Жизнь в невозможном мире: Краткий курс физики для лириков

Цвелик Алексей

Глава 4

Начало научной карьеры

 

 

Не знаю, что стало с ним сейчас, но в конце 1970-х годов Троицк был очень милым городком, протянувшимся вдоль Калужского шоссе. На стороне шоссе, противоположной городку, далеко-далеко простирался лес. Летом в лесу этом было полно грибов, что и составляло основную часть моего рациона. До переезда в Троицк я грибами никогда не увлекался, так как в тех местах, где я жил, их просто не было. А тут на меня нашло вдохновение: я купил маленький справочник по грибам, где, например, было очень толково описано, как отличать ложные (смертельно ядовитые) опята от настоящих, и, вооружившись им, пошел в лес. Первые же грибы, на которые я наткнулся, были именно опята. Ложные росли едва ли не вперемежку со съедобными, но, следуя книге, я выбрал жизнь и с честью выдержал испытание. С тех пор моя страсть к грибам никогда не умирала, хотя до такой утонченности в их употреблении, как Виктор Пелевин, я не доходил и вратами в духовный мир для меня они никогда не служили.

Мне дали маленькую комнатку в четырехкомнатной квартире, выполнявшей роль одного из общежитий «Давильни». Каждую комнату квартиры занимали молодые сотрудники института; в проходной комнате, где тоже стояли кровати, в момент моего появления никто еще не жил, хотя в скором времени жилец появился и там. После шести лет в физтеховских общагах иметь отдельную комнату было почти райским блаженством.

Я уже говорил, что проходная комната в нашей квартире некоторое время пустовала. Но однажды дверь в мою комнатку отворилась и на пороге возникла босая фигура в майке на голое тело и в армейских галифе. В одной руке фигура держала портянку. «Вот, сорок лет и — портянка!» — изрекла фигура, считая, по-видимому, формальное представление излишним. Это был наш новый пожарник. К счастью, появлялся он не каждую ночь и, даже когда появлялся, не каждый раз напивался до потери сознания.

Начальником теоротдела «Давильни» был Роберт Архипов, ученик великого Ландау, человек порядочный. Он, в отличие от большинства завлабов, не эксплуатировал своих сотрудников, и мне была предоставлена свобода. За девяносто рублей в месяц я мог заниматься тем, чем хотел, и меня увлек к себе Саша Барабанов. Мое первое вдохновение в большой науке пришло из обзорной статьи американского профессора Чандра Вармы, человека, с которым я через пятнадцать лет встретился в Америке и продолжаю встречаться до сих пор. Скажу сразу: стиль американской физики, как тогда, так и сейчас, отличается от того, к чему я, по своему консерватизму, привержен, чересчур большой свободой. Вот если надо, чтобы дважды два было пять, так оно будет. Конечно, не всякий раз, но иногда… Короче, достать из рукава туза порой дозволяется. «Нормальный человек не может быть не плутом».

Как бы то ни было, из статьи Чандры, хоть он и давал понять, что описанная им проблема решена и делать там больше нечего, было ясно как день, что ничего не ясно и работы в той области, о которой он говорил, хватит еще на десятки лет. Так оно и вышло.

Мы с Барабановым страстно взялись за проблему, которая вот уже добрых тридцать лет называется проблемой тяжелых фермионов и представляет собой одну из нерешенных загадок в той области физики, которой я занимаюсь. Я не буду утомлять читателя подробностями, а лучше расскажу про самого Барабанова.

Отец Александра Федоровича (Саши) Барабанова был при Сталине министром гражданской авиации. От него осталась квартира на Красной Пресне с высоченными потолками, старинной мебелью и постепенно убывавшим количеством хрусталя. Саша был диссидентом, общался с самой что ни на есть неблагонадежной публикой и здорово пил. Одним из его коронных выражений было «я пошел развиваться далее». Это означало, что он уходит в запой. Хуже всего было то, что запои его сопровождались странствиями; он был, так сказать, перипатетик. Не было в природе силы, которая могла бы удержать Сашу в его «развитии». Помню, однажды мы, то есть Саша, я и еще один сотрудник «Давильни» по кличке Богус, справляли в моей комнатке в Троицке мой день рождения, который приходится на 23 марта. На улице была типично мартовская погода, то есть около нуля, талый снег, солнце, слякоть. После того как наш португальский портвейн иссяк, Барабанов объявил о своем намерении развиваться далее, а мы с Богусом, желая этого не допустить, спрятали его куртку и заперли внешнюю дверь на ключ. Тогда, с чрезвычайным достоинством и не выказывая ни малейшего признака спешки, Саша, с недопитой рюмкой в руке, выбрался через окно и, не забывая время от времени отхлебывать живительную влагу, медленно удалился в подмосковные пространства, чтобы исчезнуть там на несколько дней.

Через Сашу я узнал много такого, что советская власть хотела скрыть. Среди его друзей был основатель Московской Хельсинкской группы Юрий Александрович Орлов, которого как раз тогда арестовали и посадили в тюрьму. Орлов живет сейчас в городке Корнелл штата Нью-Йорк и все еще работает (он физик, специалист по ускорителям элементарных частиц). Он иногда приезжает к нам в Брукхэйвенскую национальную лабораторию, я несколько раз с ним разговаривал. Такой вот маленький мир и тоненький слой.

Говорят, что на осине не растут апельсины, но, что касается Саши и его друзей, многие из которых были отпрысками или близкими родственниками людей, занимавших при Сталине крупные посты, эта поговорка на них явно не распространялась. Это были чрезвычайно благородные и интеллигентные люди, и Саша среди них — первый. Отмечу двух: Костю Кикоина, чей дядя Исаак Кикоин возглавлял секцию разделения изотопов в советском атомном проекте (думаю, самую важную в техническом отношении) и Витю Флерова, чей дядя был крупнейшей фигурой в том же проекте. Это он известил Сталина в 1942 году письмом о том, что пора бы и нам начинать работу над бомбой. Витя и Костя сейчас работают в Израиле, и иногда мы встречаемся на конференциях.

Я написал кандидатскую диссертацию довольно быстро, даже и не поступая для этого в аспирантуру, а формально оставаясь на должности стажера. Помню, как директор «Давильни», который вообще считал теоретиков чем-то бесполезным, ворчал по этому поводу вот, мол, еще один становится неуправляемым (у кандидата, работающего в институте Академии наук, появлялась некоторая свобода, так как какая-никакая зарплата была гарантирована, а выгнать человека было трудно).

1979 год, предшествовавший защите моей диссертации, был наполнен множеством ярких событий, отпечатавшихся в памяти. Самым главным было то, что в конце этого года я познакомился со своей будущей женой. Я увлеченно работал, было полно друзей, культурная жизнь в Москве кипела, и нашему академгородку немало от этого перепадало. К нам приезжали интересные люди, та же Галина Андреевна Белая, о которой я писал выше. Приезжал Вячеслав Всеволодович Иванов, известный семиотик, человек, знавший около семидесяти языков, среди них штук десять мертвых, таких, как, например, язык хеттов. Говорили, что он знает даже язык пчел. Приезжал в «Давильню» со своим концертом (одним из последних) Владимир Высоцкий.

Нужно сказать, что отличительной чертой советский научной интеллигенции были ее широкие гуманитарные интересы. Я был совершенно не одинок в своем увлечении живописью, литературой, историей и даже философией. На Западе этого совершенно нет, научный работник здесь — почти исключительно технарь, чей духовный голод по большей части удовлетворяется последним номером «Ньюйоркера».

Защитился я в марте 1980 года. Для того чтобы получить право на защиту диссертации, мало было ее написать, нужно было сдать ряд экзаменов, среди них экзамен по марксистско-ленинской философии. Я думал, что, как это было в Физтехе, можно почитать книжки и пойти сдавать. Не тут-то было. К нам в Троицк прислали марксистского начетчика из Института философии АН СССР, который провел с нами серию семинаров. Это был шок, хотя и очень поучительный. Мы занимались дисциплиной, основные достижения которой, как выяснилось в ходе семинаров, противоречили той философии, которую нам надлежало зубрить и сдавать! Основной книгой, на которую эта «философия» опиралась, была книга Ленина «Материализм и эмпириокритицизм», где он высказывался по поводу современной ему физики (написана в 1910 году). Там были перлы типа «с помощью пятого измерения ребеночка не родишь», но были, надо сказать, и прозрения. Владимир Ильич совершенно недаром всполошился, так как угроза, созданная исповедовавшейся им «научной» философией, была вполне реальной, а он полагал, что мировоззрение жрецов революции должно быть когерентным и не содержать прорех. Опус Ленина нужно было знать практически наизусть. Я быстро понял, что это мне не по силам, так как, несмотря на свою хорошую память, не мог запомнить просто ничего. По какому-то наитию я стал читать эту книгу, запивая ее разведенным наполовину водой сухим грузинским вином «Саперави». Это помогло.

Были и другие курьезы. Помню, как в «Давильню» приезжал какой то шарлатан с лекцией о филиппинских целителях, летающих тарелках и прочем в том же роде. Среди множества щекочущих нервы киносюжетов, показанных им на экране, был один, который особенно меня позабавил. Снят он был предыдущей зимой, особенно морозной (в Самаре температура на Новый год упала до -47 °C, а в Москве — до -35 °C). И вот на экране, среди закутанных с головы до ног прохожих, по улице шагает веселый могучий старик с развевающейся бородой, босиком и в одних трусах. Оратор поведал нам, что это Иванов, человек, проповедующий близость к природе и скорое пришествие инопланетян. Это имя я услышал потом не раз, так как Иванов основал целую секту, среди последователей которой оказались даже некоторые из моих знакомых. В своих писаниях он утверждал, что скоро на Землю высадятся инопланетяне и выживут только те, кто научится «брать от природы не только хорошее, но и плохое».

Мысль о том, что от жизни придется брать плохое, посещала нас в то время не только в связи с возможным нашествием инопланетян. Было отчетливое впечатление, что дело идет к тому, что холодная война может в какой-то момент перейти в горячую. Это чувство особенно усилилось во время правления Андропова. Мне часто приходится слышать, что угроза войны была иллюзорной и вся эта гонка вооружений была не более чем политической игрой. Я убежден в ошибочности этого взгляда. Марксистская ортодоксия всегда утверждала: пока существует мировая капиталистическая система, война неизбежна. Это то, что мы учили на занятиях по марксизму-ленинизму, то, что читали в статьях Ленина. Конечно, были и всякие разговоры о мирном сосуществовании, но в успех его верилось с трудом, так как все время то тут, то там вспыхивали военные конфликты и никакой уверенности в том, что однажды терпение одной из сторон не лопнет, не было. Расскажу эпизод, который подтвердил мои худшие опасения. Году в 1978-м мне довелось познакомиться с одним военным биологом, чья дочь проявляла ко мне интерес. Это был очень начитанный человек с широкими культурными интересами, жизнелюб. Зашел разговор о возможном ядерном конфликте. То, что он сказал, поразило меня до глубины души и поражает до сих пор. Во-первых, он заявил, что, по его мнению, ядерная война неизбежна. На мое удивление, настроен он был довольно оптимистически: «Ну конечно, все города выгорят, а деревня останется. Для меня лично проблема только в том, чтобы на начало войны оказаться в отпуске в деревне. Но зато какой прогресс в разработке очистных сооружений будет после войны! Все же придется чистить!» На мой вопрос о радиации он ответил, что присутствовал на двадцати ядерных испытаниях и по опыту может сказать, что радиация падает до приемлемого уровня через два-три дня. Далее он поведал нам, что занимался медицинскими исследованиями населения, пившего воду из зараженных рек (читатель, ты еще ностальгируешь по прекрасным «временам застоя»?), и «уровень раковых заболеваний возрос не сильно». Читающие эти строки могут сказать мне, что мой собеседник, наверное, был просто дурак. Однако это объяснение не вяжется ни с занимаемой им должностью, ни с суждениями его по другим предметам, которые, в общем, были весьма здравыми.

Думаю, что он был не дурак, просто дело обстояло намного хуже. Передо мной был пример глубочайшего конформизма. Человек врал самому себе, чтобы вписаться в систему, и заврался до такой степени, что сам верил своему вранью. А врал он, чтобы соответствовать ожиданиям начальства. С таким явлением я, кстати, сталкивался в жизни очень часто, хотя и по менее серьезным поводам. Весь абсурд этого конкретного вранья обнажил Чернобыль. Однако сколько еще другого осталось…

 

Медитация

. О числах

Роль чисел в нашей жизни, равно как и более общего знания, на числах основанного, математики, так же огромна, как и загадочна. Хотя, наверное (и, на мой взгляд, почти наверняка), не все знание, которое человек может получить об этом мире, может быть поверено математически, но вряд ли можно спорить с тем, что та часть, которую можно таким образом поверить, является наиболее бесспорной и надежной. И здесь пролегает тайна, и, как говорится, тайна сия велика.

Сначала немного истории. Чем вообще занимается наука? Мы уже говорили об этом: изучает законы природы. Утверждение это, являясь, по-видимому, очень простым, содержит в себе два исключительно нетривиальных предположения. Во-первых, утверждается, что у природы есть законы (иначе и изучать было бы нечего), и, во-вторых, что мы можем их познать (иначе задача науки была бы безнадежна). Идея законов природы возникла у человечества далеко не сразу; есть основания связывать ее возникновение с религиозно-философским обществом, образовавшимся в VI веке до н. э. вокруг древнегреческого мудреца Пифагора. Существование законов природы, однако, совсем не гарантирует их познаваемость не только существом с такими мыслительными способностями, как человек, но и в принципе. То, что мир можно познать, исходя из какого-то опыта о нем, основано на том, что мир этот в высокой степени регулярен, то есть наполнен множеством похожих друг на друга событий. Само по себе существование законов природы этого совсем не предполагает. Так как читателю такое утверждение может показаться неожиданным, поясню подробнее.

Возьмем классическую механику, то есть подотдел физики, занимающийся движением макроскопических (то есть, проще говоря, видимых) тел. Такое движение описывается законами Ньютона, которые, как известно, являются детерминистскими. То есть, если в настоящее время нам известны координаты и скорости частиц, составляющих систему, уравнения Ньютона позволят рассчитать их положения и скорости в любой момент будущего или прошлого (долой все тонкости квантовой механики, частицы большие, ну хоть биллиардные шары — квантовой механики нам здесь совсем не нужно). Итак, будущее такой системы вроде бы можно предсказать. Однако есть тонкость. Среди механических систем имеются те, поведение которых не очень чувствительно к начальным условиям. Например, вы заводите свой автомобиль, и, стоит ли он в гараже, или у магазина, или где-нибудь на обочине, если с ним «все в порядке», он заводится и едет. И тут даже без особенно сложной математики можно руководствоваться каким-то опытом и составить вполне разумные ожидания о том, что будет происходить. Однако есть и другие системы, так называемые хаотические. Системы эти подчиняются тем же самым законам, однако их поведение исключительно чувствительно к начальным условиям. Поэтому определить «на глаз», что будет с ними дальше, выработать какую-то качественную картину ожидаемого не представляется возможным. Примерами таких систем является бурлящая вода (турбулентность) или атмосфера (хорошо известно, что предсказания погоды ненадежны, а долгосрочные — невозможны). На самом деле все обстоит еще более драматично. Дело в том, что расхождение начальных данных в таких системах приводит к расхождению траекторий, которое увеличивается со временем экспоненциально. Поэтому не только человек, но и никакой компьютер не сможет посчитать, к чему приведет малое изменение начальных данных через произвольный отрезок времени. Вернемся к предсказаниям погоды. Чем в более далекое будущее мы пытаемся заглянуть, тем неопределеннее оно становится, и за пределами десяти дней, я думаю, никакие мало-мальски детальные прогнозы просто невозможны.

Так вот, условием самой возможности знаний является относительная регулярность нашего мира, основанная на том, что хаотические системы занимают в нем относительно небольшое место. Для дотошного читателя добавлю: положение это в классической механике оправдано теоремой Колмогорова-Арнольда-Мозера, которая утверждает, что большинство механических систем, хотя и не являются интегрируемыми (то есть такими, где уравнения движения могут быть решены аналитически), большое количество времени проводят вблизи траекторий интегрируемых систем.

Следующим утверждением, которое тоже, по-видимому, принадлежит пифагорейской школе, является то, что наиболее адекватным языком, на котором можно обсуждать законы природы, является язык математики. Многие высказывания о природе, выразить которые на обыкновенном языке чрезвычайно сложно, становятся совершенно ясными и прозрачными, будучи сформулированы математически. Наверное, читатель слышал, что Пифагор заметил сходство между законами, управляющими движением планет, и законами музыки. Для человека, математически мыслящего, это сходство очевидно, он как бы слышит это, отсюда и выражение «музыка сфер». Гармония небесного свода подобна гармонии музыкальной. Так же как для восприятия последней у человека должен быть «слух» (что есть не только, да и не столько уши), так и для восприятия законов природы нужен некий внутренний орган, «умный слух».

Нетривиальность ситуации в том, что математика является «абстрактной» наукой. Когда в разговорной речи употребляют термин «абстрактный», то имеют в виду что-то, не имеющее отношения к реальной жизни. И конечно же, с математикой это в 90 % случаев так. То есть можно заниматься ею самой по себе, совершенно не обращая внимания на происходящее вокруг и не имея в виду, что результаты твоих исследований кому-нибудь, кроме твоих коллег, пригодятся. У математики есть свои внутренние проблемы, она движима своими внутренними импульсами. И вдруг!.. И вдруг результаты этих кабинетных изысканий оказываются совершенно необходимыми при изучении природы, того мира, от которого математик отвлекся и затворился. Меня лично это всегда глубоко потрясало, и без преувеличения скажу, что мой непреходящий интерес к физике основан в большой мере на этом.

Примеров того, как абстрактные идеи переставали быть абстрактными и становились в высшей степени конкретными, можно приводить бесконечно. Ну, возьмем хотя бы историю самого понятия числа. Начиналась она как раз с другого конца, то есть теория шла за практикой. Сначала думали, что есть только целые числа и дроби, потом обнаружили, что есть и иррациональные числа, такие как квадратный корень из двух или отношение длины окружности к ее диаметру (число «пи»). Все это пришло из непосредственных наблюдений; нужно было соотнести длину диагонали квадрата с его стороной или длину окружности с ее диаметром. Пифагорейский мир от этих открытий чуть не рухнул: человека, открывшего иррациональные числа, говорят, утопили. Но вот история появления мнимых чисел несколько иная (напомню, что мнимым числом является произведение любого «обычного» числа и квадратного корня из минус единицы; последний в математике обозначается символом i ). Мнимые числа возникли в математике (кажется, в XVI веке) как промежуточная ступень при решении алгебраических уравнений, то есть из нужд самой математики. Долгое время казалось, что их использование есть просто вопрос удобства и ничего глубокого за ними не стоит. Действительно, такими числами для простого счета пользоваться нельзя; не может же быть i яблок или расстояние от одного города до другого не может равняться i километрам. Однако оказалось, что мнимые числа очень даже нужны для физики, не просто нужны, а так нужны, что обойтись она без них просто не может.

Чтобы обсуждение не выглядело совершенно отвлеченно, приведу пример применения комплексных чисел. Вот, скажем, нам надо посчитать площадь под кривой, заданной уравнением у = 1/(х 2 + 1), часть которой изображена на рисунке (предполагается, что кривая простирается от минус до плюс бесконечности, но этого, понятно, не нарисуешь).

#i_001.png

Математически эта задача эквивалентна вычислению интеграла:

#i_002.png

Все числа и функции здесь действительные, что очевидно хотя бы из того, что площадь под кривой (закрашена на рисунке серым цветом) действительна. Однако оказывается, что интеграл очень просто вычисляется, если переопределить его как интеграл от комплексной функции. Он равен π = 3,14159… Разумеется, я привел самый простой пример; в данном случае интеграл можно посчитать и без комплексных чисел, но есть множество примеров, когда этого сделать нельзя.

На мнимых числах расширение понятия числа не остановилось. В начале XIX века были введены кватернионы, перешедшие в физику сто лет спустя. В конце XIX века появились так называемые Грассмановы числа, названные так по имени открывшего их немецкого математика Германа Грассмана. Представьте себе объекты, которые можно перемножать (но не делить друг на друга) и складывать, а также интегрировать. Отличие этих объектов от обычных чисел состоит в том, что произведение двух Грассмановых чисел ab меняет знак, когда сомножители меняются местами: ba = — ab. Соответственно, произведение любого Грассманова числа на себя равно нулю. Звучит как игра абстрактного ума, не правда ли? Оказалось (через сто лет), что квантовая теория поля без таких чисел не может обойтись.

А не вспомнить ли историю геометрии Лобачевского? Задал человек себе вопрос: можно ли построить логически непротиворечивую геометрию, отказавшись от постулата о том, что параллельные прямые никогда не пересекаются. Выяснилось, можно. Казалось бы, чистая абстракция. Практики (типа Чернышевского) говорили, что Лобачевский просто сумасшедший. А потом еще более сумасшедший немецкий математик Риман построил общую теорию таких геометрий, куда геометрия Лобачевского вошла как частный случай. А через несколько десятков лет Альберт Эйнштейн воспользовался этими «праздными измышлениями» для создания общей теории относительности, теории непревзойденной красоты и изящества.

Итак, математика, являясь абстрактной и отвлеченной наукой, самым неожиданным образом приносит вполне конкретные плоды. Однако на этом чудеса не кончаются. Давайте зададим себе вопрос: где находятся те объекты, которые математика изучает? Даже самая прикладная математика не имеет дела непосредственно с вещами и явлениями этого мира. Вместо этого она имеет дело с какими-то моделями, идеализациями типа идеальной сферы или окружности. В природе ничего такого совершенного нет (как говорил Гегель, «природа бессильна следовать идее»). Все утверждения математики касаются таких вот идеальных объектов. Например, доказал Пифагор теорему о том, что сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы — но где эти треугольники? А вот еще вопрос: выдумал Пифагор эту теорему или открыл? Если бы никто к настоящему времени не доказал этой теоремы, была бы она верна? Или: если все математики когда-нибудь исчезнут, останется ли верной теорема Пифагора? Ясно поэтому, что мир математики принадлежит к миру идей — разумных нематериальных сущностей, существующих объективно, вне нашего желания и воли.

Еще немного о числах. Как для пифагорейцев, так и для многих других мыслителей, мистиков и философов, числа не представляли из себя какой-то безразличный ряд, а обладали некой индивидуальностью. Казалось, что некоторые из них обладают особым смыслом. «Кто имеет ум, тот сочти число зверя, ибо это число человеческое; число его шестьсот шестьдесят шесть» (Отк 13, 18). Имеют ли эти представления под собой какую бы то ни было рациональную основу? Ну вот, например, что было бы, если бы у пространства, в котором мы живем, было не три измерения, а больше или меньше? (Я обсужу этот вопрос подробнее в одной из медитаций.) Было бы вот что: в пространстве более чем трех измерений не существовало бы стабильных атомов, так как электрическое поле не могло бы удержать электроны около ядра, а в пространстве с менее чем тремя измерениями атомы были бы настолько стабильны, что их ионизация была бы невозможна и никаких химических реакций не происходило бы. Так что, с одной стороны, — полный распад, а с другой — полный застой. Таким образом, число «три» здесь выступает, как весьма специальное, пограничное. Или, скажем, число «четыре». Это валентность атомов углерода, с такой валентностью они могут образовывать длиннющие цепочки, в которых две связи каждого атома идут на формирование костяка цепочки, а на две оставшиеся можно насаживать, как буквы, другие атомы (водород, кислород, фосфор и т. д.). Получается идеальное хранилище информации: строка и буквы на строке. На этом и стоит вся биология. Это примеры важных (для нас, разумеется) целых чисел. Однако роль некоторых иррациональных чисел представляется мне неизмеримо большей. Вот, например, основание натуральных логарифмов е = 2,721828… или «пи» = 3,14159… встречаются чуть не в каждой физической формуле. Кстати, е представляется в довольно забавном виде, как предел последовательности (1 +1/n) n где n целое число при n, стремящемся к бесконечности.

В каждом движении мысли находятся люди, доводящие идею до предела, переходящего в абсурд. Так и приведенные выше чудесные свойства математики породили представления о том, что мир может быть описан, так сказать, на кончике пера, что законы его можно извлечь, постулируя несколько аксиом и далее руководствуясь соображениями непротиворечивости. То есть, если аксиомы выбраны правильно, то построить правильную теорию можно, не оглядываясь на эксперимент. Последний, может, и нужен для правильного выбора аксиом, но не более того. Такая точка зрения не является очевидно абсурдной. В истории науки известны примеры, когда теории удивительной сложности строились, исходя из общих соображений и при практически полном отсутствии экспериментальных данных. Примерами являются теория относительности (как специальная, так и общая) и теория античастиц Дирака (Дирак предсказал существование античастиц, построив математически непротиворечивое объединение квантовой механики и теории относительности). Однако надежды такого «математического фундаментализма» были окончательно похоронены австрийским математиком Куртом Геделем, который доказал, что даже такой относительно простой раздел математики, как теория натуральных (то есть целых положительных) чисел, не может быть построен на основании не только конечного, но даже бесконечного, но счетного количества аксиом. То есть какую бы непротиворечивую систему аксиом мы ни брали, всегда найдутся истинные факты, касающиеся натуральных чисел, которые в рамках этой системы не могут быть доказаны. Так как наука о натуральных числах входит как составляющая в любой отдел математики и физики, то теорема Геделя распространяется на все математическое знание. Значит, от мира отгородиться не удается.