле плазмодия чередуются стадии полового и бесполого размножения, половое размножение протекает исключительно в комаре, а вот бесполое – в человеке. Все неприятности начинаются с того, что в вашу кровь при укусе комара с комариной слюной проникают мелкие червеобразные спорозоиты. Рано или поздно, но с током крови спорозоиты обязательно попадут в печень, где и внедрятся в печеночные клетки. Здесь спорозоит растет, матереет и превращается в шизонта – крупную амёбоподобную клетку. Ядра шизонта делятся, обособляются, и из шизонта разом получается пара десятков одноядерных клеток – мерозоитов. Процесс этот называется шизогонией. Мерозоиты разрушают клетку, точнее, то, что от нее осталось, и выходят наружу. Часть из них снова проникает в клетки печени, а часть – в эритроциты, где питается гемоглобином. Затем снова шизогония и новое поколение мерозоитов выходит на поиски пищи, разрушая клетки, в которых они сформировались. Циклы следуют один за другим, и через некоторое время часть мерозоитов, проникающих в эритроциты, превращается не в шизонтов, а в гамонтов. Это клетки, из которых в дальнейшем образуются гаметы. Образование гамет происходит только плазмодий. Вообще–то видов малярийных плазмодиев несколько, и, соответственно, существует несколько форм этой в кишечнике комара, который насосался крови больного малярией. Гаметы сливаются, и образовавшаяся подвижная зигота внедряется в стенку комариного кишечника. Здесь она инцистируется, превращаясь в ооцисту. Каждая ооциста дает несколько тысяч спорозоитов, которые проникают в слюнные железы комара. Здесь спорозоит ждет случая, чтобы проникнуть в кровь человека. Кстати, есть данные, что комару, зараженному малярией, тоже приходится не сладко и продолжительность жизни комаров–маляриков значительно меньше, чем их здоровых собратий. Но утешение это слабое.

image l:href="#image88.png"

Цикл малярийного плазмодия: 1 – комар всасывает плазмодии с кровью больного человека;2 – размножение плазмодиев на наружной стенке кишечника; 3 – клетки плазмодия в слюнных железах комара; 4 – плазмодии попадают в кровь человека; 5 – размножение плазмодиев в клетках печени; 6 – размножение плазмодиевв эритроцитах; 7 – слияние гамет

image l:href="#image89.png"

Малярийный комар

Малярия – одна из самых страшных болезней, в тропических районах она до сих пор уносит около миллиона жизней ежегодно. Ещё совсем недавно это число измерялось десятками миллионов – малярия губила больше людей, чем самые жестокие войны. Вы никогда не задумывались, почему в России ещё сто пятьдесят лет назад неугодных людей правительство ссылало на Кавказ? Ведь курортные же места. Конечно, тогда на Кавказе, как и сейчас, шла война. Но дело было не только в войне. В народных песнях в те времена Кавказ назывался «погибельным». Во многих местах гарнизоны сменялись чуть ли не ежегодно, войска вымирали от малярии.

 

Верх совершенства

Инфузории устроены сложнее всех других одноклеточных организмов. По–видимому, это максимальная сложность организации, доступная клетке. Рассказывать о строении инфузорий, пожалуй, не имеет особого смысла. Во–первых, оно довольно подробно описано в любом школьном учебнике. А во–вторых, несмотря на сложность и изощренность строения, никаких принципиально новых органелл в клетках инфузорий нет и, в общем, это вполне обычные эукариотические клетки. И даже наличие нескольких ядер в клетке инфузории не составляет чего–то особо уникального – по нескольку ядер и часто с различными функциями имеют и некоторые другие протисты, причем в одном отделе, скажем, корненожек или зоомасигофор, могут быть как одноядерные, так и многоядерные виды. А вот обмен генетической информацией у инфузорий довольно необычен, и о нем стоит сказать несколько слов.

image l:href="#image90.png"

Разнообразие инфузорий: 1 – инфузория–туфелька: 2 – инфузории , живущие в песке на морском побережье; 3 – хищная инфузория дидиний, поедающая туфельку; 4 – сидячая инфузория трубач; 5 – сидячие инфузории сувойки

Инфузории имеют два ядра, а некоторые и больше. Одно ядро крупное, называется макронуклеусом, другое поменьше – микронуклеусом. Макронуклеус почти всегда один, микронуклесов может быть несколько. Но, в общем, базовая конструкция инфузории двуядерная. Микронуклеус содержит диплоидный набор хромосом и особого участия в рутинной жизни инфузориевого организма не принимает. Макронуклеус буквально набит длинными и короткими обрывками хромосом, это своего рода «мешок с генами». Общее количество ДНК в макронуклеусе намного больше, чем в микронуклеусе, но в нем содержатся не все гены, которые есть в микронуклеусе, и эти гены хранятся в беспорядке. Впрочем, беспорядок не мешает макронуклеусу активно участвовать во внутриклеточных делах. Именно гены макронуклеуса определяют процессы синтеза в клетке и, соответственно, структуру этой клетки и её изменения.

Инфузория не просто сложно устроена, она ещё и ведет себя довольно сложно. Когда инфузория–туфелька плывет, согласованно гребя покрывающими её тело ресничками, или брюхоресничная инфузория шустро бегает по дну, перебирая «ножками» – пучками длинных ресничек (они называются цирры), то движения её отнюдь не бесцельны. Расположенные в мембране хеморецепторы позволяют «чуять» врага или добычу на довольно приличном, по меркам одноклеточных, расстоянии. В зависимости от получаемых сигналов инфузория останавливается (реснички перестают грести), поворачивается (реснички с разных сторон тела начинают грести в разном направлении), может двигаться задом наперед (реснички начинают грести в обратную сторону). Когда добыча настигнута, ряды ресничек, окружающих цитостом, загоняют её в глотку. Все эти сложные действия определяются в значительной степени быстрыми изменениями биохимических процессов. А всякое изменение биохимических процессов – это изменение набора ферментов. А ферменты синтезируются по программам, содержащимся в генах. А гены в данном случае содержатся в макронуклеусе. Так что макронуклеус играет в некотором роде роль «мозга» – органа управления текущими реакциями организма инфузории. И вероятно, чтобы обеспечить быстрое реагирование, он и набит огромным количеством копий наиболее «ходовых» программ. Но вернемся к размножению инфузорий.

При бесполом размножении, когда инфузория делится надвое, микронуклеус делится путем митоза, а вот макронуклеус делится просто пополам. Перед делением фрагменты хромосом могут реплицироваться, но механизма правильного распределения копий по дочерним ядрам нет. Сколько каких фрагментов (и, соответственно, генов) окажется в каждом дочернем ядре – вопрос случая. Поскольку фрагментов хромосом в макронуклеусе огромное количество и гены многократно дублируются, то такое разделение на самочувствии инфузории и её поведении поначалу никак не сказывается. Но рано или поздно, когда позади уже несколько сотен, а то и тысяч делений, обязательно начинает ощущаться некоторый недостаток одних программ и избыток других.

У инфузории есть два выхода из положения. Один из них – конъюгация, соединяющая приятное с полезным. Инфузория одновременно обновляет содержимое макронуклеуса и рекомбинирует программы, хранящиеся в макронуклеусе.

Процесс конъюгации требует участия двух партнеров, причем на роль партнера годится не любая встреченная инфузория своего вида, а особь с определенным типом генома – определённого «пола». Таких «полов» у инфузорий может быть восемь. Две такие инфузории прикрепляются друг к другу обычно той стороной, на которой находится цитостом, то есть «брюхом». Пелликула здесь растворяется, и между конъюгантами образуется цитоплазматический мостик. Одновременно начинает разрушаться макронуклеус, а диплоидный микронуклеус делится путем мейоза, давая четыре гаплоидных ядра. Три из них рассасываются, а одно делится митотически. Теперь в каждом конъюганте по два гаплоидных ядра – пронуклеуса. Один из пронуклеусов каждой особи остается на месте, а другой мигрирует в клетку партнера, где сливается с хозяйским пронуклеусом. Образуется диплоидное ядро, из которого снова образуются макронуклеус и микронуклеус.

Второй способ обновления ядерного аппарата называется автогамией и применяется тогда, когда найти партнера по той или иной причине не удается. При автогамии также происходит распад макронуклеуса и образуются пронуклеусы, которые сливаются друг с другом, а далее всё идет так, как должно идти после конъюгации.

image l:href="#image91.png"

Схема конъюгации инфузории: 1 – макронуклеус; 2 – микронуклеус

 

Рыбья пища

Хризофиты – отдел одноклеточных протист, носящих название водорослей. Это преимущественно фотосинтетики, обладающие хлоропластами коричневого или золотистого цвета. Этот цвет им придает особый золотистый пигиент, маскирующий зеленый цвет хлорофилла, которого у хризофитов тоже хватает. Две самые крупные группы хризофитов – это золотистые и диатомовые водоросли. Хлоропласты золотистых водорослей похожи на хлоропласты их многоклеточных товарищей по царству протист – водорослей бурых. Очень может быть, что эти две группы связаны тесным родством. Среди золотистых водорослей есть виды, лишенные жесткой клеточной стенки и напоминающие амеб. Собственно, от последних, на первый взгляд, они отличаются только наличием в цитоплазме хлоропластов. Большинство, однако, обладает жгутиками и до недавнего времени относилось к сбродному отделу мастигофор. Очень многие золотистые водоросли имеют панцирь или скелет из кремнезема. Способность к фотосинтезу отнюдь не всегда гарантирует мирный характер золотистых. Многие активно хищничают, заглатывая бактерий и своих более мелких собратьев. Размножение у большинства видов бесполое, путем деления. Золотистые водоросли многочисленны как в пресных, так и в соленых водах от полярных широт до тропиков. Они составляют существенную часть фитопланктона и, таким образом, входят в число кормильцев многих водных животных.

image l:href="#image92.png"

Золотистые водоросли

Диатомовые водоросли в жизни рыб играют ещё большую роль. Эти одноклеточные создания – основная пища мальков очень многих видов рыб, как морских, так и пресноводных. Диатомеи в огромном количестве населяют моря, пруды, озера, болота и просто лужи и канавы. Жгутики у диатомей отсутствуют, но зато почти все они обладают необыкновенно изящным кремниевым панцирем. Панцири состоят из двух створок, входящих одна в другую, конструкция напоминает коробочку. Эти ажурные коробочки бывают четырехугольными, круглыми, овальными, треугольными, в форме звездочек. Отверстия и узелки панциря образуют сложный и тонкий орнамент. Кроме того, панцирь слегка опалесцирует, и при хорошем увеличении панцири диатомей – это зрелище, от которого трудно оторваться. Некоторые диатомовые, как и золотистые водоросли, способны к гетеротрофному питанию, а несколько видов вообще лишены хлорофилла и существуют за счет готовой органики. Размножаются диатомовые преимущественно бесполым путем. «Коробочка» делится таким образом, что одна дочерняя клетка получает «крышку», а другая «донышко». Недостающая створка надстраивается всегда таким образом, что она входит в створку родительскую, то есть образует «донышко». Понятно, что с каждым поколением часть диатомей становится всё мельче и мельче. У некоторых панцирь может увеличиваться в ходе роста клетки, но у других он для этого слишком жесток. И когда через несколько десятков бесполых поколений размер диатомеи уменьшается приблизительно на две трети сравнительно с нормальным, водоросль приступает к размножению половому. Внутри «коробочки» в результате деления образуется или четыре мелкие гаплоидные клетки со жгутиком – спермии, или три клетки рассасываются, и остается одна крупная – яйцеклетка. Яйцеклетка растет, так что перестает помещаться в панцире, и его створки раздвигаются. В образовавшуюся щель и проникает один из спермиев, покинувших родной панцирь. Ядра сливаются, и образовавшаяся диплоидная зигота продолжает расти до тех пор, пока не достигнет максимального для данного вида диатомовых размера. При этом она покрывается тонкой кремниевой оболочкой, и в этом виде принимает имя аукоспоры. Старые маленькие створки сидят на противоположных полюсах аукоспоры как шапочки. Затем внутри аукоспоры образуется две здоровенные створки, зигота делится, и каждый отпрыск получает по створке. Нарастив недостающую, отпрыски превращаются в крупных, представительных диатомей, которым снова предстоит измельчать после ряда бесполых поколений.

image l:href="#image93.png"

Диатомовая водоросль: 1 – створки панциря; 2 – цитоплазма

image l:href="#image94.png"

Жизненный цикл диатомовых

 

Красные и бурые водоросли

Речь в этой главе пойдет о многоклеточных водорослях, красных и бурых, ранее принадлежавших к царству растений. Эти. два отдела протист, как недавно выяснилось, вообще не родственники друг другу (равно как и водорослям зеленым). Они основательно отличаются по строению, по особенностям митоза, по некоторым другим признакам. Каждый из этих отделов имеет своих собственных предков – каких–то гетеротрофных эукариот, вступивших около миллиарда лет назад в симбиоз с фотосинтезирующими бактериями. Причем с разными бактериями. Насколько можно судить по составу хлорофилла и некоторым особенностям фотосинтеза, у красных водорослей предками хлоропластов были, вероятно, какие–то древние цианобактерии, а у водорослей бурых – бактерии, напоминающие некоторых современных пурпурных архебактерий.

Красные водоросли, или багрянки, – весьма крупная группа, предпочитающая тропические моря. Немногие виды, правда, проникают и в высокие широты, и даже в пресные водоемы. Хотя багрянки не могут похвастаться эффектной внешностью и крупными размерами, но в морях число видов этих невзрачных существ больше, чем водорослей двух остальных отделов, вместе взятых. Ветвящееся тело красных водорослей состоит из переплетенных многоклеточных нитей, которые скреплены общей плотной желеобразной массой межклеточного вещества. Жизненный цикл багрянок совершенно необычен и состоит из чередования трех поколений: гаплоидного гаметофита и диплоидных карпоспорофита и тетраспорофита. Внешне разные поколения очень сходны – красные водоросли больше всего напоминают невзрачные мхи или лишайники.

Кроме необычного жизненного цикла, багрянки славятся тем, что это самые глубоководные фотосинтетики на нашей планете.

image l:href="#image95.png"

Красная водоросль порфира

Большинство красных водорослей предпочитает, правда, хорошо освещенное мелководье, как и положено нормальным фотоавтотрофам. Но есть виды, растущие на глубинах около трехсот метров, где освещенность составляет всего половину стотысячной (0,0005%) освещенности на поверхности моря! Как .багрянки ухитряются фотосинтезировать при такой освещенности – неизвестно.

Бурые водоросли – обитатели морей, причем предпочитают холодные воды. Это в основном довольно крупные создания, а некоторые – очень крупные. Среди бурых водорослей есть виды, достигающие 60–70 метров в длину. Когда речь идет о подводных лесах, о зарослях водорослей, имеются в виду как раз водоросли бурые. К бурым водорослям относится, в частности, ламинария – всем известная морская капуста. Тело бурой водоросли (слоевище) – напоминает лист на черешке. Этот лист может быть цельным или рассеченным, а может иметь вид длинной широкой ленты. На конце «черешка» – отростки, напоминающие корни, которыми водоросль крепится к грунту. Цвет может быть действительно бурым, но чаще вполне нормальный, зеленый. Крепятся ко дну не все бурые водоросли, есть среди них плавающие, например знаменитые саргассовые водоросли, образующие в некоторых местах огромные скопления на поверхности моря. Жизненные циклы у бурых водорослей довольно сложны и разнообразны.

Некоторые бурые водоросли имеют продольные тяжи из особых клеток, по которым питательные вещества из слоевища поступают в «черешок». Это настоящая проводящая ткань, такая же по устройству, как у растений. Вы можете спросить – коль скоро у бурых, водорослей формируются ткани, то что они делают в царстве протист? Ну, во–первых, проводящая ткань имеется далеко не у всех бурых водорослей. Во–вторых, даже у тех, у кого она имеется, это единственный тип действительно специализированных соматических клеток. И по всей совокупности признаков бурые водоросли вполне вписываются в царство протист.

image l:href="#image96.png"

Бурая водоросль саргассум

 

Предки растений

Зеленые водоросли – самая разнообразная и многочисленная группа водорослей, но, в отличие от своих красных и бурых тезок, это в первую очередь обитатели пресных вод. Впрочем, несколько групп зеленых водорослей обитают в морях, а, кроме того, среди них довольно много созданий сухопутных, которые живут в снегу, в почве, на поверхности камней и на стволах деревьев.

Среди зеленых водорослей есть одноклеточные, есть микроскопические нитчатые формы, есть многоклеточные, достигающие десятка метров в длину. Среди них есть подвижные, передвигающиеся с помощью жгутиков, есть пассивно плавающие в толще воды, есть прикрепленные к субстрату. Зеленые водоросли имеют мало общего с бурыми и красными, кроме, разве что, названия и принадлежности к одному царству. У них были свои собственные предки и свои собственные предки были у их хлоропластов. Зеленые водоросли – древняя группа. Ископаемые остатки, очень похожие на одноклеточные зеленые водоросли, найдены в отложениях с возрастом около одного миллиарда лет. Их красные и бурые тезки появились в морях планеты на пару сотен миллионов лет позднее. У зеленых водорослей есть ряд важных особенностей, общих с растениями. Прежде всего, у них одинаковый состав хлорофилла, и, кроме того, они, как и растения, накапливают запасы крахмала внутри пластид. Крахмал в качестве запасного углевода синтезируют также динофлагелляты и красные водоросли, но и они, и другие протисты–фотосинтетики откладывают запасы в цитоплазме. Как и растения, зеленые водоросли обладают жесткой клеточной стенкой из целлюлозы. Собственно говоря, растения именно от зелёных водорослей и произошли.

image l:href="#image97.png"

Зелёные водоросли: 1 – одноклеточная хламидомонада; 2 – нитчатая трентеполия (наземная); 3 – многоклеточная ульва

Очень многие автотрофные микроорганизмы вступают в симбиоз с гетеротрофами, в том числе с животными. И различные фотосинтезирующие бактерии, и диатомеи из отдела хризофитов (которые при этом теряют створки), и динофлагелляты поселяются в клетках своих хозяев и снабжают их углеводами и кислородом. Одноклеточные зеленые водоросли в этом отношении не исключение, и ничего в этом удивительного нет. Однако у зеленых водорослей известны случаи, когда в критической ситуации хлоропласты решают свою судьбу самостоятельно I, без оглядки на судьбу своих хозяев. Например, некоторые голожаберные моллюски питаются водорослями, благополучно переваривают их, а вот хлоропласты каким–то образом оставляют в живых и поселяют в клетках жабер. Здесь эти ренегаты явно чувствуют себя комфортно, они размножаются делением и, когда моллюск держится на свету, вырабатывают столько кислорода, что их новый хозяин не в состоянии его весь использовать.

image l:href="#image98.png"

Голожаберныймоллюск: 1 – глаза; 2 – щупальца; 3 – вторичные жабры

 

Двойники грибов

Два отдела протист – оомицеты и хитридиомицеты – до противного похожи на грибы, они очень долго считались полноправными подданными грибного царства, и выдворить оттуда эту публику удалось только после углубленного исследования её подноготной. Как и у полноправных грибов, тело этих многоклеточных протист представляет собой мицелий – пучок ветвящихся нитей, гиф. Правда, когда речь идет о грибах или грибоподобных протистах, язык на слове «многоклеточность», право, спотыкается. Дело в том, что гифы – это часто просто «трубочки», наполненные цитоплазмой и содержащие множество ядер, не разделенные никакими перегородками. Такие гифы называются ценоцитными. И даже тогда, когда перегородки есть, то есть гифа поделена на «отсеки», в этих перегородках (септах) имеются отверстия, и цитоплазма свободно гуляет туда и сюда по всему мицелию.

Но вернемся к двойникам грибов. Если они так на грибы похожи, то чего ради их попросили из грибного царства? Прежде всего потому, что хромосомы этих созданий устроены как хромосомы большинства нормальных эукариот и совсем не похожи на весьма специфические хромосомы грибов. Митоз и мейоз у них тоже вполне стандартен, тогда как настоящие грибы и в этом отношении проявляют некоторую экстравагантность. Кроме того, клеточные стенки оомицетов укреплены целлюлозой, тогда как у грибов для этих целей используется хитин. Хитридиомицеты, впрочем, и здесь подделываются под грибы, но особенности хромосомного аппарата и деления выдают их с головой.

Большинство оомицетов – нормальные сапротрофы, то есть они питаются мертвой органикой. Но есть среди них и довольно зловредные создания. В частности, некоторые виды сапролегний хорошо известны аквариумистам, поскольку норовят расти на коже рыб. Поражают они и икру, и кожу амфибий. Один из самых известных оомицетов – фитофтора. Все фитофторы, а их на свете около четырех десятков видов, – злостные паразиты растений.

image l:href="#image99.png"

Сапролегния: А – общий вид гриба на трупе мухи; Б – рассеивание спор

Они поражают какао и ананасы, эвкалипты и яблони, табак, лук, землянику и десятки других растений. Наибольшей славой пользуется фитофтора инфестанс, любительница растений из семейства пасленовых, особенно картофеля. С ней в России ныне знакомы практически все: и те, кто сажает картошку, и те, кто покупает её, любимую, выращенную на родных просторах. Поголовная безграмотность наших сельских хозяев и сельских начальников привела к тому, что за последние три десятка лет фитофтора заразила практически все картофельные поля России. Но это ещё семечки. Свое появление на сельскохозяйственной сцене сто пятьдесят лет назад фитофтора ознаменовала разгромом целой страны – Ирландии. Летом 1846 года все посадки картофеля в Ирландии погибли в течение нескольких недель. Картофель в этой стране в те времена был главной пищей сельского населения (да и сейчас это самая «картофельная» страна мира, по потреблению картошки с ней можем соперничать только мы). Наступил голод, около миллиона человек погибло, около двух миллионов были вынуждены эмигрировать в Америку. Население страны сократилось почти вдвое.

image l:href="#image100.png"

Фитофтора – гифы со спорангиями, высовывающиеся из устьиц листа картофеля

В конце девятнадцатого столетия во Францию из Америки случайно был завезен оомицет плазмопара, поражающий виноград. Виноградарство Франции оказалось, без всяких преувеличений, на грани гибели. Положение спасла человеческая жадность. Крестьяне окрестностей Бордо искони опрыскивали виноградники, растущие вдоль дорог, купоросом. Чтобы прохожие не рвали гроздья. Один из биологов Бордоского университета, занимавшийся проблемой спасения виноградников, заметил, что опрысканные купоросом лозы болеют меньше. Он разработал смесь, содержащую купорос, которая полностью предохраняла виноград от плазмопары. Смесь получила название бордоской жидкости и успешно применяется до сих пор.

Хитридиомицеты, в общем, чисто внешне имеют с оомицетами много общего. Однако родство между этими двумя отделами протист не ближе, чем каждого из них с настоящими грибами или, скажем, с бурыми водорослями# Среди хитридиомицетов также есть и свободные сапротрофы, есть и паразиты.

image l:href="#image101.png"

Хитридиомицетп: А – зооспоры; Б – покоящиеся спорангии; В – спорангии в тканях капусты.

 

Суперамебы

Миксомицеты – странные существа, к которым, строго говоря, неприменимы понятия «одноклеточные» или «многоклеточные». Это текучая масса протоплазмы, одетая лишь плазматической мембраной и тонкой слизистой оболочкой. В протоплазме содержится множество диплоидных ядер, ничем друг от друга не отделенных. Называется эта штука плазмодием. Плазмодий движется, подобно большой амебе, попутно захватывая и переваривая бактерий, одноклеточных протист, частички разлагающейся органики. Ядра делятся путем митоза, плазмодий растет и может достигать массы хорошо откормленной мыши – порядка 30 граммов. Поскольку вся эта масса растекается по поверхности тонкой пленкой, то плазмодий может занимать около квадратного метра поверхности. И при необходимости это внушительное существо, не теряя единства, способно просочиться через тонкую ткань или промокашку. Плодовые тела миксомицетов, кстати, тоже совсем не микроскопические образования. Эти плотные пузырьки, слегка напоминающие грибы дождевики, вы наверняка встречали не раз.

Рост плазмодия продолжается, пока хватает пищи. Когда все съедено, он пускается в дальний путь, и тогда его можно встретить в довольно неожиданных местах. Иной раз плазмодии даже взбираются по стволам деревьев. В передвигающемся плазмодии образуются расходящиеся веером трубочки из уплотненной протоплазмы, напоминающие жилки листа. Когда с едой совсем плохо, плазмодий останавливается и распадается на множество обрывков. Каждый обрывок «собирается в кучку», из «кучки» вырастает стебелек, а на вершине стебелька образуется спорангий. Все вместе, как мы уже упомянули, очень напоминает плодовые тела некоторых грибов. В спорангии ядра приобретают клеточные стенки и образуют споры, которые способны сохранять жизнеспособность несколько десятков лет. В подходящих условиях из спор выходит маленькая гаплоидная амебка или клетка с одним–двумя жгутиками. Это вполне самостоятельные организмы, которые не просто бегают в поисках пары, высунув язык, как положено гаметам, а ведут трудовую жизнь – питаются. Две такие клетки, встретившись, сливаются (плазмогамия). Потом сливаются их ядра (кариогамия), и амебка становится диплоидной. Амебка продолжает питаться, ядра начинают митотически делиться, плазмодий растет, матереет, пока снова не наступит голодное время. У некоторых видов миксомицетов ядра могут начать делиться и в гаплоидной амебке–гамете, тогда из нее вырастает гаплоидный плазмодий, ничем по виду и поведению не отличающийся от диплоидного.

image l:href="#image102.png"

Миксомицет стемонитис: А – внешний вид спороношения; Б – фрагмент при сильномувеличении

Миксомицеты – обычные обитатели наших лесов, особенно широколиственных. Их излюбленные места – скопления влажных опавших листьев, гниющие стволы деревьев. Вообще же эти создания любят тепло и влагу, поэтому их больше всего в тропических лесах, а в степях. и пустынях их нет вовсе. Даже полян они обычно избегают. Но в период миграций могут забрести в самые неподходящие места.