Архитекторы компьютерного мира

Частиков Аркадий

ГЛАВА 2

Первые изобретатели

 

 

Конрад Цузе

Создатель первого программируемого цифрового компьютера

Конрад Цузе

Один из мифов, касающийся начального периода истории компьютеров, обычно связывался с исследованиями и разработкой американских ученых и инженеров. Этот миф был разрушен в 1969 году, когда информация относительно компьютеров Цузе стала доступной в США и других странах.

Конрад Цузе родился 22 июня 1910 года в Берлине.

Его отец, Эмиль Цузе, был почтовым чиновником, зарабатывал немного, но вместе с женой Марией Цузе, и сестрой Конрада — Лизелоттой, делал все, что мог, чтобы поддержать интерес сына к конструированию вычислительных машин. Надо сказать, что еще в детстве Конрад сконструировал действующую модель машины для размена монет. В 1935 году он окончил высшую техническую школу (Technische Hochschule) по специальности "гражданское строительство" и начал работать аналитиком в авиакомпании Henschel. Работая в этой компании, Цузе столкнулся с многочисленными нудными вычислениями, связанными с проектированием самолетов. В 1936 году, в возрасте 26 лет, он решил проектировать вычислительный прибор (компьютер), имея для этого накопившиеся идеи и квартиру родителей в качестве "мастерской".

Он собирался построить серию компьютеров, первоначально названных Versuchsmodell (экспериментальная модель). Первый Versuchsmodell, V-1, построенный в 1938 году, был полностью механическим, на 16 машинных слов и занимал площадь 4 кв. метра (восстановленная версия V-1 находится в музее Verker und Technik в Берлине). Серию Versuchsmodell Цузе рассматривал в качестве рабочего инструмента для инженеров и ученых, которые имели дело со сложными аэродинамическими вычислениями.

В начале войны, в 1939 году, Цузе был завербован в армию, но вскоре он и многие инженеры, подобные ему, были освобождены от военной службы и приписаны к инженерным проектам, поддерживающим военную немецкую мощь. Цузе направили в Германский авиационный исследовательский институт в Берлине.

Вернувшись в свой родной город, ученый продолжил совершенствовать серию Versuchsmodell в доме своих родителей, и в большей степени за счет своих собственных средств, хотя он работал в институте, который конструировал военные самолеты для Luftwaffe. Гельмут Шрейер, который сотрудничал с Цузе при создании компьютеров, предложил использовать электромагнитные реле для второго Versuchsmodell, V-2. Шрейер показал Цузе, как эти реле могут быть применены в структуре цифрового механического компьютера, разработанного Цузе. Шрейер, уехавший после войны в Бразилию, также рассматривал возможность применения вакуумных ламп для создания компьютеров, и в конечном счете им была разработана разновидность "триггерной схемы", сейчас широко используемой в компьютерной логике.

V-2 был, конечно, очень ненадежен, но один из редких случаев его нормальной работы случился тогда, когда Альфред Тейхман, ведущий ученый из Германского авиационного института, посетил дом Цузе, по его приглашению. Тейхман был специалистом по важнейшей проблеме самолетостроения — вибрации крыла. Он сразу понял, что машина, подобная V-2, может помочь инженерам решить эту проблему. Проблема вибрации "исчезла под нажатием пальца", позднее вспоминал Цузе.

Тейхман помог Цузе достать денег для его работ по созданию компьютеров, но Цузе продолжал работать в доме своих родителей и никогда не нанимал посторонний штат ассистентов. При помощи Шрейера Цузе завершил первый в мире полностью функциональный, программно-управляемый компьютер в конце 1941 года.

Этот третий Versuchsmodell получил название V-3. Он имел 1400 электромагнитных реле в памяти, 600 реле для управления вычислениями и еще 600 реле для других целей. Компьютер работал в двоичной системе счисления, числа представлялись в форме с плавающей запятой, длина машинного слова составляла 22 бита, объем памяти — 64 бита.

На операцию умножения V-3 затрачивал от трех до пяти секунд. Проблемой, наиболее часто решаемой V-3, было вычисление определителя матрицы (т. е. решение системы уравнений с несколькими переменными). V-3, очевидно, был первым компьютером, который использовал для записи арифметических выражений обратную польскую запись. Изобретение этой системы записи приписывается польскому логику Яну Лукасевичу, но Цузе не знал о вкладе Лукасевича, он просто заново изобрел "колесо", подобно многим другим ученым.

В период Второй мировой войны Цузе переименовал свои первые три компьютера в Z-l, Z-2, Z-3, соответственно, чтобы избежать путаницы с ракетами V-1 и V-2, разрабатываемыми Вернером фон Брауном для войны против Англии. Цузе всегда хотел сделать свои компьютеры серии Z для обшего назначения, но все-таки один компьютер стал специализированным — S-1, вариант Z-3, который, вероятно, поддерживал немецкую военную мощь.

Компьютер Z-3

Этот специализированный компьютер, S-1, помогал Henschel Aircraft Company производить летающие бомбы, известные как HS-293. Не так хорошо известная и широко используемая бомба фон Брауна HS-293 представляла собой беспилотный аэроплан, носимый наверху бомбардировщика. Пилот бомбардировщика ловил цель в поле своего зрения и сбрасывал HS-293, а экипаж бомбардировщика по радио управлял ее планированием к цели. HS-293 взрывала корабли войск союзников после августа 1943 года, а также разрушала мосты в Польше при отступлении немцев в 1945 году.

Компьютер S-1 надежно работал с 1942 по 1944 год на заводе Henschel в Берлине, рассчитывал размеры крыла и поворота руля высоты, важных для HS-293. Рабочие измеряли истинные размеры крыльев и рулей высоты; результаты этих измерений помещались в S-1, который затем вычислял угол отклонения HS-293 от прямой траектории, если эти части будут правильно собраны. Цузе развивал методы программирования своего компьютера, которые не требовали от программиста детального понимания внутренней организации компьютера. Он старался решить проблему, которую можно было назвать нехваткой ведущих мировых программистов, потому что война истощала людские ресурсы. Он попросил общество слепых выслать ему список слепых людей, которые проявили способности в математике. Из списка Цузе выбрал некоего Августа Фоста, который затем стал профессионалом в программировании.

Теперь, когда Z-3 получил признание, Цузе захотел построить еще более мощный компьютер. Он представлял его с большим объемом памяти на 500 чисел и с 32-битным машинным словом. Z-4 был наиболее сложным компьютером Цузе. Он мог складывать, умножать, делить или находить квадратный корень за 3 сек. В это время Цузе уже имел поддержку немецкого военного командования для строительства компьютеров общего назначения, хотя министерство авиации, которое заказывало компьютер, было заинтересовано в компьютере только для вычислений, связанных с проектированием самолетов. К 1942 году Цузе основал фирму "Zuse Apparatebau". Большую часть войны он работал один, но к концу войны под его руководством трудились 20 сотрудников. После немецкого поражения в феврале 1943 года под Сталинградом Цузе стал убежденным сторонником того, чтобы война закончилась. Его компьютеры могли бы пригодиться для мирных целей. Но жизнь была неустойчива, и он не мог быть уверен — останутся ли его машины "в живых". Союзники бомбили Берлин каждый день. Z-3 был разрушен, a Z-4 перед побегом из Берлина в марте 1945 году Цузе пришлось перевозить три раза по городу, чтобы избежать бомбардировок, что нарушило работоспособность прибора.

Цузе позволили покинуть Берлин в последние месяцы войны. В марте 1945 года он и его ассистент перевезли демонтированный Z-4 поездом до Геттингена, 100 миль на запад. По приказу правительства его оборудование следовало отвезти в подземные фабрики около Нортхейма, но после первого посещения концлагерей Цузе отказался. Он поселился возле гор, в мирной баварской деревне. Цузе предлагали уехать из Германии и переехать в Англию или в США. Тогда он мог бы строить компьютеры для англичан в течение послевоенных лет. Но он остался в Германии. Он жил в Хинтерштейне до 1946 года, причем его оборудование было спрятано в подвале фермы.

В 1946 году Цузе переехал в другую альпийскую деревню, Хопферау, около австрийской границы. Там он прожил три года. Было время подумать. Разработка аппаратного обеспечения после войны приостановилась, и Цузе вернулся к программированию.

В 1945 году он разработал то, что назвал первым языком программирования для компьютеров. Систему программирования он назвал Plankalkul ("исчисление планов"). Цузе написал небольшое эссе, где рассказал о своем творении и возможности его использования для решения таких задач, как сортировка чисел и выполнение операций в двоичной арифметике. Научившись играть в шахматы, Цузе написал несколько фрагментов программ на Plankalkul, которые позволяли компьютеру оценивать шахматные позиции.

Многие идеи языка Plankalkul остались неизвестными целому поколению программистов. Только в 1972 году работа Цузе была издана целиком, и эта публикация заставила специалистов задуматься над тем, какое влияние мог бы оказать Plankalkul, будь он известен раньше. "Видимо, все могло обернуться совсем иначе, а мы живем не в лучшем из миров", — заметил по этому поводу один ученый, критикуя языки программирования, появившиеся позднее.

В 1948 году профессор Е. Стейфил из технического университета в Цюрихе заказал у Цузе компьютер Z-4 для своей лаборатории. А в 1949 году Цузе основал маленькую компанию, названную ZUSE KG, которая должна была разрабатывать компьютеры для научных целей. Она просуществовала до 1966 года, когда ее приобрела фирма Siemens AG, но Цузе остался в новой фирме внештатным консультантом. В 50–60 годах Цузе были созданы новые компьютеры на реле Z-5 и Z-11, затем вместе с Фроммом и Гюнчем он создает Z-22 на электронных лампах и Z-23 — на транзисторах. Одной из последних его разработок были компьютеры Z-25 и Z-31, а также графомограф Z-64 для автоматического построения чертежей и карт. Он написал книгу "History of Computing", изданную на немецком и английском языках.

В последние годы Цузе жил в деревне Хессиан в нескольких часах езды от Франкфурта и любимым его занятием стала живопись, в основном абстрактная. Его работы демонстрировались на многочисленных выставках. Некоторые из своих картин он подписывал псевдонимом "KONE SEE".

18 декабря 1995 года Конрада Цузе не стало. Его заслуги, как одного из родоначальников компьютерной эры, неоспоримы.

 

ГОВАРД АЙКЕН

Ученый, воплотивший идеи и проекты Бэббиджа

Говард Айкен

В 1864 году в одной из своих последних работ ученый, опередивший свое время, автор неосуществленного проекта Аналитической машины Чарльз Бэббидж писал: "Если кто-либо, не наученный моим опытом, попытается создать машину, способную выполнять математический анализ в объеме, равном работе целого отдела математиков, причем с использованием различных принципов или более простых механических средств, и попытка эта увенчается успехом, то мне не страшно вверить такому человеку свою репутацию, т. к. только он сможет сполна оценить усилия и достигнутые результаты".

Реально идеи и концепции Ч. Бэббиджа смогли осуществиться только через 80 лет после написания этих пессимистических строк. И человека, который практически воплотил эти идеи, звали Говард Хетауэй Айкен. Правда, следует уточнить, что с проектом Бэббиджа Айкен познакомился только через три года после начала работ по созданию своего первого детища и был поражен настолько, что воскликнул: "Живи Бэббидж на 75 лет позже, я остался бы безработным".

Говард Айкен вырос в Индианаполисе, штат Индиана (он родился 8 марта 1900 года). После восьмого класса он был вынужден пойти работать ночным оператором в компанию по освещению и теплоснабжению, а днем посещал техническую школу Арсенала. Руководство школы заинтересовалось способностями молодого человека и предоставило ему возможность сдать экзамены досрочно. Затем он поступает в Университет штата Висконсин и одновременно работает в газовой компании. В 1923 году Айкен получает степень бакалавра наук, а за ночную работу — должность главного инженера газовой компании. Проработав инженером-энергетиком 10 лет, в 1935 году он поступает в Чикагский университет, а затем становится аспирантом по физике Гарвардского университета.

Докторская диссертация Айкена "Теория проводимости пространственных зарядов", представленная отделению физики Гарвардского университета в 1939 году, изобилует выражениями разочарования по поводу того, что нельзя было решить аналитически нелинейные дифференциальные уравнения, адекватно описывающие изучаемые им явления, и что их численное решение даже для нескольких интересуемых случаев требует выполнения недоступного для человека объема вычислений. В результате этих размышлений в 1937 году появилась его работа (он издал ее на свои средства) под названием "Предлагаемая автоматическая счетная машина", где автор описал машину в виде коммутационной доски, на которой смонтированы различные узлы вычислительной машины, причем каждая панель коммутационной доски предназначалась для выполнения определенных математических операций.

Гарвард был в то время центром "чистых" исследований, поэтому Айкен не нашел поддержки, было скорее сопротивление. Многие не верили в то, что такую машину можно создать. Его поддержали лишь астроном Харлоу Шэпли и профессор школы бизнеса Тед Браун. Айкен пытался подключить в эту работу фирму "Монро", в частности главного инженера Дж. Чейза. Чейз заинтересовался, но руководство фирмы сочло идею непрактичной и отказалось от ее реализации. Чейз рекомендовал Айкену обратиться в фирму IBM — так состоялось его знакомство с Томасом Уотсоном, президентом этой фирмы. В 1939 году был подписан контракт, по которому фирма IBM с финансовой поддержкой военно-морского ведомства США бралась за создание машины Айкена. Спустя семь лет, в мае 1944 года, машина, получившая название "Марк-I", вступила в строй. Реле, счетчики, контактные устройства, печатающие механизмы, устройства для ввода перфокарт и перфорирующие устройства, используемые в машине, были стандартными частями табуляторов, выпускаемых в то время фирмой IBM. Эта машина, работавшая с 23-значными десятичными числами, выполняла операцию сложения за 0,3 сек. и операцию умножения за 3 сек. и имела внушительные размеры (длина — 17,4 м, высота — 2,5 м).

"Марк-I" отличалась высокой работоспособностью (если этот термин можно применить к машине) и надежностью. Этот колосс работал по 24 часа в сутки, без выходных, выполняя главным образом расчеты по секретным проектам военно-морского флота. За первые три года работы на компьютере "Марк-I" были составлены 19 таблиц различных математических функций (функций Бесселя, функций Хенкеля, интегральных синусов и косинусов и т. д.). Многочисленные исследования, связанные с решением больших систем линейных уравнений, с помощью компьютера "Марк-I" проводил профессор отделения экономики Гарвардского университета Василий Леонтьев (позже лауреат Нобелевской премии).

Компьютер "Марк-1"

Надо сказать, что "Марк-I" в 1944 году имел черты современных компьютеров, в частности разделения времени выполнения операций, при этом не возникало конфликтных ситуаций различных устройств, широко использовались подпрограммы при программировании. А в дальнейшем были введены устройства, "обеспечивающие средства для выбора любого из нескольких ответвляющих путей операции" (т. е. операций условного перехода).

В 1947 году в лаборатории Айкена была создана новая релейная машина "Марк-II", которая обладала необычным для того времени свойством: она могла работать как одна машина или как две отдельные машины, решая одновременно две различные задачи. Переход с одного режима на другой производился с помощью переключателя. В машине была введена плавающая запятая.

В последние годы Говарда Айкена упрекали в том, что он при проектировании своих компьютеров неохотно переходил от электромеханических к электронным устройствам. А может быть осторожно, выжидательно: "Нет, я знал, что нужно было идти этим путем. Я не хотел зависеть от технологии, я не хотел беспокоиться о надежности незнакомых и еще не испытанных в новом применении компонентов. Как только я увидел, что другие проекты пошли нормально и что инженеры научились работать с новой технологией, я перешел на электронику". И это случилось при создании им третьей и четвертой версий машины — "Марк-III" и "Марк-IV". Вообще, с позиций сегодняшнего дня, оглядываясь назад, становится ясно, что компьютеры на основе электронно-вакуумной технологии были, по существу, переходной средой на пути к созданию более надежных машин с использованием реле и полупроводниковой технологии. И Айкена в этом плане можно считать первооткрывателем.

Начало проектирования электронной машины "Марк-III" датировано январем 1948 года, а окончание — 1950 годом. В ней числа и команды уже представлялись в двоичном коде и хранились на девяти алюминиевых барабанах, покрытых магнитным слоем.

Последний компьютер, созданный Г. Айкеном в Гарварде для военно-воздушных сил, — "Марк-IV" — был закончен в 1952 году. В отличие от проектируемых в то время машин на основе менее надежной электростатической памяти, память "Марк-IV" с произвольным доступом состояла из 200 сдвигающих регистров на магнитных сердечниках. Машина имела также память большого объема на магнитном барабане с отдельными секторами для 4000 16-разрядных чисел и для 1000 команд. В машине были применены индексный регистр и декодирующее устройство со специальной клавиатурой для записи программ в алгебраических выражениях, близких к обычной записи.

Большие успехи в деле автоматизации программирования принадлежат Грейс Хоппер (контр-адмирал ВМС США), которая работала с машинами "Марк" в Гарварде с 1944 по 1949 год. Ее вклад в дело создания первых компиляторов (кстати, термин "компилятор" был впервые введен Грейс Хоппер) и первых языков программирования неоспорим, а ее имя в тот период неразрывно связано с именем Говарда Айкена и его компьютерами.

При проектировании последней машины Айкен обратил внимание на проблемы, которые возникают при промышленном производстве компьютеров, когда они перестают быть предметом лабораторных исследований. Ему хорошо была известна работа Клода Шеннона по релейным схемам, опубликованная в 1938 году, но в 1949 году ничего не было известно об использовании работы Шеннона для проектирования электронных схем. В 1951 году Айкен вместе с коллегами выпустил книгу "Синтез электронных вычислительных и управляющих схем". В предисловии он писал: "Как в лаборатории, так и в учебном классе можно легко заметить, что недостаток адекватных математических методов исследования функциональных характеристик электронных управляющих схем представлял единственное и самое серьезное препятствие для быстрого развития данной области и для обучения студентов, интересующихся этим вопросом". Последующее быстрое развитие теории коммутации и управляющих систем подтвердило мудрость этого наблюдения.

Айкен первым предложил в 1947/48 учебном году ввести курс по проектированию цифровых вычислительных устройств в Гарварде. Сразу же после этого был введен курс анализа цифровых схем, ориентированный на технологии, используемые в цифровых компьютерах. В период его работы Гарвард стал одним из первых университетов, присваивающим ученые степени в области вычислительной техники.

Айкен был талантливым и вдохновенным учителем в самом лучшем понимании. Будучи сам волевым, независимым, целеустремленным и настойчивым, отдавая максимум времени учебе, науке, работе, он ожидал того же и от своих студентов и коллег, поэтому достигнутые ими результаты превосходили их собственные ожидания. Это был чрезвычайно активный человек. Его след можно найти во многих областях науки и техники, а последний патент был выдан за год до кончины, когда ему исполнилось 72 года.

В последние годы жизни он работал консультантом фирмы Monsanto Chemical по вопросам, связанным с исследованиями в области магнитных доменов. 14 марта 1973 года во время поездки в Сант-Луис, в штаб-квартиру фирмы Monsanlo, Говард Айкен внезапно скончался от инфаркта.

Результаты его исследований и преподавательской деятельности отражены в "Трудах компьютерной лаборатории", которой он руководил в течение многих лет, во многих журнальных публикациях и многочисленных отчетах ВМФ и ВВС США, комиссии по атомной энергетике, телефонной лаборатории, Американской газовой ассоциации и других организаций. Велико значение работ, которые провели его многочисленные ученики и коллеги.

Достижения Говарда Айкена были признаны во всем мире, о чем свидетельствуют многие награды, которых он был удостоен. Когда впервые в 1946 году был учрежден Комитет по вычислительным машинам, Айкен стал одним из первых его членов вместе с Джорджем Стибицем и Джоном фон Нейманом. Он являлся членом Американской Академии науки и искусства и Института радиоинженеров; Айкен был удостоен награды ВМФ за выдающиеся заслуги и награды ВВС за особые гражданские заслуги; его "альма-матер" Висконсинский университет выдал ему диплом за выдающиеся профессиональные заслуги; Бельгия наградила его Офицерским крестом Ордена короны; Франция возвела его в кавалеры Легиона чести. Ему присвоена почетная степень доктора высшей технической школы Германии в Дармштадте, в Испании — почетного члена Высшего совета по научным исследованиям, в Швеции — члена Инженерной академии.

Профессор математики Государственного университета Гумбольта, главный эксперт проекта истории компьютерной техники Смитсоновского Национального музея истории техники Генри Тромп писал: "Я убежден в том, что Айкен был одним из провозвестников компьютерной эры. Его личные качества оказали большое влияние на многих исследователей, сотрудничавших с ним в период 40—50-х годов".

 

Джон Атанасов и Клиффорд Берри

Изобретатели электронного цифрового компьютера

Джон Атанасов

Кто изобрел электронный цифровой компьютер? До начала 70-х годов легко было ответить на этот вопрос — это Джон Маучли и Джон П. Эккерт, которые в 1943–1946 годах создали ENIAC, действующий электронный цифровой компьютер. Но после октября 1973 года по решению суда изобретателем электронного компьютера назвали Джона В. Атанасова.

По иронии судьбы Атанасов, физик из Айовы, который придумал в конце 30-х годов компьютер, был более известен в Европе, чем в Америке. Американские ученые и инженеры, создававшие в 40—50-х годах электронные компьютеры, мало что знали о нем.

И тем не менее в начале 70-х годов Атанасов выиграл юридическое право называться изобретателем электронного компьютера. Маучли и Эккерт заявили, что суд был несправедливым, что компьютер Атанасова никогда не работал и что они являются изобретателями электронного компьютера. Большинство ученых в настоящее время считают, что вопрос о приоритете до сих пор не решен и, в конечном счете, мало интересен. Что можно сказать с уверенностью, так это то, что Атанасов, Берри, Маучли и Эккерт внесли существенный вклад в развитие электронного компьютера.

Клиффорд Берри

Математика была центром интересов Джона Винсента Атанасова с детства. Родился он в Гамильтоне, штат Нью-Йорк, 4 октября 1903 года в семье математически мыслящих родителей. Его отец, болгарский эмигрант, был инженером-электриком, а мать-американка была учителем и занималась алгеброй до девяноста лет. Когда Джон был ребенком, его семья переехала во Флориду после того, как отец получил там работу инженера. Джон был развит не по годам. С помощью своей матери он научился рано читать и любил все, что мог почерпнуть из книг.

В 1913 году, когда ему было 9 лет, Джон Атанасов начал свой путь в электрический мир. Его отец, который руководил электрической системой на фосфатном руднике, провел электрическую проводку в своем доме, сделав ее одним из первых в округе. Благодаря старшему Атанасову Джон выучил основы электричества. В тот же год его отец купил Джону логарифмическую линейку, и Джон с февраля по август работал с логарифмами, пользуясь учебником Дж. М. Тейлора для колледжей, который достал из отцовской библиотеки.

В возрасте 10 лет он изучал физику и химию, а также продолжал заниматься математикой. Его мать дала ему книгу, в которой объяснялось, как производить вычисления в других системах счисления, отличных о десятичной. Позже Атанасов вспоминал: "Когда я приступил к работе над компьютером, одна из вещей, которая крутилась в моем мозгу, была та, что может быть компьютеры будут работать лучше с другим основанием, чем десять".

Во время обучения в школе Атанасов решил стать физиком-теоретиком, но, поступив в университет Флориды в 1921 году, выбрал профессию инженера- электрика. Он получил диплом инженера в 1925 году. В сентябре этого же года Атанасов уехал на север в колледж штата Айова, чтобы преподавать математику и руководить дипломными работами по физике и математике. Затем Атанасов переезжает в университет штата Висконсин, где в мае 1930 года защищает докторскую диссертацию. По возвращении в Государственный колледж штата Айова он работает ассистентом профессора по математике и физике.

В середине 30-х годов Атанасов задумывается над проблемой автоматизации решения больших систем линейных алгебраических уравнений. Аналоговые методы решения с помощью дифференциального анализатора Ванневара— Буша его не удовлетворяли из-за недостаточной точности, а устройства, реализующие цифровой подход, не существовали. Он пытался модифицировать калькулятор фирмы IBM для решения систем уравнений, но из-за сложности работы вскоре отказался (надо сказать, что ему был известен проект аналитической машины Ч. Бэббиджа).

Идеи и принципы создания цифрового компьютера к нему пришли, как он вспоминает, зимним вечером 1937 года в придорожной таверне. В поздние годы он сформулировал суть этих принципов:

□ в своей работе компьютер будет использовать электричество и достижения электроники;

□ его работа будет основана на двоичной, а не десятичной системе счисления;

□ основой запоминающего устройства будут служить конденсаторы;

□ будут использованы логические электронные схемы.

Для реализации проекта ему нужен был талантливый изобретатель, очень хорошо знающий электронику. Атанасов обратился к декану инженерного факультета с просьбой порекомендовать ему выпускника электротехнического отделения, хорошо знающего электронику. Ни минуты не колеблясь, декан предложил ему Клиффорда Эдварда Берри, блестящего, трудолюбивого, многообещающего ученого, уже имеющего впечатляющий перечень наград и достижений.

Они встретились, и родилась команда Атанасов и Берри, а в ноябре 1939 года появились наброски компьютера Атанасова — Берри — ABC (Atanasoff— Berry Computer, как позже Атанасов настоял, чтобы его так называли). Проектирование и конструирование компьютера осуществлялось с конца 1939 года до середины 1942 года. Что же представлял собою компьютер АВС? Вот, что пишет об этом Клиффорд Берри Р. Ричардсу в письме, датированном 30 апреля 1963 года: "Машина была сконструирована с единственной целью, а именно — для решения больших систем линейных алгебраических уравнений (до 30x30). В ней использована двоичная арифметика, длина слова составляла 50 бит. Основной метод решения (метод Гаусса) заключался в последовательном исключении коэффициентов из пар уравнений с тем, чтобы сократить первоначальную квадратную матрицу до треугольной. Так как внутренняя память компьютера одновременно сохраняла коэффициенты двух уравнений, промежуточные результаты (т. е. единые уравнения, результирующие из линейной комбинации двух для сокращения на единицу количества переменных) хранились на специальных перфокартах, каждая из которых содержала тридцать 50-разрядных двоичных чисел. Эти перфокарты затем снова считывались машиной на последующем этапе процедуры. Перфокарта перфорировалась или считывалась в течение одной секунды, но вставлять ее надо было вручную.

Клиффорд Берри и АВС-компьютер

Максимальное время, которое требовалось в худшем случае машине для исключения переменной между двумя уравнениями, составляло около 90 секунд, а в среднем гораздо меньше.

В машину входило два запоминающих устройства — по одному для коэффициентов каждой из пар скомбинированных уравнений. Эти запоминающие устройства состояли из вращающихся барабанов, с прикрепленными маленькими конденсаторами, каждый из этих конденсаторов был подключен к небольшому латунному контакту на поверхности барабана. Пять шестых периферийной поверхности барабана было занято этими контактами (30 рядов по 50 контактов в каждом), а шестая часть оставалась пустой, предоставляя время для других операций. Барабаны приводились в движение редукторным синхронным двигателем, обеспечивающим скорость 1 об./мин. Таким образом, скорость прохождения контактов мимо считывающей щетки составляла 60 в секунду. Полярность заряда на конденсаторе указывала "единицу" или "ноль", и каждый конденсатор сразу же после считывания перезаряжался, чтобы заряд никогда не оставался на нем более одной секунды. Все слова обрабатывались параллельно, но внутри каждого слова цифры обрабатывались последовательно. Интересно отметить, что прежде чем проектировать память на конденсаторах, мы серьезно рассматривали идею использования магнитных барабанов, но отказались от нее из-за низкого уровня сигналов.

Имелось 30 идентичных арифметических устройств, которые по существу были двоичными сумматорами. Каждое состояло из серии электровакуумных ламп с прямой связью (семь сдвоенных триодов), соединенных между собой таким образом, что они выполняли двоичное сложение. Каждое устройство имело три входа (два — для складываемых или вычитаемых чисел и один — для переноса с предыдущего места) и два выхода (один — для результата на том месте, а другой — для переноса на другое место).

Первоначальный ввод данных в машину осуществлялся с помощью карт ТЭЛ, которые считывались специальным устройством описанной конструкции. На каждой карте имелось пять 15-разрядных десятичных чисел, которые считывались в течение 15 секунд. Машина выполняла преобразование десятичных чисел в двоичные при помощи вращающегося барабана (в заднем левом углу машины), на котором находились контакты, представляющие двоичные эквиваленты 1,2–9,10,20 — 9х1014. На выходе для обратного преобразования использовался тот же аппарат в обратном порядке и на механическом счетчике появлялся десятичный результат".

И далее Клиффорд Берри пишет, что "единственным крупным узлом, не законченным к моменту прекращения работы в середине 1942 года, была схема считывания для двоичных карт. Основная вычислительная часть машины была закончена и работала более года, но от нее было мало толку без средств для хранения промежуточных результатов".

Первая встреча Атанасова с Джоном Маучли, физиком из колледжа Урсинуса, в Пенсильвании, произошла в декабре 1940 году, когда Атанасов все еще работал над улучшением АВС. Оба этих человека посещали собрание Американской ассоциации прогресса науки на территории университета Пенсильвании. Маучли прочитал лекцию о возможности использования аналоговых компьютеров для решения проблем метеорологии, он обсуждал использование гармонического анализатора, который построил при изучении некоторых погодных явлений. Атанасов был в аудитории. Подождав, пока все остальные поговорили с Маучли после лекции, Атанасов представился как некто, интересующийся компьютерами, особенно цифровым компьютером. Он потом рассказал Маучли о его незаконченной машине, компьютере, использующем электронные лампы, и о том, что, они, возможно, будут иметь большое влияние на цифровые компьютеры. Атанасов пригласил Маучли приехать в Айову посмотреть АВС.

Маучли принял приглашение 14 июня 1941 года. Он и его сын были в доме Атанасова, гостили в течении следующих 5 дней, в течение этого времени двое мужчин без конца говорили о компьютерах. Маучли рассматривал документацию, а Берри бегло показывал короткую демонстрацию АВС. Машина могла решать 29 одновременных уравнений с 29 переменными. Маучли попросил один экземпляр документации домой, но Атанасов отказал. Три месяца спустя, в сентябре 1941 года, Маучли написал Атанасову письмо, в котором спрашивал, возможно ли будет построить один "Атанасов калькулятор" в инженерной школе Мура при университете Пенсильвании. Отвечая 7 октября, Атанасов сообщал, что хочет, чтобы АВС оставалось секретным, по крайней мере, до тех пор, пока не будет подана заявка на патент.

Вторая мировая война заставила Атанасова отойти от конструирования компьютеров. В 1942 году он стал главой Отдела акустики при Военно-морской Артиллерийской лаборатории (NOL) в Вашингтоне, штат Колумбия, где следил за акустическим испытанием мин. Одна из частей АВС — арифметическая часть, была апробирована в 1942 году и дала Атанасову уверенность в том, что компьютерный проект в значительной степени был уже закончен. Но АВС никогда фактически не использовалась.

Джон Маучли, работая статистиком на полставки в том же самом Отделе, сообщил Атанасову в 1943 году, что он и Эккерт разработали новый подход вычислений, отличный от того, что предложил Атанасов. Атанасов попросил Маучли объяснить, что он сделал, но получил резкий ответ. "Я не могу. Тема секретная". "Новый подход" был связан с ENIAC — первым полностью электронным цифровым компьютером, который в то время собирали при строгой секретности для военных целей в университете Пенсильвании.

В 1945 году Артиллерийское ведомство попросило Атанасова помочь в конструировании компьютера для Военно-морской Артиллерийской лаборатории, выделяя при этом большую финансовую поддержку. Атанасов заявил, что не может одновременно работать над компьютерным проектом и заканчивать работу в Отделе акустики NOL. Военно-морской флот, в конечном счете, отказался от его услуг. Одной из причин послужил доклад, представленный консультантом проекта Джон фон Нейманом, который писал, что Атанасов был не компетентен, чтобы руководить проектом такого масштаба. Атанасов не вернулся к компьютерам и после окончания войны. "Я работал над компьютерами примерно около 12 лет и при очень трудных обстоятельствах. Я нуждался в изменении жизни". Годы спустя он сожалел, что оставил свои усилия по созданию компьютера, но он это понял только тогда, когда стало очевидно, что его машина была поистине революционной. В начале 80-х годов он признался, что если бы понимал потенциальные возможности АВС, то продолжал бы работать над ней.

Атанасов оставался главой Отдела акустики NOL до 1949 года, а затем стал главным ученым армейских полевых сил в Форт-Монро в штате Вирджиния. В течение 1950–1951 годов он был директором программы взрывов при NOL. В 1952 году Атанасов основал фирму "Артиллерийская Инженерная корпорация" в городе Фредерик, штат Мериленд, а спустя 4 года продал ее Воздушной генеральной корпорации того же города. Он стал вице-президентом последней фирмы, а также менеджером ее Атлантического отдела до 1961 года. В дальнейшем Атанасов работал консультантом по автоматизации в упаковочной фирме. Он организовал компанию с названием "Объединенная кибернетика" в том же городе Фредерик, которая давала советы полунаучного характера. У Атанасова было трое детей: сын — Джон-младший и дочери — Элси и Джоанна.

Решение Атанасова доказать, что он является изобретателем электронного цифрового компьютера, пришло к нему после одного "странного" визита. 15 июля 1954 года адвокат от патентного бюро фирмы IBM посетил Атанасова и сказал ему: "Если вы поможете нам, мы аннулируем патент Маучли — Эккерта на компьютер. Это было заимствовано у Вас". Короткий разговор Маучли с Атанасовым в 1943 году, когда был уже создан проект ENIAC, адвокат представил в ином свете, и Атанасов уверился в своей правоте.

Фактически это было в интересах больших компьютерных фирм, не только аннулировать патент Маучли — Эккерта, но и раскрыть АВС Атанасова для того, чтобы обеспечить надежность патентного поля для своих компьютерных проектов. Смерть Клиффорда Берри в 1963 году убрала со сцены человека наиболее способного подтвердить требование Атанасова. Тем не менее Атанасов все более убеждался, что ENIAC была заимствована от его АВС и что стоит продолжать это дело. Более того, ему придавало силы признание его заслуг в других странах, в частности на родине его предков — Болгарии, которая в 1970 году наградила его орденом Кирилла и Мефодия I степени.

Дело дошло до суда. В 1971 году фирма Sperry Rand, которая приобрела патент Маучли — Эккерта на ENIAC, подала в суд на компанию Honeywell за неуплату налогов. Honeywell подала встречный иск, заявляя, что ENIAC был заимствован от ранее созданного АВС и что патент поэтому недействителен. Чтобы подготовить свои показания по этому делу, Атанасов и его адвокаты разыскали бывших коллег и попросили реконструировать АВС. На суде Атанасов точно показал, как работала АВС, нажимая на кнопки, заставляя лампочки загораться. Этого было достаточно, чтобы произвести впечатление на судью Эйрла Р. Ларсона, который решил дело в пользу Атанасова. Решение было объявлено 19 октября 1973 года, за день до Уотергейтского скандала, и поэтому было затеряно в газетной шумихе.

Приговор действительно описывал Атанасова как изобретателя электронного компьютера, a ENIAC — как компьютер, созданный в большей степени на его идее. "Эккерт и Маучли, — читал судья Ларсон, — не сами изобрели этот автоматический электронный цифровой компьютер, но вместо того позаимствовали эту идею у доктора Джона В. Атанасова, а поэтому патент ENIAC является недействительным".

Приговор вне стен суда рассматривался многими как несправедливый и определенно запутанный. Атанасову горько, что он не получил награды за свои заслуги, которые, как он полагал, заслужил. В 1975 году у него случился удар, но он поправился и прожил остаток жизни на своей ферме около Монровил, штат Мериленд, в доме, для которого он спроектировал систему кондиционирования воздуха, кухонные буфеты, краны для дождевой воды, 800-фунтовую вращающуюся входную дверь и замкнутую отопительную систему. Тем, которые заявляли, что АВС не работал, Атанасов отвечал: "Для меня достижением являются выдвинутые идеи. Как только вы получаете идеи, любой может воспользоваться ими". Джон Винсент Атанасов умер 15 июня 1995 года на 92 году жизни.

Если о жизни и деятельности Джона Атанасова нам известно достаточно многое, то о его соавторе Клиффорде Э. Берри в отечественной литературе имеются лишь некоторые упоминания, как об аспиранте д-ра Атанасова, хотя роль его в создании АВС компьютера значительна. Это подтвердил и сам Атанасов многие годы спустя: "Я считаю, что участие Клиффорда Э. Берри — это одно из самых главных условий успеха нашего проекта".

Сведения о жизненном пути и научной деятельности К. Э. Берри немногочисленны: это воспоминания его жены — Джин Берри, переписка с Р. Ричардсом и воспоминания Р. Мэдера, который помогал Берри в конструировании АВС.

Клифф (как называли его многие) Берри родился в 1918 году. Окончил высшую школу Маренго (штат Айова) в 1934 году. Так как он был очень юн, родители считали, что ему следует подождать год, прежде чем поступать в колледж. Клифф посвятил этот год изучению наук и конструированию радиоприемника. Он был помощником начальника отряда бойскаутов, любил классическую музыку. По финансовым причинам его овдовевшая мать переехала в Эймс, чтобы все четверо детей могли посещать колледж Айова. Клифф зарабатывал деньги на свое обучение в колледже, работая на фирме "Гулливер Электрик", и несмотря на эту дополнительную работу он имел чрезвычайно высокие успехи в учебе и был избран в четыре почетных общества — Сигма Кси, Эта Каппа Ню, Фи Каппа Фи и Пи Мю Эпсилон. На первом году обучения ему была присвоена специальная награда за лучший академический доклад на отделении электротехники за первый и второй курсы.

Клифф окончил колледж в 1939 году и начал работу над диссертацией по физике и математике, а также занимался компьютером, который позднее был назван АВС.

В 1941 году он получил степень магистра по физике. Его диссертация была посвящена одному из устройств компьютера АВС и называлась "Конструкция электрических механизмов записи и считывания данных". В этой диссертации Берри писал: "Настоящая работа проводилась совместно с разработкой быстродействующей вычислительной машины… Чтобы максимально реализовать скоростные вычисления на вычислительной машине, необходимо записать и считать числа на карточки со скоростью порядка 60 отверстий в секунду. Это кажется просто нереальным на практике для обычных механических методов, поэтому нами был разработан описанный ниже метод, отвечающий поставленным требованиям".

В мае 1942 года Клифф женился, а через месяц супруги уехали из Эймса (теперь становится ясным, почему работы по созданию компьютера АВС были прекращены в 1942 году — уехал главный конструктор). Его ждала работа в Пасадена на фирме "Консолидейтед Индженииринг Корпорейшн". Он почти закончил работу над диссертацией на степень доктора философии по физике, но не возобновил над ней работу до конца Второй мировой войны. С самого начала он сделал молниеносную карьеру. Он писал технические статьи, патенты и внутрифирменные отчеты, выступал с докладами на заседаниях различных обществ. Его имя появилось в списках "Ученые Америки", "Лидеры американской науки" и "Кто есть кто на Западном побережье".

В 1945 году, через три года после отъезда из Айовы, Клиффорд Берри создает аналоговый компьютер 30-103. (Поразительно! Пионер цифрового компьютера, цифровых вычислений, возвращается назад по эволюционной спи- ради — к аналоговым вычислениям, к аналоговым компьютерам, которые были созданы и успешно использовались с начала 30-х годов. — А. Ч.). Причем, созданный Клиффом компьютер применялся для тех же целей — для решения систем линейных алгебраических уравнений. Компьютер 30-103 наделал много шума в научных кругах. Клифф выступил с докладом в январе 1946 года на собрании Американского физического общества и опубликовал отчет. В 1951 году он получил патент на этот компьютер.

В 1948 году Клиффорд Берри защищает диссертацию и получает степень доктора философии по физике. Диссертация была посвящена масс-спектрометрии. В дальнейшем он становится членом Американского физического общества, Американской ассоциации развития науки и других институтов. К 60-м годам на счету Клиффорда было 30 защищенных патентов, в основном по масс-спектрометрии.

В фирме "Консолидейтед" он работал до 1963 года. Осенью 1963 года Клиффорд Берри был приглашен на пост директора отдела перспективных разработок фирмы "Вэкьюм-Электроникс" в Хантингтоне, Лонг-Айленд. Он прожил две недели в Лонг-Айленде, подыскивая дом для переезда семьи.

30 октября 1963 года его нашли мертвым с пластиковым мешком на голове в комнате, которую он снимал. Его смерть остается загадкой. В отчете полиции значится "возможное самоубийство". Его комната была опечатана в течение трех недель, полиция старалась найти улики. Атанасов, приехавший в Лонг-Айленд в поисках причин смерти Клиффа, узнал, что домовладелец снял пластиковый мешок с лица Клиффа без труда. На основании этого факта врач высказал предположение, что это — убийство: "Это все равно, что задерживать свое дыхание. Вы не сможете сделать это".

Жена Клиффа — Джин Р. Берри осталась с двумя детьми: дочерью Кэррол (стала учительницей) и сыном Дэвидом (стал адвокатом).

 

Джон Маучли и Джон Эккерт

Создатели ENIAC и концепции хранимой программы

Джон Маучли

Да, Маучли и Эккерт построили целостную вещь с названием ENIAC (Electronic Numerical Integrator And Computer) — первый действующий электронный цифровой компьютер. 14 февраля 1946 года, в день Святого Валентина, 30-тонный гигант с 18 тысячами электронных ламп и 6 тысячами переключателей был запущен. Согласно легенде, огни Филадельфии погасли. Мир приветствовал начало компьютерной эры.

ENIAC был создан на основе вакуумно-ламповой технологии, что обеспечило повышение быстродействия, так необходимое для ученых и математиков.

Джон Эккерт

По сравнению с компьютером "Марк-I", изобретенным в Гарвардском университете Айкеном двумя годами раньше, он работал более чем в тысячу раз быстрее. ENIAC мог умножать за 2,8 мс, делить за 24 мс. До появления ENIAC квалифицированному оператору настольного калькулятора требовалось около 20 часов, чтобы получить приемлемые результаты вычисления траектории. То же самое вычисление занимало 20 минут на дифференциальном анализаторе, а наиболее сложный на то время компьютер ENIAC мог выполнить это вычисление траектории всего за 30 секунд.

ENIAC был неуклюжим по сравнению с более поздними компьютерами. Чтобы задавать компьютеру новые команды, необходимо было набрать код вручную, так же как телефонный оператор соединяет контакты на коммутационном поле. Однако научный мир приветствовал двух главных создателей ENIAC — Джона Маучли и Джона П. Эккерта.

К их большому огорчению Маучли и Эккерт будут навсегда связаны с нелепицей и противоречием: кто фактически изобрел первый компьютер. Так как они работали на военное ведомство и их исследования были засекречены, они не могли никому поведать о своем изобретении. Другие, чувствуя меньшую ответственность за разглашение тайны секретной лаборатории, рассказали о создании электронного мозга.

Компьютер ENIAC

У Маучли с детства проявились гениальные способности. Он умел обращаться с электричеством и интересовался вычислительными машинами. Родился ученый 30 августа 1907 года в Цинциннати. Ему было девять, когда его семья переехала в Чеви-Чейс, штат Мэриленд вблизи Вашингтона, округ Колумбия, где его отец стал руководителем Отдела земного электричества и магнетизма в институте Карнеги. В возрасте пяти лет Джон собрал фонарь для игры с другом на чердаке. Когда он учился в начальной школе, он устанавливал электрические дверные звонки, чтобы заработать карманные деньги. Он изобрел устройство, которое автоматически выключало свет, когда приходила его мать, чтобы проверить, спит ли он.

В 1925 году Маучли поступил в университет в Балтиморе, где изучал электронную технику. В сентябре 1927 года, после двухлетнего обучения в колледже, ему была присвоена степень магистра для поступления в высшую школу физики, которую он не закончил. Он работал вычислителем в бюро стандартов. Он всегда отыскивал способы ускорять вычисления, насколько это возможно, на основе существующего оборудования. Ему присвоили степень доктора философии по физике в 1932 году. Год спустя он стал заведующим кафедрой физики в колледже, штат Пенсильвания. В декабре 1930 года Маучли женился на Мэри Вэлзли.

Занимаясь метеорологией, в надежде улучшить предсказание погоды, он хотел доказать, что Солнце оказывает первичное влияние на климат. Он доказал это статистически: каждая вспышка на Солнце влечет за собой некоторое климатическое явление, происходящее через определенное количество дней. Нанимая группу студентов, специалистов в математике за пятьдесят центов в час, Маучли использовал их для обработки данных. Он анализировал огромное количество полученных данных для предсказания погоды и понял, что необходим компьютер. Маучли представлял компьютер как ключ к ускорению вычислений. Хотя вакуумные лампы были ненадежны, но они могли ускорить процесс по сравнению с перфорационным оборудованием и настольными калькуляторами.

Маучли всегда использовал различные подходы к решению задачи, выбирая наиболее быстродействующий способ подсчета. Он пригласил в лабораторию дипломированных специалистов и начал проводить эксперименты с неоновыми лампами, закупив небольшую партию в компании "Дженерал", а вакуумные лампы он заимствовал из радиоприемников. Схемы Маучли, разработанные между 1936 и 1940 годами, включали в себя газовые, неоновые и вакуумные лампы, которые затем предполагалось применять в электронных цифровых вычислениях.

4 декабря 1940 года Маучли стал учеником Джона де Вайре и в течение года надеялся изобрести первым электронное вычислительное устройство, которое бы выдавало ответ сразу же после ввода всей необходимой для расчета информации. Затруднение заключалось в системе счисления. Итогом всех проведенных экспериментов явилось представление доклада на конференции в Пенсильванском университете. Сразу же после лекции он встретился с Джоном Атанасовым. В июне 1941 года Маучли отправился в штат Айова, чтобы взглянуть на машину Атанасова — АВС. Познакомившись с работой машины, он был разочарован методами Атанасова, машина не была автоматизирована и каждый шаг управлялся оператором. Он надеялся увидеть более совершенную и автоматизированную машину. Он отметил, что Атанасов не использовал основные преимущества вакуумных ламп, их быстродействие и многофункциональность. Кроме того, Атанасов не знал, как сделать надежными вакуумные лампы. Пока Маучли находился в штате Айова, он узнал, что его приняли в электротехническую школу Мура. Был разработан курс для обучения двадцати специалистов по математике и электроники. Здесь впервые пересеклись пути Джона Маучли и Джона Преспера Эккерта.

Подобно Маучли, Эккерт был талантливый молодой человек с мышлением инженера и готовностью разрабатывать самые необычные устройства. Он родился в Филадельфии 9 апреля 1919 года в семье инженера-строителя. В восемь лет он собрал детекторный радиоприемник. В двенадцать лет Преспер сделал маленькую лодку, которая перемещалась с помощью магнитного поля, и получил за это первый приз. В пятнадцать лет он разработал дистанционно-управляемое взрывное устройство, которое испытал в школе, нажав на кнопку блока управления в аудитории. Ко времени окончания школы в 1937 году Эккерт закончил также первый курс отделения математики. Хотя он поступил в MIT и был допущен к дальнейшей учебе, мать Эккерта не хотела этого. Его отец хотел, чтобы он учился в Бартонской школе финансов, в университете штата Пенсильвания. Следуя желанию своих родителей, он перевелся в Бартон, но проучился там недолго, поскольку не любил занятия по бизнесу. Он хотел изучать физику. Так как набор закончился, он пошел в школу Мура, которую закончил в 1941 году.

Он всегда был изобретателем. В течение одного лета он сконструировал устройство, которое измеряло концентрацию паров нафталина, используя ультрафиолетовое излучение. Позже он усовершенствовал схемы для распределения напряжения. Затем он разработал приборы, которые измеряют допустимое напряжение усталости в металлах. В течение Второй мировой войны он сконструировал устройство для отыскания вражеских магнитных морских мин. Устройство записывало малейшие изменения в магнитном поле. Он работал над проблемами радаров, над устройством синхронизации измеряемых радарами целей. Летом 1941 года он изучал в школе Мура электронику и подружился с одним из двадцати студентов — Джоном Маучли. Эккерту было двадцать два, он был моложе Маучли на двенадцать лет, но они этому не придавали никакого значения. В то время как другие думали, что планы Маучли нереалистичны, Эккерт, напротив, был убежден, что создание электронного компьютера на базе вакуумных ламп — вполне решаемая задача.

Как уже отмечалось, в июне 1941 года Маучли посетил Джона Атанасова. В сентябре он написал Атанасову, что у него есть концепции, которые "ничем не похожи на вашу машину" и что он "хочет провести исследования различных идей с надеждой получения очень быстрых результатов и не слишком дорогостоящих". Он спросил разрешения у Атанасова о включении некоторых особенностей его компьютера в свой. По просьбе своей второй жены Кэтлин Маучли, он просто хотел подключить Атанасова к совместной работе над новым компьютером. Однако ответ Атанасова был отрицательным.

В ноябре 1942 года союзники высадились в Северную Африку, а т. к. различие между севером Африки и Мэрилендом было значительно, то таблицы огня были неверны. Поэтому артиллерийский департамент армии США получил заказ на новые баллистические таблицы, которые требовали вычисления сотен траекторий: для каждой траектории по шесть таблиц в день. Ученые Абердина, специалисты в области баллистических исследований, работали совместно со школой Мура над составлением таблиц. Дифференциальный анализатор, их самая лучшая машина в то время, не был достаточно точен, но только один Эккерт понимал ее бесперспективность. Маучли ждал момента, чтобы предложить школе Мура сконструировать электронный высокоскоростной компьютер на базе вакуумных ламп.

Школа Мура отнеслась безразлично к его идее, но Эккерт был на его стороне. Для Маучли и Эккерта наступило тяжелое время, т. к. было необходимо убедить других вкладывать деньги в электронику, особенно в электронные лампы. Оппоненты говорили, что лампы быстро выйдут из строя. Знаменитый Энрико Ферми, статистик и физик, информировал Джона фон Неймана, что с таким количеством ламп ENIAC проработает только пять минут. Но Маучли и Эккерт не были обеспокоены этим. Они знали, что компьютер будет в тысячу раз быстрее, чем любое другое устройство, и если он проработает только пять минут в час, это будет в сотню раз быстрее, чем любая другая машина.

В августе 1942 года Маучли составил проект "Использование быстродействующих устройств на электронных лампах для вычислений", в котором убедительно показал, что использование электронных схем значительно увеличит быстродействие вычислений. Машина, которую он задумал, выполняла тысячу умножений в секунду, вычисляла траектории за одну-две минуты, что в пятнадцать — тридцать раз быстрее, чем анализатор. Но реальное появление ENIAC произошло в сентябре, когда Абердин установил связь с университетом через своего посредника, лейтенанта Германа Голдстайна. В марте 1943 года Голдстайн попросил Маучли высказать свои идеи относительно электронных вычислений. Когда Голдстайн предложил, чтобы Маучли записал все свои идеи на бумаге, то он ответил, что это уже сделано. Но, к большому огорчению Маучли, доктор Джон Брайнерд, администратор школы Мура, руководитель проекта ENIAC, сообщил им о пропаже записки. Благодаря секретарше Маучли Дороти Шисла удалось восстановить записку из ее стенографических отчетов.

Некоторые члены правительства не одобряли этих разработок, т. к. думали, что компьютер технически невыполним при существующих технологиях. Но все-таки проект был одобрен 9 апреля 1943 года, в день рождения Эккерта, когда ему исполнялось 24 года. Артиллерийский департамент выделил 400 тыс. долларов для засекреченной разработки электронного универсального компьютера, самого быстрого, названного электронным числовым интегратором (ENIAC). Сначала ему было дано название ENI, но впоследствии он был переименован в ENIAC. План разработки ENIAC был засекречен и в школе Мура упоминался под кодовым названием '"Проект РХ".

Самое большое электронное оборудование, известное в то время, электронное радарное устройство, содержало около 200 электронных ламп, в то время как в ENIAC предусматривалось приблизительно 17 000 ламп.

Пятьдесят человек непрерывно работали над проектом за исключением Маучли, который еще и учился. Место для установки было выбрано прозаически, это была перестроенная аудитория в школе Мура.

ENIAC не использовал двоичную систему, упрощая работу операторов, читающих результаты сразу же, без преобразования из двоичных кодов. Самое длинное число, обрабатываемое ENIAC, содержало двадцать цифр. В главном программном устройстве была заложена информация для всех команд и переходов. Программа вычислений не сохранялась в памяти вместе с данными и не могла быть изменена.

Немногие могли забыть привычки работы Эккерта и Маучли. Эккерт любил работать вне кабинета в присутствии кого-нибудь, причем не имело значения, был ли это техник или сторож. Он был человеком движения и редко сидел на стуле, а чаше присаживался на край стола или ходил взад-вперед. Маучли был большой труженик, который мог иногда оставаться на работе несколько дней без перерыва на сон.

Мысли Маучли и Эккерта были заняты только ENIAC, пока в конце апреля 1944 года они не почувствовали себя на пороге успеха. Два сумматора обрабатывали данные взаимодействия, а также последующую информацию. Затем Маучли и Эккерт сформировали остальные восемнадцать сумматоров. Но это уже было двадцатью месяцами позже, прежде чем весь ENIAC впервые начал работать.

Уже в декабре 1943 года Маучли и Эккерт стали думать относительно проектирования улучшенного ENIAC, который обеспечивал бы хранение в памяти не только данных, но и команд. Их доклад о достигнутых результатах, написанный в том же месяце, включал и предложение о другом компьютере. Новая идея обрела конкретную форму, когда в конце 1944 года Баллистическая исследовательская лаборатория согласилась на разработку EDVAC (Electronic Discrete Variceble Automatic Computer). Для обеспечения секретности этот проект назвали "Проект РУ.

Проект EDVAC оказал революционное влияние на весь ход дальнейшего развития компьютерной техники. В январе 1944 года Джон Эккерт впервые выдвинул идею хранимой в памяти программы. С позиций сегодняшнего дня принцип хранимой программы считается наиболее важной идеей компьютерной архитектуры и, как утверждают некоторые ученые, единственной вызвавшей вторую промышленную революцию XX века.

Эта идея состоит в том, что, во-первых, программа вычислений вводится в компьютер и хранится в той же памяти, что и исходные числа, а во-вторых, команды, составляющие программу, представляются в виде числового кода, по форме не отличаются от чисел и с ними можно производить те же операции, что и с числами.

Устройства памяти в компьютере EDVAC Эккертом впервые были выполнены на ртутных линиях задержки.

Осенью 1944 года, когда Маучли и Эккерт работали над новым компьютером, военный представитель проекта Герман Голдстайн пригласил в качестве консультанта Джона фон Неймана, блестящего математика, участвовавшего в то время в секретном Манхэттенском проекте по созданию атомной бомбы. Нейман, познакомившись с работой группы Маучли и Эккерта над проектом EDVAC, прекрасно понял, что представляет собой этот компьютер для научных исследований. В июне 1945 года он подготовил отчет "Предварительный доклад о машине EDVAC", в котором дал описание основных элементов компьютера и логики его работы.

Голдстайн, не посоветовавшись с основными авторами проекта — Маучли и Эккертом, размножил доклад и разослал его многим ученым Америки и Англии. Доклад произвел большое впечатление в научном мире, а т. к. имя Неймана было широко известно, никто не усомнился в его приоритете (до сих пор архитектуру компьютера, основанную на вышеприведенных положениях доклада, называют неймановской).

Маучли и Эккерт, лишенные возможности, по соображениям секретности, опубликования материалов по своему изобретению, были глубоко возмущены действиями Голдстайна, предоставившего это сделать человеку, который подключился к их работе только практически через год. Они понимали, что их изобретение найдет большое применение в человеческой деятельности, и опасались, что публикация Неймана помешает им получить патент.

Так оно и случилось. Администрация школы Мура Пенсильванского университета настаивала на том, чтобы члены группы отказались от своих авторских прав на ENIAC и EDVAC. Маучли и Эккерт отвергли требование администрации и в конце марта 1946 года, через полтора месяца после торжественного пуска их первенца, компьютера ENIAC, покинули университет.

С февраля 1946 года ENIAC участвовал в решении задач секретного характера, связанных с созданием водородной бомбы. Первую задачу, которую существующие вычислительные машины решали за сорок часов, ENIAC вычислял за двадцать секунд. Маучли и Эккерт открыли новую эру, и доказательством этого служил их 30-тонный монстр с 40 панелями, 10 000 конденсаторами, 6000 переключателями и 18 000 электронными лампами. 4000 неоновых лампочек были на лицевой части машины, которые регистрировали состояние различных частей машины.

До 1947 года ENIAC находился в школе Мура, затем его перевезли на полигон в Абердине. Используемый главным образом для составления таблиц стрельбы и создания нового вида оружия, он также применялся для аэродинамических расчетов и предсказания погоды. Проработал он до 22 октября 1955 года.

Отвергнув предложение открыть компьютерную лабораторию при компании IBM, Маучли и Эккерт основали весной 1946 года собственную фирму, на ссуду, взятую у отца Эккерта.

Изобретатели компьютера занялись бизнесом исключительно для того, чтобы разработать машину типа EDVAC для Федерального бюро переписи. Они подписали контракт с правительством для технической реализации памяти на магнитной ленте и ртутных линиях задержки. Хотя формально они больше не работали в университете Пенсильвании, летом Маучли и Эккерт провели шестинедельный семинар в школе Мура "Теория и методы проектирования электронных цифровых компьютеров". Это была первая реальная возможность дать представление слушателям относительно электронных вычислений. Лекции в школе Мура были главнейшими из событий, происшедших на заре компьютерного века.

В конце лета случилась трагедия в семье Джона Маучли. Отдыхая на побережье в Нью-Джерси, утонула его жена Мери. Двумя годами позже Маучли женился на одной из первых программисток ENIAC — Кэтлин Мак-Нальти.

В конце 1947 года Маучли и Эккерт подписали контракт с корпорацией Northron в Калифорнии на создание двоичного автоматического компьютера — BINAC, который предполагалось использовать в проекте разработки дальнобойной управляемой ракеты для Военно-воздушных сил. При этом также предполагалось в будущем использовать его как бортовой вычислитель.

Компьютер BINAC

Но бортовые компьютеры стали реальностью только, когда были изобретены миниатюрные радиодетали. BINAC был собран в августе 1949 года с перерасходом бюджета в 178 000 долларов, и с этим два изобретателя потеряли самостоятельность. Поглощенные проектом с Бюро переписи — будущим UNIVAC, Эккерт и Маучли уделяли мало внимания BINAC. В результате машина — это был электронный компьютер с хранимой программой (EDVAC не был завершен до 1952 года) — работала неустойчиво.

Составленный из двух последовательных процессоров, BINAC функционировал, скорее, как два компьютера, обеспечивая дублирование вычислений. Каждая часть машины была сформирована как пара модулей, которые проверяли каждый шаг. Все команды выполнялись каждым модулем, а затем результаты сравнивались между модулями. Если они были равны, следующая команда выполнялась, но если наблюдалось расхождение между двумя модулями, то процесс останавливался. Процессор был всего высотой 5 футов, длиной 4 фута и фут шириной, крошечный для тех дней. Каждый состоял из 700 ламп. В то время как ENIAC мог выполнять 5000 действий в секунду, В IN АС делал только 3500, но последний компьютер мог делать 1000 умножений в секунду, в три раза больше чем ENIAC (333). С большой памятью каждый из двух BINAC-процессоров мог сохранять 512 команд.

BINAC для Маучли и Эккерта был ступенькой к UNIVAC, изобретатели верили в коммерческий потенциал компьютеров, и компьютер, который они сделали, имел большой спрос: сорок шесть экземпляров были проданы. Заказчики покупали компьютеры, даже если они стоили сотни тысяч долларов. Все остальные фирмы, среди них — IBM, были вынуждены простаивать и лишь наблюдать за успехом UNIVAC Эккерта и Маучли. До конца 1949 года фирма Эккерта и Маучли испытывала финансовые затруднения. Ударом явилась смерть главного инвестора фирмы, Генри Страуса, державшего 40 процентов пакета акций в "Эккерт-Маучли" — он погиб в авиационной катастрофе. Находясь на грани банкротства, Эккерт и Маучли приняли первое приемлемое предложение от Remington Rand. Два изобретателя получили 70 000 долларов за патенты плюс гарантируемое жалование 18 000 долларов в год в течение следующих восьми лет. Remington Rand завершил UNIVAC и поставил его в Бюро переписи 14 июля 1951 года.

UNIVAC был самым быстродействующим компьютером, созданным к тому времени (1951 год). Это была единственная в мире коммерческая электронная вычислительная машина общего назначения. Его "изюминка" — память с хранимой программой, а программируемые команды записывались на магнитную ленту. Одна бобина с магнитной лентой могла хранить один миллион знаков, раньше для такого количества требовались десятки тысяч перфокарт. UNIVAC содержал только 5000 электронных ламп (по сравнению с 17 468 лампами ENIAC) и был более компактен, чем предшественники. Основной процессор занимал пространство 14,5x7,5x9 футов. В то время как ENIAC работал с частотой 100 000 Гц, у UNIVAC она была 2,5 млн. импульсов в секунду. UNIVAC не требовал большого количества времени для загрузки. Информация считывалась с магнитной ленты. В отличие от двадцати 10-разрядных слов ENIAC, UNIVAC имел во внутренней, быстродействующей, доступной памяти 1000 слов.

В 1963 году, после более чем 73 500 часов работы, коммерческий отдел фирмы Remington Rand "отправил" UNIVAC в отставку. Сегодня части этой машины можно увидеть в Смитсоновском институте.

После UNIVAC Маучли и Эккерт создали компьютер LARC, первую машину, в которой были заложены идеи мультипрограммирования и мультипроцессирования.

Компьютер UNIVAC

В то же время Эккерт занял пост вице-президента в "Sperry Corporation". Он жил в Глодвине со своей женой, Юдит Энн Револьт, и двумя из своих четырех детей.

Джон Маучли работал директором в "Univac-Division" до 1959 года, а затем организовал фирму "Mauchly Associetes" по разработке компьютерной техники, а в 1968 году создал сеть консалтинговых компаний с названием "Dynatrend".

В 1974 году Маучли серьезно заболел (наверное, причиной болезни было несправедливое решение судьи Ларсона, вынесенное 19 октября 1973 года, в котором подвергался сомнению приоритет Маучли и Эккерта и, соответственно, патентные права "Sperry Соrр.") и до конца жизни так не смог поправиться. Он умер в январе 1980 года, пережив свою жену Кэтлин Мак- Нальти. У него было 2 сына и 5 дочерей.

Профессор Маучли был членом многих обществ, в том числе Американского физического общества и Института Франклина. Он был удостоен многих наград, среди которых медаль Говарда Поттса Института Франклина (1949 год), премия Джона Скотта (1961 год). В 1973 году Маучли вместе с Эккертом был удостоен филадельфийской премии "Человек года".

Джону Эккерту в 1964 году в Пенсильванском университете присудили почетную степень доктора наук в области компьютерной техники. В 1969 году он был удостоен высшей государственной награды за достижения в развитии науки, математики и техники — медали за достижения в области науки (National Medal of Science). Он является действительным членом Института инженеров по электротехнике и радиоэлектронике, членом Национальной академии технических наук, он — автор и соавтор 87 патентов.

Маучли и Эккерт вписали в историю компьютерной техники монументальную страницу.

 

Джон фон Нейман

"Повивальная бабка" компьютера

Джон фон Нейман

В конце 1944 года, когда Маучли и Эккерт трудились над компьютером с хранимой в памяти программой EDVAC, через шесть месяцев после того, как Эккерт выдвинул идею компьютера с хранимой программой, к ним присоединился в качестве консультанта Джон фон Нейман. В то время ему шел 41 год, и он был известен как блестящий математик.

Ему суждено было оказать существенное влияние на развитие компьютерной техники в последние годы, выделить основные постулаты, определяющие архитектуру компьютера (известные как постулаты фон Неймана).

Джон фон Нейман родился в Будапеште 28 декабря 1903 года. Он был родом из венгерского высшего класса, из которого вышли многие гиганты математики и физики. Его отец, еврейский банкир Макс Нейман заслужил достаточное габсбурское уважение, чтобы добавить почетное "Маргаттай" к своему фамильному имени (позже измененное Джоном на "фон"). Янош, как его называли в детстве, был старшим из трех сыновей.

Еще маленьким ребенком Янош любил математику и постоянно стремился приспосабливать ее логику к миру в целом. Продолжительные прогулки с другом детства Юджином Вигнером привели их к дискуссии о теории множеств и теории чисел. Тем не менее, его необъятный интеллект не был ограничен математикой. С шестилетнего возраста он шутил со своим отцом на классическом греческом. Когда ему было 10 лет, для мальчика был нанят личный репетитор, позже учитель предложил его отцу развивать особые дарования Яноша. Юноша был вынужден вращаться в кругу своих сверстников, чтобы не показаться надменным. Он не нуждался в заботе. Его незаурядный ум уважали. С 1911 по 1916 год он посещал лютеранскую гимназию в Будапеште и был ее лучшим математиком.

Беспорядки Первой мировой войны нанесли удар семье фон Нейман. Когда к власти пришел коммунистический режим Бела Куна в 1919 году, банки были экспроприированы, оставив Максу фон Нейману один выбор — бежать с семьей в их дом в Вене. Они оставались там 4 месяца, возвратились домой в августе 1919 года, два месяца спустя после падения Куна. Этот эпизод превратил Яноша в антикоммуниста на всю жизнь.

Хотя он был зачислен в университет в Будапеште в 1921 году, фон Нейман получил большую часть образования в других институтах. Значительную часть времени, особенно с 1921 по 1923 год, он провел в Берлинском университете. Там он мог заниматься с математиком Эрхардом Шмидтом и слушать лекции Альберта Эйнштейна. Фон Нейман продолжил обучение в швейцарском федеральном институте Технологии в Цюрихе, где он получил диплом по специальности химическое машиностроение в 1925 году. Год спустя, 12 марта 1926 года, в возрасте 22 лет он получил докторскую степень по математике в университете в Будапеште. Не профилирующими предметами у него были экспериментальная физика и химия. Проходя обучение в университете в Геттингене в 1926 и 1927 годах, фон Нейман общался с одними из самых великолепных умов математики. Там он подружился со студентом Робертом Оппенгеймером.

В период с 1927 по 1930 год фон Нейман был лектором по математике в университете в Берлине. Редко кто, будучи молодым, получает такую должность. В течение первого года он опубликовал там 5 научных работ. Три из них, излагавшие математическую структуру для квантовой теории, имели большое значение для этой области науки. Четвертая научная работа была первой попыткой в изучении теории игр. Пятая рассматривала связь между формальными логическими системами пределов математики. К 30-м годам XX века фон Нейман был признан одним из ведущих математиков мира. Он провел весну 1929 года в Гамбурге и именно тогда получил приглашение читать лекции в Принстонском университете, что явилось поворотным пунктом в его карьере. Фон Нейман приехал в Соединенные Штаты в 1930 году. После чтения лекций по квантовой статистике в течение года в Принстоне, в 1931 году он был назначен на должность профессора. Математическая гидродинамика была предметом его лекций в следующем году. В 1933 году, когда в Принстоне был основан институт перспективных исследований, фон Нейман стал одним из первых шести профессоров школы математики. Эту должность он будет занимать до конца своей жизни. 1 января 1930 года фон Нейман женился на Мариетте Коведи, у них родилась дочь Марина в 1935 году, но брак распался в 1937 году. В том же году фон Нейман стал американским гражданином, а 18 декабря 1938 года женился на Кларе Дэн, которая позже стала программистом в научной лаборатории в Лос-Аламосе.

О фон Неймане часто рассказывают анекдоты в связи с его редкой способностью к мгновенному вызову информации из памяти. Он мог прочесть книгу, а потом несколько лет спустя цитировать ее дословно. Герман Голдстайн, который близко работал с ним в Принстоне в 40-е годы, однажды попытался проверить его память, попросив его вспомнить, как начинается "Рассказ двух городов" Диккенса. Без паузы фон Нейман стал декламировать первую главу, продолжая в течение 10 минут до тех пор, пока его не попросили остановиться. В другой раз Голдстайн наблюдал, как фон Нейман читал лекцию, которую он не проводил 20 лет — и к удивлению Голдстайна, фон Нейман использовал те же буквы и символы, которые он применял в первоначальной лекции. Но более поразительной была скорость, с которой он мог выполнять сложные вычисления в уме. Однажды один из знаменитых математиков провел всю ночь, пытаясь решить задачу при помощи настольного калькулятора. На следующее утро фон Нейман выполнил эти же вычисления в уме за 6 минут. Не удивительно, что Юджин Вигнер, физик- теоретик и близкий друг фон Неймана, сравнивал его мозг со своего рода совершенным инструментом, способным измерять с точностью до тысячной дюйма.

У фон Неймана было овальное лицо с широким лбом. Он был небольшого роста и толстоват. Нейман разговаривал на элегантном, английском языке, но с небольшим акцентом. Говорил он бегло. Тратя бесчисленное количество часов, он не прерывал работы на перерыв, пока задача не была решена, он был известным трудоголиком. Иногда Нейман просыпался ночью, чтобы прийти к решению какой-либо задачи при помощи неожиданно возникшей интуиции. Одевался он аккуратно: жилет, платок в кармане, застегнутый пиджак. Любил технические новинки и был среди первых, кто в начале сороковых годов установил дворники на свою машину. Сложные игрушки доставляли ему особое удовольствие. Никакой отшельнической оторванности от жизни — фон Нейману нравилось быть окруженным людьми. Он испытывал благоговейный трепет перед теми, кто обладал властью, особенно перед военными. Когда он сам приобрел политическую власть как член комиссии по атомной энергии в 50-х годах, он наслаждался внешними преимуществами занимаемой должности, в особенности вертолетом, который приземлился в Принстоне, чтобы доставить его на совещание в Вашингтоне. Он устраивал много вечеринок в Принстоне, хотя временами удалялся в кабинет работать, а затем возвращался. Фон Нейман любил рассказывать истории, а шуточные стихотворения были его особым хобби.

Знакомые находили недостатки в фон Неймане. Он был безрассудным водителем, отправляющим одну за другой машины на свалку в Принстоне. Он не был атлетом и даже презирал все занятия спортом. Он переедал, и, находясь в Лос-Аламосе, ему ничего не стоило проехать 20 миль до любимого мексиканского ресторана. Он был оригинальным рассеянным профессором. Однажды, когда его больная жена Клара попросила стакан воды, ему пришлось спросить ее, где хранятся стаканы, хотя они прожили в одном доме 17 лет.

Решающий момент в карьере Джона фон Неймана произошел, когда он начал работать над созданием первой атомной бомбы в Лос-Аламосе в начале 40-х годов. Результат этой работы привел его к пониманию высокой значимости компьютеров. Роберт Оппенгеймер, который знал фон Неймана с Геттингена, убедил его стать математическим консультантом для секретного Манхэттенского проекта в конце 1943 года. Его квалификация математика в вопросах теории взрыва была крайне необходима. Другие участники манхэттенского проекта отклонили взрывной метод как бесполезный, но, полагаясь на свои знания в теории взрыва, Нейман считал, что такой метод может сработать. Оппенгеймер был убежден в этом, и поэтому фон Нейман разработал детали. Техника фон Неймана, правильность которой была доказана испытаниями в Аламогордо, была применена при взрыве бомбы в Нагасаки.

В течение лета 1944 года фон Нейман был полон страстного желания найти пути ускорения вычислений. Как это ни странно, его первая "встреча" с компьютерами произошла на железнодорожной платформе. Однажды, в июне 1944 года, Герман Голдстайн, математик и военный офицер, который был посредником между Абердинской Мэрилендской баллистической исследовательской лабораторией и секретным компьютерным проектом в школе Мура при университете в Пенсильвании увидел фон Неймана на платформе в Абердине. Голдстайн ожидал поезда из Филадельфии. В течение военных лет фон Нейману приходилось ездить на работу из Лос-Аламоса (где он был консультантом в баллистической лаборатории) в Принстон. Позже Голдстайн рассказывал: "Разговор вскоре зашел о моей работе". Голдстайн испытывал большое почтение к фон Нейману. В спокойной обстановке той железнодорожной платформы искушение попробовать произвести на него впечатление было огромным. Какой же лучший способ сделать это, чем раскрыть, что он, Голдстайн, был вовлечен в проектирование компьютера в университете в Пенсильвании, названного электронно-числовым интегратором — ENIAC. Когда Голдстайн объяснил, что компьютер может выполнять 333 умножения в минуту, фон Нейман взволнованно попросил более детального объяснения. "Вся атмосфера нашего разговора, — вспоминал Голдстайн, — изменилась: из расслабляющего доброго юмора в атмосферу, более похожую на устный экзамен на докторскую степень по математике". Фон Нейман добился разрешения от властей посетить проект. Приехав 7 сентября 1944 года в школу Мура электронного проектирования, где компьютер находился в стадии завершения, фон Нейман придал программе ENIAC респектабельность, которая не вызвала энтузиазма у создателей. Джон Маучли, автор изобретения, считал фон Неймана не самим выдающимся математиком в мире и был взволнован тем, что фигура такой величины проявляла интерес к его работе. С ним обходились как с посещающим членом королевской семьи, которому было разрешено все видеть и обо всем спрашивать. То, что он видел, поражало своим великолепием: два аккумулятора, вычислявших со скоростью, которая была гораздо быстрее той, с которой фон Нейман мог вычислять в уме. Но чувствуя огромный потенциал внутри ENIAC, он уже представлял себе более совершенные компьютеры, которые по своей значимости превзойдут даже эти вычислительные способности. По словам Маучли, фон Нейман был так похож на ребенка, получившего новую игрушку.

Нейман стал лицом, прочно обосновавшимся в проектах ENIAC и EDVAC в качестве консультанта, высокопоставленного посетителя и энтузиаста. Он понял, что работы Маучли и Эккерта по реализации проектов ENIAC и EDVAC очень важны для науки. Обобщив увиденное и услышанное о проектах ENIAC и EDVAC в июне 1945 года, меньше, чем через год после того, как он присоединился к группе Маучли и Эккерта, Нейман, пользуясь своим высоким авторитетом, написал отчет под названием "Предварительный доклад о машине EDVAC". В нем он описал не только саму машину, но и ее логическую организацию.

Компьютер EDVAC

Интересно привести основные положения доклада (цит. по статье "Предварительное рассмотрение логической конструкции электронного вычислительного устройства", написанной и опубликованной годом позже совместно с А. Берксом и Г. Голдстайном и повторяющей содержание доклада):

"Так как законченное устройство будет универсальной вычислительной машиной, оно должно содержать несколько основных органов, таких как орган арифметики, памяти, управления и связи с оператором. Мы хотим, чтобы после начала вычислений работа машины не зависела от оператора".

"Очевидно, что машина должна быть способна запоминать некоторым образом не только цифровую информацию, необходимую для данного вычисления… но также и команды, управляющие программой, которая должна производить вычисления над этими числовыми данными".

"Если, однако, приказы (команды) машины свести к числовому коду и если машина сможет некоторым образом отличать число от приказа (команды), то орган памяти можно использовать для хранения как чисел, так и приказов (команд)" (идея, выдвинутая еще в начале 1944 года Эккертом).

"Если память для приказов (команд) является просто органом памяти, то должен существовать еще орган, который может автоматически выполнять приказы (команды), хранящиеся в памяти. Мы будем называть этот орган управляющим".

"Поскольку наше устройство должно быть вычислительной машиной, в нем должен иметься арифметический орган… устройство, способное складывать, вычитать, умножать и делить".

"Наконец, должен существовать орган ввода и вывода, с помощью которого осуществляется связь между оператором и машиной".

Как уже говорилось в предыдущем очерке, Герман Голдстайн размножил этот отчет и разослал его ученым США и Англии. В первый раз посторонние люди, не работающие над EDVAC, узнали о проекте электронного компьютера с хранимой программой. Джона фон Неймана стали воспринимать как первого инициатора первого компьютерного проекта. Этот вывод обескураживал многих действительных разработчиков. Маучли и Эккерт были сердиты на Голдстайна за нарушение секретных постановлений, которые удерживали от их разглашения собственной главной роли в проекте EDVAC. Они пришли в ярость также из-за того, что Нейман позволил поставить свое имя на работе, не отдавая чести заслуженному вкладу исследовательской команды школы Мура.

Надо сказать, что спустя годы Герман Голдстайн помог придать необходимую форму мифу о приоритете фон Неймана в этой сфере деятельности. "Это очевидно, — заявлял он в своей книге "Компьютер от Паскаля до фон Неймана", — что фон Нейман, написав свой отчет, придал определенную форму размышлениям в области компьютеров, чего никто другой не делал ранее. Он был, среди всех членов группы в школе Мура, самым необходимым человеком… только фон Нейман был весьма ценным для всего задания". Это мнение Голдстайна не меняет того факта, что Преспер Эккерт написал заметку о компьютере с хранимой программой за полгода до того, как фон Нейман услышал о работах, проводимых в школе Мура.

EDVAC с 4000 электронными лампами и 10 000 кристаллическими диодами, в отсутствие Маучли и Эккерта, был завершен только в 1952 году. Но таланты фон Неймана были многогранны. В 1944 году он и Оскар Моргенштерн опубликовали классическую работу "Теория игр и экономическое поведение", в которой они проанализировали такие простые игры, как покер и игра в орлянку, чтобы продемонстрировать, что "наиболее возможный" метод игры существует и математически обусловлен. Их "теория игр" могла также быть применима к экономическим и социальным проблемам. Посредством этой книги фон Нейман и Моргенштерн сделали первый шаг к общей математической теории экономики.

После Второй мировой войны фон Неймана забросали престижными академическими предложениями, ни одно из которых он не принял. Норберт Винер предлагал ему стать главой математического департамента. В Чикагском университете шли разговоры о создании нового института прикладной математики, которым будет руководить фон Нейман. Но он был полон страстного желания создать свой собственный компьютер, и Принстон, казалось, был наилучшим местом для осуществления этого намерения. Но этот путь не был гладким. Члены Института перспективных исследований чувствовали, что их учреждение представляло собой идиллическую башню из слоновой кости и не было местом, загроможденным непривлекательными образцами машинного оборудования, однако фон Нейман имел опыт, необходимый, чтобы идти своей дорогой. В его планах было создать полностью автоматическую, цифровую универсальную электронную вычислительную машину, самую быстродействующую. Она предназначалась для научных исследований, а не для коммерческого рынка. IAS-компьютер, названный в честь Института перспективных исследований, был начат в 1946 году и закончен пять лет спустя.

Джон фон Нейман и компьютер IAS

Тем временем 22 марта 1946 года фон Нейман и Голдстайн попытались получить патент на EDVAC, обосновывая свое требование на "Первом отчете". Они обратились в юридическое отделение Пентагона. 3 апреля 1947 года армия отказала им, аргументируя это тем, что хотя "Первый отчет" квалифицируется как опубликованное доказательство, но уже слишком поздно, т. к. патенты выдаются в течение года после публикации свидетельства. EDVAC пришлось стать общественной собственностью. Маучли и Эккерт были озадачены в равной степени. Они знали, что патент по праву принадлежит им.

В октябре 1954 года фон Нейман был назначен членом комиссии по атомной энергии, которая ставила своей главной заботой накопление и развитие ядерного оружия. Он был утвержден Сенатом Соединенных Штатов 15 марта 1955 года. В мае он и его жена переехали в Вашингтон, пригород Джорджтаун. В течение последних лет жизни фон Нейман был главным советником по атомной энергии, атомному оружию и межконтинентальному баллистическому оружию. Возможно, вследствие своего происхождения или раннего опыта в Венгрии, фон Нейман решительно придерживался правого крыла политических взглядов. В статье журнала "Жизнь", опубликованной 25 февраля 1957 года, вскоре после его смерти, он представлен приверженцем предупредительной войны с Советским Союзом.

Летом 1954 года фон Нейман ушиб левое плечо при падении. Боль не проходила, и хирурги поставили диагноз костная форма рака. Предполагалось, что рак фон Неймана мог быть вызван его посещениями испытаний ядерного оружия и проживанием в Лос-Аламосе в течение долгих месяцев. Болезнь прогрессировала и посещение три раза в неделю совещаний КАЭ (Комиссии по атомной энергии) требовало огромных усилий. Он все еще оставался членом КАЭ и членом научно-совещательного правления Военно- воздушных сил США. Когда конец ученого был близок, секретарь обороны, депутаты, секретари сухопутных, морских и воздушных сил и все военные начальники штабов собрались вокруг кровати фон Неймана для встречи в Уолтер-Рид-Госпитале в Вашингтоне, федеральный округ Колумбия — он был все еще важен для них. Только врачи и санитары с целью проверки на благонадежность могли посещать фон Неймана, настолько велико было беспокойство, что в ослабленном состоянии и под воздействием лекарств он мог разгласить секреты.

Джон фон Нейман умер 8 февраля 1957 года. Он никогда не узнает полную степень своего влияния на компьютерную науку.

Во многих странах мира широко признаны заслуги Джона фон Неймана. Он был членом Американского философского общества, Национальной Академии наук, Американской Академии искусств и наук, президентом Американского математического общества. Также Нейман был членом-корреспондентом многих иностранных академий, награжден медалью за выдающиеся гражданские заслуги, премиями Энрико Ферми и Альберта Эйнштейна.

 

Морис Уилкс и Том Килбурн

Создатели первых компьютеров с хранимой программой

Морис Уилкс

Несмотря на то, что концепцию хранимой в памяти компьютера программы выдвинул в январе 1944 года Джон Эккерт и в том же году он вместе с Джоном Маучли начали работу по созданию EDVAC (компьютера с хранимой программой), все же первые машины с хранимой программой заработали в Англии, в Кембриджском и Манчестерском университетах.

Морис Уилкс, профессор Кембриджа, который прослушал курс лекций по машине EDVAC в школе Мура, возвратился в Англию для того, чтобы начать разработку компьютера EDSAC. Было это в ноябре 1946 года и закончил ее в 1949 году, на два года раньше, чем в США был запущен EDVAC.

А в Манчестерском университете Том Килбурн вместе с Джеффри Тутиллом создает компьютер с хранимой программой под названием Small-Scale- Experimental-Machine, или сокращенно Baby, еще раньше — в июне 1948 года.

Но не только созданием компьютеров с хранимой программой эти два корифея компьютерной науки прославили свои имена, в дальнейшем они выдвинули ряд идей и принципов, которые с успехом применяются в наше время.

Морис Винсент Уилкс родился 26 июля 1913 года в Дадли в графстве Стаффордшир (Англия). С 1931 года учился в Кембриджском колледже Святого Джона, который закончил в 1934 году. Затем его учеба продолжилась в Кембриджском университете до его окончания в 1937 году. В 1936 году он получил звание доктора философии за работу, посвященную распространению очень длинных радиоволн в ионосфере.

По окончании университета он был назначен на младшую должность — демонстратора, что соответствует должности ассистента профессора в США, в открытую Математическую лабораторию. В его обязанности входило: контроль за разработкой нового дифференциального анализатора и консультации в Манчестерском университете по дальнейшим разработкам в этой области.

В годы Второй мировой войны, с 1939 по 1945 год, он находился в составе действующей армии союзников.

По возвращению в Кембридж в сентябре 1945 года он назначается директором Математической лаборатории (позже Компьютерной лаборатории), в которой Уилкс и проработал до 1980 года.

В мае 1946 года была получена копия неймановского отчета относительно компьютера EDVAC и Уилксу представилась возможность за одну ночь прочитать и понять документ, который описывал концепцию записи и хранения программы в компьютере. Он понял сразу, что это реально, и с этого момента никогда не сомневался, что развитие компьютеров пойдет именно таким путем.

После прочтения отчета Уилкс принял приглашение посетить лекции по "Теории и методам конструирования электронных цифровых компьютеров", проводимых в школе Мура Пенсильванского университета с 8 июля по 31 августа 1946 года. Уилкс ухватился за предоставленный шанс посетить эти лекции, хотя и опоздал к их началу, но все же успел к моменту детального описания ENIAC и обсуждения принципов создания EDVAC. Вот что пишет сам Морис Уилкс: "Самое важное событие в моей жизни произошло в 1946 году… Мне удалось прослушать учебный курс по компьютерам, и он произвел на меня сильнейшее впечатление. Ничего подобного никогда раньше не было, а о достижениях школы Мура и других зачинателей компьютерной техники тогда знали лишь немногие. Курс слушали 28 человек из 20 организаций. В роли основных преподавателей выступали Джон Ма- учли и Преспер Эккерт. Они находились на гребне успеха, создав первый электронный компьютер ENIAC и принципы конструирования EDVAC… Последующие события убедительно подтвердили принципы, которым Эккерт и Маучли научили в 1946 году тех из нас, кому посчастливилось прослушать этот курс".

После возвращения Уилкса в Кембридж был составлен проект создания компьютера с хранимой программой, который предстояло осуществить силами Математической лаборатории. Лаборатория имела достаточные средства, чтобы начать реализацию проекта, и следующие три года были потрачены на конструирование EDSAC (Electronic Delay Storage Automatic Calculator — электронный автоматический калькулятор с памятью на линиях задержки), который заработал 9 мая 1949 года.

Компьютер EDCAS

В сущности, машина EDSAC была прямой копией проекта EDYAC, но в части, касающейся вопросов программирования EDSAC, Морис Уилкс явился в некотором роде первооткрывателем. Устав кодировать каждую команду с помощью двоичных цифр ("единиц" и "нулей"), он занялся поисками более удобного способа общения с машиной. Первым результатом этих усилий явились новые коды, составленные из букв и коротких слов, взятых из английского языка. Он ввел мнемонику, где каждая команда изображалась одной заглавной буквой: S обозначала "вычитание", Т — "передать информацию в память", Z — "остановка машины" и т. д.

Но, пожалуй, более ценным новшеством, чем мнемоника, введенная на EDSAC, явилась библиотека подпрограмм. Надо сказать, что программисты уже были знакомы с понятием подпрограммы. Грейс Хоппер и ее коллеги применяли подпрограммы на гарвардской машине Говарда Айкена. Они имели блокноты с записью наиболее употребляемых подпрограмм, чтобы в случае необходимости не составлять их заново.

Проблема состояла в том, что адреса расположения команд и переменных подпрограммы в памяти менялись в зависимости от ее размещения в последней. Настройка подпрограмм на определенное место в памяти, очевидно, нуждалась в автоматизации, и впервые это было сделано в компьютере EDSAC. Программисты EDSAC начали с написания набора унифицированных подпрограмм, которые и образовали библиотеку. После этого достаточно было ввести лишь короткую команду, чтобы компьютер самостоятельно проделал всю работу по настройке и размещению подпрограммы внутри основной программы.

Морис Уилкс назвал мнемоническую схему для EDSAC и библиотеку подпрограмм собирающей системой (по-английски assembly system — отсюда слово "ассемблер"), поскольку она собирала последовательности подпрограмм.

В настоящее время языки программирования, в которых короткие мнемонические имена непосредственно соответствуют отдельным машинным командам, называются языками ассемблера. Так что, Морис Уилкс считается создателем (1949 год) одного из так называемых языков ассемблера.

Компьютер EDS АС успешно использовался в расчетах по правительственному проекту ядерных исследований, проводимых в Кембридже.

В начале 50-х годов группа разработчиков, возглавляемая Уилксом, приступила к созданию второй версии компьютера EDSAC — EDSAC–II, который был введен в эксплуатацию в 1958 году.

При конструировании машины EDSAC–II были впервые воплощены идеи Мориса Уилкса по построению систем управления — идеи микропрограммирования. Известно, что один из важнейших вопросов, который приходится решать при конструировании компьютера, заключается в том, как управлять в компьютере потоками электрических сигналов, переносящих информацию. В настоящее время существуют, в принципе, два метода построения систем или устройств управления. Один из методов построения системы управления состоит в том, что ей придают "жесткую", т. е. неизменяемую, схему внутренних соединений и в таком виде присоединяют к другим электрическим цепям процессора. Другой подход, позволяющий получить более гибкую, более простую, а в ряде случаев и более дешевую систему управления, сводится к тому, что систему управления заменяют программой, содержащей подробные инструкции по управлению машиной в кодированной форме. Такую программу помещают в отдельный блок памяти, который вводят в состав процессора.

Этот подход реализации функций управления Морис Уилкс начал разрабатывать еще в 1949 году. После двух лет исследований он пришел к выводу, что наилучший подход к конструированию системы управления состоит в том, чтобы рассматривать ее как матрицу, или прямоугольную таблицу, в которой каждый горизонтальный ряд клеток соответствует одному такту, а каждый вертикальный столбец — одной из линий передачи управляющих сигналов. При таком подходе выбор последовательности операций упрощается и сводится к тому, что в клетках каждого горизонтального ряда должны быть проставлены двоичные символы, которые образовали бы нужную комбинацию: для каждой управляющей линии, которая во время данного такта должна быть включена, следует в соответствующей клетке проставить единицу, а в клетках тех линий, которые должны быть отключены, записать нули.

Аппарат, эквивалентный управляющей матрице, представляет собой простое запоминающее устройство, построенное из повторяющихся элементов. Содержимое каждой ячейки в ряду определяет состояние соответствующей линии управления в течение одного такта. Набор двоичных цифр, образующий одну макроинструкцию, служит теперь просто для того, чтобы выбрать подходящий ряд или последовательность рядов в управляющей памяти. Иными словами, макроинструкция становится адресом, обозначающим ряд. Ввиду этого построение системы управления из задачи конструирования электронного устройства превращается в задачу разработки программного обеспечения. Сложность ее состоит теперь не в том, чтобы подобрать правильную комбинацию схем с жесткими связями для генерации управляющих сигналов, а в том, чтобы правильно определить комбинации единиц и нулей, которые нужно записать в управляющую память.

Уилкс провел аналогию между этим подходом и обычным программированием и для описания своих идей заимствовал термины из области программирования, прибавив к ним в каждом случае приставку "микро", указывающую на элементарность операций управления. Так появился термин "микропрограммирование" и целое семейство родственных ему. В частности, каждый ряд клеток в управляющей матрице Уилкс назвал микроинструкцией, а каждую последовательность рядов, выполняющих одну макроинструкцию, — микропрограммой. Запоминающее устройство для хранения микропрограмм ученый предложил называть микропрограммной памятью. Принцип микропрограммирования облегчил понимание функций управления, а благодаря тому, что сложные схемы управления оказались замененными матрицей из повторяющихся запоминающих ячеек, упростилось построение аппаратуры. Еще важнее то, что этот принцип позволил придать машине дополнительную гибкость: стало возможным изменять систему управления, не конструируя заново аппаратную часть.

Свои идеи по микропрограммированию Морис Уилкс представил в докладе "Наилучший метод конструирования автоматической вычислительной машины" на конференции в Манчестерском университете, состоявшейся в июле 1951 года. Предложенный им метод стал основой техники микропрограммирования, которой предстояло стать популярной двумя десятилетиями позже, в начале 70-х годов.

В том же, 1951 году, Уилкс опубликовал еще одну работу. Совместно с двумя коллегами, Дэвидом Уиллером и Стенли Гиллом, он написал первый учебник по программированию.

К 60-м годам, после EDSAC–II, стало ясно, по какому направлению пойдет развитие компьютеров. Как писал в эти годы Уилкс, "первые компьютеры в известном смысле были вещью для программиста", и довольно скоро стала очевидна неэффективность такого использования дорогого и дефицитного оборудования. На смену однопрограммному режиму работы пришли многопрограммный режим и режим разделения времени. "Оно не было следствием открытия какого-либо нового принципа, просто стало ясно, что существующие технические средства можно использовать гораздо лучше, чем до сих пор," — писал М. Уилкс. В США, Англии и СССР развернулись работы по созданию систем с разделением времени, и первая CTSS была разработана Ф. Корбато и Р. Фано в 1963 году в Массачусетском технологическом институте. Затем в Англии в середине 60-х годов ученые Кембриджа в сотрудничестве с фирмой Ferranti Ltd под руководством Мориса Уилкса создали систему с разделением времени Titan.

С 1965 года Уилкс, будучи профессором Компьютерных технологий, вместе с Чарльзом Лангом участвовал в создании системы автоматизированного проектирования на основе миникомпьютеров PDP-7 компании DEC. Эта система совершенствовалась в течение 15 лет.

В 1974 году Морис Уилкс включился в работу по созданию корпоративной сети Кембриджского университета, так называемое "кольцо Кембриджа", с использованием сравнительно недорогих рабочих станций.

Выйдя в отставку и покинув Кембридж в 1980 году, он стал штатным консультантом компании DEC, а затем членом ученого совета по планированию научных исследований организации Olivetti Research Board. По возвращении в Кембридж он становится Заслуженным профессором в отставке, а в 1993 году ему была присвоена степень Почетного доктора наук.

Морис Уилкс был первым президентом Британского компьютерного общества, членом Королевского общества, иностранным членом многих академий — Испании, Америки, Еермании и др. В 1967 году он получил Тьюринговскую премию как первооткрыватель в таких областях, как компьютеры с хранимой программой, библиотеки подпрограмм и микропрограммирование.

Том Килбурн

Дальнейшее наше повествование посвящено другому первооткрывателю — Тому Килбурну, скромному профессору из Манчестера.

Он родился в 1921 году в Дьюсбери, в графстве Йоркшир (Англия). Закончив школу, Килбурн поступил в Кембриджский университет, где его страстью стала математика. По окончании университета он получил степень бакалавра наук, а затем магистра наук.

В 1942–1946 годах Том Килбурн проводил исследования в области электричества, магнетизма и электроники в City & Guilds в Лондоне, а затем работал в Научно-исследовательском институте дальней связи. Здесь состоялась его встреча с новым боссом, а затем коллегой Фредериком Уильямсом. Том Килбурн быстро произвел на всех впечатление как человек с острым мышлением и технически грамотный специалист в области электронной схемотехники и как член группы Уильямса сделал много усовершенствований в электронных схемах радара.

Значительной разработкой группы Уильямса было использование электронно-лучевой трубки (ЭЛТ) для хранения битов данных. Так называемая трубка Уильямса записывала на люминофорном покрытии экрана точки и тире, которые представляли соответственно 0 и 1 двоичных данных. Поместив в металлическую пластину на экран трубки, можно было получить емкостную связь, а затем для считывания этих точек и тире использовать развертку электронным лучом. Применение трубок Уильямса позволяло осуществлять произвольную выборку хранимой информации (первые ЗУПВ) вместо последовательной выборки при использовании ртутных линий задержки.

Фредерик Уильямс

В декабре 1946 года Фредерик Уильямс и Том Кил- бурн перешли в Манчестерский университет для того, чтобы усовершенствовать конструкцию запоминающей трубки и в то же время начать разработку того, что впоследствии стало первым компьютером с хранимой программой.

Том Килбурн познакомился с разрабатываемыми в США компьютерами еще в 1945 году, а затем более детально изучил их в начале 1947 года, когда посещал лекции Алана Тьюринга в Национальной Физической Лаборатории (НФЛ). Известно, что в это время Тьюринг и его коллеги из НФЛ разрабатывали компьютер и подробности его создания излагались на лекциях Тьюринга.

Подготовив таким образом плацдарм, Килбурн вместе с Джеффри Тутиллом возглавил разработку компьютера Baby (Small-Scale-Experimental-Machine) с памятью на трубке Уильямса объемом 1024 бита. 21 июня 1948 года Том Килбурн просчитал первую программу на компьютере Baby. Программа по определению максимального множителя числа была реализована компьютером за 52 минуты.

Новость о появлении Baby была подхвачена журналистами: "Чудо нашего времени…", "Запоминающая машина, способная решать сложнейшие математические задачи"… — гласили заголовки газет. Изобретатели были завалены письмами от ученых-биофизиков, физиков-ядерщиков, метеорологов с просьбами произвести расчеты, но создатели компьютера были заинтересованы в заказах на разработку новых машин.

В дальнейшем Baby был доработан и стал называться "манчестерский Mark-1" (чтобы не путали с "Марк-I" Говарда Айкена). В 1951 году фирма Ferranti Ltd поставила на рынок одну из первых в мире коммерческих машин, которая называлась Ferranti Mark 1.

В начале 50-х годов Том Килбурн работал в Манчестерском университете в качестве лектора электротехнической кафедры, а затем приступил к своей уникальной разработке — машине Atlas.

Компьютер Baby

Машина Atlas — первая компьютерная система, в которой были реализованы многие устройства и принципы, в настоящее время признанные стандартными, в том числе виртуальное (логическое) пространство адресов, превышающее по объему фактическое (физическое) адресное пространство, одноуровневая память на магнитных сердечниках с дублирующим ее магнитным барабаном, а также архитектура, основанная на использовании операционной системы с аппаратными средствами для облегчения программирования (например, с экстракодами).

Работы по созданию этой машины начались в 1956 году под руководством Тома Килбурна в Манчестерском университете. С 1958 года проект Atlas финансировался фирмой Ferranti Ltd. Опытный образец машины был испытан в 1961 году, а первые промышленные образцы машины появились на рынке в 1963 году.

Особо необходимо подчеркнуть, что впервые Килбурном при создании машины Atlas была реализована концепция виртуальной памяти, из которой возник метод разделения памяти на страницы и стала возможной динамическая трансляция адресов аппаратными средствами.

Машина Atlas имела высокую производительность — около 900 тыс. оп/с, которая была достигнута за счет совершенствования принципов многопрограммной работы и применения высококачественных транзисторов.

Некоторые ученые считают Тома Килбурна и его коллег-разработчиков машины Atlas родоначальниками современных операционных систем (ОС), которые определили функции ОС и то значение, которое они приобретут в компьютерах следующих десятилетий.

После завершения работ по Atlas в 1964 году Килбурн возглавил первую на Британских островах кафедру информатики (Computer Science), образованную в Манчестерском университете. Получив степень доктора наук в 1953 году за исследования в области компьютерной техники, Том Килбурн работал в Манчестерском университете вплоть до выхода в отставку в 1981 году. За заслуги перед страной в 1973 году ему было присвоено звание капитана II ранга.

В июне 1998 года в Манчестерском университете торжественно отмечался пятидесятилетний юбилей первого компьютера с хранимой программой. В честь этой годовщины группа инженеров решила собрать точную копию Baby. Несколько месяцев подряд энтузиасты разыскивали старые электронные лампы и даже нашли металлические стойки Baby — они служили изгородью на каком-то приусадебном участке. А компания ICL PLC пригласила программистов-энтузиастов со всего света принять участие в конкурсе на создание приложений для воссозданного компьютера. Вспомнили и о Томе Килбурне, которого попросили возглавить жюри данного конкурса. Скромный профессор из Манчестера, которому в дни юбилея исполнилось 77 лет, жил в стандартном английском домике, где "самыми большими чудесами цивилизации являлись посудомоечная машина, телевизор и автомобиль".

На вопрос вездесущих журналистов по поводу дня сегодняшнего компьютерной индустрии и коммуникаций Том Килбурн сказал: "Деньги не имели никакого отношения к нашей работе. Нас интересовала только наука, а Гейтс живет уже в другом мире".

В конце января 2001 года во многих зарубежных периодических изданиях появилось сообщение: "Том Килбурн, пионер компьютеризации и участник создания первого в мире компьютера с хранимой программой, скончался на прошлой неделе в возрасте 79 лет после продолжительной болезни".

 

Джей Форрестер

Изобретатель памяти компьютеров на магнитных сердечниках и системы SAGE

Джей Форрестер

В декабре 1951 года воскресным вечером американские телезрители в одной из телепередач увидели представление (презентацию) электронного компьютера Whirlwind. Вел передачу обозреватель Эдвард Мюрроу (начало его выступления вынесено в эпиграф), который общался напрямую с компьютерной лабораторией MIT (Массачусетского технологического института). Зрители увидели на экране нечто похожее на слова, составленные из огней иллюминации: "ХЕЛЛО, М-Р МЮРРОУ". На самом деле никаких лампочек не было — это светились яркие точки на экране дисплея, на ЭЛТ. Это событие в дальнейшем почему-то стали интерпретировать как начало компьютерной графики.

Но главное изобретение, которое было применено в компьютере Whirlwind, — это память с произвольным доступом на магнитных сердечниках, действующая по принципу совпадения токов. Руководитель работ Джей Форрестер, опутанный кабелями микрофонов и наушников, продемонстрировал телезрителям некоторые возможности своего замечательного изобретения.

Форрестер появился в качестве главного лица в компьютерном мире в конце 40-х — начале 50-х годов. Он рано осознал, что компьютеры могут быть использованы для решения разнообразных проблем и поэтому стал одним из приверженцев цифровых компьютеров, определяя развитие MIT в этом направлении, а также военной промышленности и в итоге всей своей страны. Он был организатором одного из наиболее значимых проектов в истории — "Проекта Whirlwind". Защита с воздуха была признана необходимой. Эта необходимость со всей серьезностью привела к созданию компьютеров для модернизации американских средств ПВО. Для решения проблемы был выбран Джей Форрестер. Он возглавил разработку и создание системы SAGE. Компьютеры системы SAGE, являющиеся модификацией Whirlwind, впоследствии получили название AN/FSQ7.

Изобретения Форрестера выдержали испытание временем. Система SAGE, основанная на компьютерах Whirlwind, просуществовала до начала 80-х. В это время Джей Форрестер уже был вовлечен в новые компьютерные разработки по самым разным аспектам. Он объединил кафедру в MIT со Слоуновской школой менеджмента, где использовал свои знания в компьютерной технологии для создания новой дисциплины, названной им системной динамикой.

Магнитная память компьютера Whirlwind

Форрестер создал Whirlwind и SAGE, улучшил человеко-машинное взаимодействие, но наиболее значимой была его версии памяти на магнитных сердечниках. Рассказывая о Форрестере, все как один отмечали его острый ум. Сначала он слушал вопрос, затем погружался в себя на мгновение и в итоге выдавал ответ, в котором не было ни единого лишнего слова. Он был эталоном ученого. Тем не менее многие удивляются, когда узнают о том, что родился он на животноводческом ранчо Клаймекс неподалеку от Небраски, население которого насчитывало лишь 10 человек.

Животноводчество, однако, не привлекало его. Он посещал деревенскую школу и ставил простые опыты по электричеству. Впоследствии, в годы обучения в высшей школе, на старших курсах, он взял детали от старой машины и собрал 12-вольтную электрическую систему, действующую при помощи ветра, которая давала электричество на его семейном ранчо. Он хотел поступить в сельскохозяйственный колледж при Университете в Небраске, но несколькими месяцами раньше до конца 1935 года он изменил свое решение в пользу факультета электроинженерии. И в 1939 году он закончил его с лучшим дипломом среди 70 выпускников этого факультета.

Форрестер начал заниматься исследованиями с июля 1939 года в Массачусетском технологическом институте, работая сначала как ассистент по исследованиям в Лаборатории высоких напряжений. В середине 1940/41 учебного года Форрестер стал работать в новой Сервомеханической лаборатории Гордона Брауна, которая являлась частью электроинженерного факультета MIT. Его работа на соискание ученого звания в области электроинженерии была во время войны приостановлена в угоду исследованиям для военной промышленности и была закончена лишь в 1945 году. Браун руководил работой Форрестера, которая называлась "Разработка гидравлических сервомеханизмов".

В декабре 1944 года Военно-морской центр по особым исследованиям поручил MIT разработать анализатор воздушного наблюдения и стабильности (ASCA), чтобы использовать его для новых аэродинамических проектов. В это время Форрестер подумывал оставить Сервомеханическую лабораторию, возможно, он хотел открыть свое дело в сфере автоматического управления. Однако Гордон Браун хотел его удержать, предложив список, состоящий из двенадцати проектов, один из которых, по своему усмотрению, он должен был выбрать. Форрестер просмотрел весь список, и мысль открыть свой собственный бизнес показалась ему менее привлекательной, чем быть вовлеченным в одно из новых исследований. Особенно заманчивым показался ему проект ASCA. Он сказал Брауну, что выбирает его.

Форрестеру было предложено создать аналоговый компьютер, который мог бы имитировать самолет с пилотом как часть системы. Контроль за полетом должен быть доступен для пилота, а реакция имитационного самолета должна соответствовать реальному масштабу времени. Задача имитатора состояла в быстром получении результатов технических изменений летных данных и таким образом экономила средства. Вскоре после начала работ над проектом — это было весной 1945 года — Форрестер осознал, что столкнулся с серьезными проблемами. Для того чтобы сравнить реакцию пилота при управлении самолетом и ответы имитатора самолета по времени, необходимо было исключительно высокоскоростное устройство с максимально быстрым временем для ответа. Но его не было. За лето Форрестер пришел к выводу, что аналоговый компьютер не может быть достаточно быстрым для достижения цели.

На этом этапе главной поворотной точкой в жизни Форрестера стало знакомство его с человеком по имени Пэрри Кроуфорд, который организовал аналитический центр при Массачусетском технологическом институте и в то же время работал в Военно-морском центре по особым исследованиям. Услышав о проблемах Форрестера, Кроуфорд предложил ему изучить цифровые вычисления. Он также предложил познакомить Форрестера с учеными из Гарварда и университета в Пенсильвании, в итоге Форрестер в Филадельфии познакомится с Джоном Нейманом, Дж. Преспером Эккертом и другими видными учеными. Это посещение сделало Форрестера приверженцем цифровых компьютеров. Следующим шагом надо было убедить Гордона Брауна. Это далось легко и в январе 1946 года он приступил к разработке проекта цифрового компьютера.

К аналоговому компьютеру был утрачен всякий интерес. В апреле того же года в контракт по ASCA были внесены изменения, касающиеся того, что Форрестер и его команда собираются использовать цифровые компьютеры вместо аналоговых. Этот проект был назван Whirlwind. Теперь Форрестер становится директором цифровой компьютерной лаборатории, являющейся преемницей цифрового компьютерного отдела Сервомеханической лаборатории.

В начале 1947 года он прошел обучение по проектированию машин типа EDVAC, но при этом сделал вывод, что скорость их расчетов не отвечает требованиям времени. Позднее, в том же году, Форрестер и Роберт Р. Эверетт, помощник директора проекта, отклонились от главной задачи создания параллельного компьютера. Форрестер был недоволен тем фактом, что неисправности электронных ламп и кристаллических диодов выводят компьютер Whirlwind из строя по несколько раз на день. На этой стадии разработки никто особенно не разбирался в действии электронных ламп, известно было лишь то, что после 500 часов работы большинство из них переставало работать. Ни одна машина, состоящая из нескольких тысяч вакуумных ламп, каждая из которых работает только 500 часов, не была в состоянии работать достаточно долго от поломки до поломки. Форрестер предложил две идеи, которые по значению были не менее серьезны, чем его память на магнитных сердечниках. Во-первых, он увеличил жизнь электронных ламп до 50 000 часов, использовав для катодов, не содержащих силикона, материалы, которые исключают преждевременные потери катодной эмиссии. Во-вторых, он увеличил продолжительность рабочего времени в десять раз — до 5 миллионов часов, — включив диагностическую систему в компьютер Whirlwind, что автоматически позволяло определять любой электронный компонент, который начал давать сбои. Его можно было исправить, прежде чем он мог допустить ошибку.

Форрестер и его группа создали высокоскоростной электронный цифровой программируемый компьютер, который соответствовал веяниям времени. Он давал возможность контролировать полеты самолетов и мог быть использован при ведении военных действий. Этот компьютер мог служить не только для расчетов имитационных полетов, но и применяться в промышленности и для нужд науки. Whirlwind был самой значительной разработкой конца 40-х — начала 50-х годов, над которой работало 175 человек и на которую был затрачен один миллион долларов. Разработчики проекта находили Форрестера несколько суховатым и деловым, но испытывали большое уважение к его изобретению. Здание для Whirlwind начали сооружать в августе 1948 года. Оно заняло 2500 квадратных футов полезной площади. Работая с Whirlwind, люди ощущали себя находящимися внутри компьютера: идешь по коридору, а справа и слева находятся устройства компьютера — по четыре с каждой стороны. Whirlwind имел только 4000 электронных ламп (для сравнения, у ENIAC было 17 468). Разработка Whirlwind заняла три года, он был запущен в начале 1950 года. Whirlwind считался самым быстрым компьютером 50-х годов. Он мог сложить два 16-разрядных числа за 2 мсек и умножить их за 20 мсек. Машине "Марк-I", сделанной в Гарварде, требовалось для умножения 6 сек. Whirlwind также превосходил компьютер ENIAC.

Однако и Whirlwind был несовершенен. На 32 электронно-лучевых трубках (ЭЛТ) хранилось 2048 16-разрядных чисел. Каждый день компьютер выходил из строя на несколько часов. Память была слабым звеном — каждая ЭЛТ для хранения информации служила не более месяца и замена ее стоила тысячу долларов. Таким образом, стоимость памяти в месяц составляла тридцать две тысячи долларов.

Улучшив по мере возможности ЭЛТ для хранения информации, Форрестер обратился к другой идее — идее создания нового типа памяти.

Решение данной проблемы он видел в создании трехмерного устройства для хранения информации, поскольку оно было более компактно, представляло больше возможностей для увеличения объема хранимой информации, было менее дорогим, чем одно- или двухмерное. В 1947 году Форрестер выдвинул идею трехмерного куба, где точки пересечения были бы элементами для хранения информации. Он собирался использовать маленькие неоновые ячейки в качестве элементов этих точек пересечения, но сомневался по поводу действенности таких средств вторичной эмиссии. Впоследствии он отложил проект на некоторое время, однако в голове у него все-таки засела идея о трехмерном устройстве: "Время от времени мне не дает покоя возможность использовать другие элементы для достижения нужного результата".

Джей Форрестер (50-е годы XX века)

Однажды весной 1949 года он просматривал журнал Electrical Engineering и наткнулся на описание разработки, названной "Дельтамакс", сделанной немцами во время Второй мировой войны для магнитных усилителей, применявшихся в танках. Теперь она была продана Америке в качестве основного материала по магнитным усилителям. В разработке "Дельтамакс" был использован постоянный ток для насыщения сердечника, чтобы можно было управлять изменениями тока. Форрестер понял, что это и есть тот другой путь, способный заставить работать нелинейные элементы в трехмерном устройстве, над которым он размышлял ранее.

Несколько вечеров Форрестер провел в хождении по улицам неподалеку от своего пригородного дома, обдумывая проблему: "Это был вызов, другой аспект идеи, попытка осмыслить, как создать систему, которая бы допускала выбор и включение соответствующих элементов".

Неделю-другую его не оставляла мысль о двухмерном устройстве. Затем он потратил еще несколько недель в поисках решения, как расширить двухмерное хранилище информации до трехмерного. И решение к нему пришло во время прогулки на лошадях на ранчо его отца в Небраске.

Вернувшись в MIT, он заказал несколько "Дельтамаксов". Эксперименты начались. Он пропускал ток через кольца, сделанные из особого материала, намагничивая их в южном и северном направлениях. В направлении на север устройство выдавало единицу, на юг — нуль. После выключения напряжения кольца возвращались в их начальное состояние. Проблема заключалась лишь в том, что у "Дельтамакса" не было нужного быстродействия и он был чувствителен к изменениям напряжения.

Позже, под воздействием Уильяма Папьяна и других разработчиков Форрестер вернулся к другой альтернативе. Он закрепил магнитные ферритовые стержни, загнутые в виде пончиков, на сетке из проводов. Каждый стержень на сетке имел свои координаты (или адрес) — такие же, как на карте. Для того чтобы прочесть или записать бинарное число на магнитную память, надо было подать напряжение на точно выбранную пару горизонтального и вертикального ряда проводов на конкретной сетке. 16-разрядный компьютер имел для каждого разряда вполне определенное место на каждой сетке. Магнитные ферритовые кольца были более быстрыми, менее дорогими и значительно проше в эксплуатации, чем "Дельтамаксы".

Магнитная память была внедрена в компьютер Whirlwind летом 1953 года, после того как испытания были закончены. Как результат, Whirlwind теперь работал в два раза быстрее, чем ранее. Но потребовалось три или четыре года, прежде чем промышленность осознала, что это самый лучший тип компьютерной памяти. "Тогда потребовались следующие семь лет, — вспоминал Форрестер с улыбкой, — чтобы убедить их в том, что они не додумались до этого первыми".

Изобретение Форрестера повысило надежность и скорость при меньшей стоимости. Начиная с начала 60-х, стоимость памяти на магнитных сердечниках постепенно уменьшалась. Эта память позволила вводить данные и команды в течение нескольких долей секунды. Память на магнитных сердечниках использовалась вплоть до конца 60-х годов, затем ее сменила полупроводниковая технология.

В 50-х годах Whirlwind стал прообразом целого ряда компьютеров, с помощью которых была создана развитая система противовоздушной обороны США — SAGE (Semiautomatic Ground Environment). С 1952 по 1956 год руководил разработкой системы SAGE Джей Форрестер.

Эта полуавтоматическая система, способная одновременно обрабатывать данные, поступающие из 23 региональных центров США и Канады, обслуживала гигантскую сеть радиолокаторов и других детекторов. В каждом региональном центре оператор набирал данные на клавиатуре, следя за экранами, на которых отображались погодные условия, траектории движения самолетов и прочая информация, необходимая для работы системы ПВО. В то же время сеть устройств ввода-вывода системы SAGE поддерживала по телефонным каналам непрерывную связь между соседними центрами, объединяя систему в неразрывное целое.

В июле 1958 года вся система SAGE была полностью внедрена и выполняла свою миссию все последующие 25 лет. Потомки компьютера Whirlwind продолжали работать в системе до 1983 года.

В 1956 году, когда стало ясно, что система SAGE принята и не нуждается в его руководстве, Форрестер решил заняться работой в другой области.

Хотя его по-прежнему ценили как пионера в области вычислительной техники, он стал также известен как ведущий теоретик в области сложных социально-экономических моделей — так называемой области системной динамики.

Форрестер отмечал, что при разработке системы SAGE он осуществлял не только техническое, но и административное руководство. Из опыта работы над этой системой он вынес убеждение, что "технический успех больше может зависеть от общей постановки дела, чем от научных достижений" и что "никакой технический опыт не может скомпенсировать плохую организацию работы".

С этим убеждением и с чувством, что "усовершенствование методов руководства является более насущной задачей", он перешел в июле 1956 года в Слоуновскую школу MIT. Форрестер объяснял, что в Слоуновской школе, конечно, использовались компьютеры, особенно для таких целей, как исследование операций и обработка административной информации. Но, по его мнению, ни одно из этих направлений "не было решающим". "Обработка деловой информации уже быстро развивалась вне стен MIT, — говорил он, — а наука об исследовании операций имела дело с простыми задачами, нежели определение способов достижения успеха или нахождение причин провала технической политики фирмы".

Сопоставив свои соображения с информацией, поступающей от менеджеров, он установил, что основными проблемами, волнующими администраторов, являются колебания капитала и производственных запасов, безработица и инфляция. Эти и другие явления, носящие циклический характер, напомнили инженеру Форрестеру электрические колебания, и он задумался, нельзя ли, промоделировав внешние условия, найти способ установления "отрицательной обратной связи" для управления этими колебаниями. А что может быть лучше для создания таких моделей, чем компьютеры, в разработке которых он сам участвовал? Таким образом, он стоял у истоков новой области исследования, системной динамики, изучающей то, "как изменения политики влияют на рост, стабильность, колебания уровня и изменение поведения в корпорациях, городах и государствах".

По мере того как росла его уверенность в правильности своих моделей, Форрестер начал высказываться по различным вопросам, главным образом возникшим недавно, таким как нехватка энергии или долговременные экономические циклы (это противоречивое явление было независимо предсказано его машинными моделями). Он также высказывался по тем вопросам политики, которые считал важными. Например, для решения проблемы нехватки энергии он предлагал изменить структуру цен таким образом, чтобы вынудить промышленность отказаться от процессов с высоким потреблением энергии.

Один из ключевых выводов системной динамики состоит в том, что "очевидное" направление действий редко является правильным; иначе говоря, "логичные" действия могут дать результат, обратный желаемому. Основываясь на поведении своих моделей, Форрестер часто оказывался в роли защитника "антиинтуитивного" решения проблемы. Решение для тех, кто занимается экономическим и социальным планированием, очевидно — сначала нужно "проиграть" свою идею на компьютере.

Форрестер написал несколько серьезных работ в этой новой для него области. "Индустриальная динамика" появилась в 1961 году, "Принципы системы" — в 1968 году. "Городская динамика", изданная в 1969 году, повествует о росте и угасании городов. В работе "Мировая экономика" (1971 год) описана глобальная модель экономики и переработки ресурсов и проведен анализ отношений среди населения, денежных вложений, природных ресурсов, загрязнения окружающей среды, обеспечения продовольствием и характеристики уровня жизни.

 

Сергей Алексеевич Лебедев

Основоположник отечественной вычислительной техники

Сергей Алексеевич Лебедев

В нашей стране у истоков развития и становления отечественной вычислительной техники стоял выдающийся ученый, академик Сергей Алексеевич Лебедев. Как пишет один из его учеников, академик В. А. Мельников, "жизненный путь Сергея Алексеевича Лебедева ярок и многогранен. Кроме создания первых машин и первых фундаментальных разработок, он выполнил важные работы по созданию многомашинных и многопроцессорных комплексов. Им были заложены основы вычислительных сетей. Среди перспективных направлений следует отметить работы в области операционных систем и систем программирования. Структурнопрограммные операционные системы, алгоритмические языки программирования, новые алгоритмы для больших, трудоемких задач — важный этап научного творчества Лебедева. Ряд его работ, к сожалению, остался незаконченным. По главным направлениям, намеченным С. А. Лебедевым, работают его ученики и целые научные коллективы. Созданная им научная школа — лучший памятник ученому".

Сергей Алексеевич на протяжении всей своей жизни вел большую работу по подготовке научных кадров. Он был одним из инициаторов создания Московского физико-технического института, основателем и руководителем кафедры вычислительной техники в этом институте, руководил работой многих аспирантов и дипломников.

Говоря о наследии С. А. Лебедева, нельзя не сказать об атмосфере взаимопонимания и творческого воодушевления, которую умел создать вокруг себя Сергей Алексеевич. Он умел поощрять творческую инициативу, оставаясь при этом принципиальным и требовательным. Лебедев считал, что лучшая школа для специалиста — участие в конкретных разработках, и не боялся привлекать к работе над серьезными проектами молодых ученых.

Он родился 2 ноября 1902 года в Нижнем Новгороде. Отец Алексей Иванович и мать Анастасия Петровна были учителями.

В 1921 году С. А. Лебедев поступил в Московское высшее техническое училище им. Н. Э. Баумана на электротехнический факультет. Его учителями и научными руководителями были выдающиеся русские ученые-электротехники профессора К. А. Круг, Л. И. Сиротинский и А. А. Глазунов. Все они принимали активное участие в разработке знаменитого плана электрификации СССР — плана ГОЭЛРО. Для разработки этого плана и, главное, для его успешного осуществления потребовались уникальные теоретические и экспериментальные исследования. Из всех возникших при этом проблем С. А. Лебедев, еще будучи студентом, основное внимание уделял проблеме устойчивости параллельной работы электростанций. И следует сказать, что он не ошибся в выборе — весь дальнейший отечественный и зарубежный опыт создания высоковольтных энергообъединений определил проблему устойчивости как одну из центральных, от решения которой зависит эффективность дальних электропередач и энергосистем переменного тока.

Первые результаты по проблеме устойчивости, полученные Лебедевым, были отражены в его дипломном проекте, который выполнялся под руководством профессора К. А. Круга. В апреле 1928 года, получив диплом инженера-электрика, Лебедев становится одновременно преподавателем МВТУ им. Н. Э. Баумана и младшим научным сотрудником Всесоюзного электротехнического института (ВЭИ). Продолжая работать над проблемой устойчивости, С. А. Лебедев организует в ВЭИ группу, которая затем оформилась в лабораторию электрических сетей. Постепенно тематика лаборатории расширяется, и в круг ее интересов начинают попадать проблемы автоматического регулирования. Это привело к тому, что на базе этой лаборатории в 1936 году был создан отдел автоматики, руководство которым поручается С. А. Лебедеву.

К этому времени С. А. Лебедев уже стал профессором и автором (совместно с П. С. Ждановым) широко известной среди специалистов-электротехников монографии "Устойчивость параллельной работы электрических систем".

Примечательной чертой научной деятельности Лебедева, проявившейся с самого ее начала, было органическое сочетание большой глубины теоретической проработки с конкретной практической направленностью. Продолжая теоретические исследования, он становится активным участником подготовки сооружения Куйбышевского гидроузла, а в 1939–1940 годах С. А. Лебедев в "Теплоэлектропроекте" руководит разработкой проектного задания для магистральной линии электропередачи.

Проблемы автоматики интересуют С. А. Лебедева не только применительно к конкретным приложениям в электротехнике, он один из активных инициаторов работ по автоматизации научных исследований и математических расчетов. В 1936–1937 годах в его отделе начались работы по созданию дифференциального анализатора для решения дифференциальных уравнений. Уже тогда С. А. Лебедев задумывался над принципами создания цифровых вычислительных машин, в основе которых лежала бы двоичная система счисления.

Во время войны возглавляемый Лебедевым отдел автоматики полностью переключается на оборонную тематику.

В феврале 1945 года С. А. Лебедев избирается действительным членом Академии Наук УССР, а в мае 1946 года назначается директором Института энергетики АН УССР. В 1947 году после разделения этого института С. А. Лебедев становится директором Института электротехники АН УССР. Здесь он продолжает свои работы по проблемам автоматизации энергосистем. В 1950 году за разработку и внедрение устройств компаундирования генераторов электростанций для повышения устойчивости энергосистем С. А. Лебедев совместно с Л. В. Цукерником был удостоен Государственной премии СССР.

В 1947 году в Институте электротехники организуется лаборатория моделирования и вычислительной техники, где под руководством С. А. Лебедева была создана машина МЭСМ (малая электронная счетная машина) — первая отечественная вычислительная машина.

Вычислительная машина МЭСМ

Интересно привести основные этапы разработки и пуска первого отечественного компьютера:

□ Октябрь — ноябрь 1948 года. Разработка общих принципов построения электронной цифровой вычислительной машины.

□ Январь — март 1949 года. Обсуждение характеристик вычислительной машины и мер сотрудничества при ее создании на научных семинарах с участием представителей Института математики и Института физики АН УССР.

□ Октябрь — декабрь 1949 года. Создание принципиальной блок-схемы и общей компоновки макета МЭСМ.

□ 6 ноября 1950 года. Первый пробный пуск макета и начало решения на нем простейших практических и тестовых задач.

□ Ноябрь — декабрь 1950 года. Увеличение количества блоков запоминающих устройств, отработка алгоритмов операций сложения, вычитания, умножения и сравнения, завершение отладки макета.

□ 4–5 января 1951 года. Демонстрация действующего макета приемной комиссии в составе Н. Н. Доброхотова, А. Ю. Ишлинского, С. Г. Крейна, С. А. Лебедева, Ф. Д. Овчаренко, И. Т. Швеца. Составление акта об окончании в 1950 году разработки, изготовления и наладки макета, выработка рекомендаций о дальнейшем его совершенствовании.

□ 10–11 мая 1951 года. Демонстрация работы машины в Киеве в присутствии известных ученых СССР Ю. Я. Базилевского, Н. Н. Боголюбова, В. М. Келдыша, К. А. Семендяева, А. Н. Тихонова и др.

□ Август — сентябрь 1951 года. Переделка блоков запоминания с целью повышения их надежности. Окончание переделки конструкции действующего макета, завершение новой компоновки МЭСМ и ее опробование.

□ 25 декабря 1951 года. Пуск в эксплуатацию МЭСМ в новой компоновке.

□ 12 января 1952 года. Составление акта о введении МЭСМ в эксплуатацию с декабря 1951 года.

Функционально-структурная организация МЭСМ была предложена Лебедевым в 1947 году. МЭСМ работала в двоичной системе, с трехадресной системой команд, причем программа вычислений хранилась в оперативной памяти. Машина Лебедева с параллельной обработкой слов представляла собой принципиально новое решение. Она была одной из первых в мире и первой на европейском континенте машиной с хранимой в памяти программой.

В 1948 году в Москве создается Институт точной механики и вычислительной техники (ИТМ и ВТ) АН СССР, куда приглашается на работу С. А. Лебедев, а в 1950 году, когда основные работы по МЭСМ подходили к концу, Лебедев принимает это предложение.

В ИТМ и ВТ он создает специальную лабораторию для разработки БЭСМ-1 (быстродействующая электронная счетная машина-1), в которой получили дальнейшее развитие идеи Лебедева по структурной реализации методов обработки информации.

С. А. Лебедев и В. А. Мельников за наладкой БЭСМ-1

Вспоминает академик В. А. Мельников: "На опыте создания БЭСМ-1 можно видеть широту его научных и конструкторских разработок. В процессоре машины были использованы лампы, серийно выпускаемые нашей промышленностью. Лебедев указал несколько направлений по созданию оперативной памяти ЭВМ. Велись работы по созданию оперативного запоминающего устройства (ОЗУ): на электроакустических ртутных линиях задержек; ОЗУ параллельного действия на электронно-лучевых трубках; ОЗУ на ферритовых сердечниках. Создавались внешние запоминающие устройства на магнитных лентах и магнитных барабанах, устройства ввода и вывода на перфокартах и перфолентах, быстродействующие печатные устройства. В БЭСМ-1 было впервые применено постоянное запоминающее устройство на сменных перфокартах, что позволило решать задачи по мере готовности того или иного запоминающего устройства. Поэтому ее реальное использование началось уже с 1952 года с ОЗУ на электроакустических ртутных трубках. Правда, быстродействие ее было в десять раз ниже запланированного, но зато, помимо решения задач, появилась возможность получить первый опыт по эксплуатации и отладке программ".

Следует отметить, что БЭСМ-1 сдавалась дважды: первый раз — с ОЗУ на электронно-акустических ртутных трубках со средним быстродействием 1000 операций в секунду и второй раз — с ОЗУ на электронно-лучевых трубках с быстродействием около 10 тыс. операций в секунду. И оба раза она была успешно принята Государственной комиссией. Правда, в дальнейшем еще были испытания, когда на БЭСМ-1 проверялась оперативная память на ферритовых сердечниках, но этот вид памяти уже был окончательно внедрен на серийной машине БЭСМ-2. БЭСМ-1 была первой отечественной быстродействующей машиной (8—10 тыс. операций в секунду), самой производительной машиной в Европе и одной из лучших в мире.

Первой задачей, решенной на БЭСМ-1 и имевшей большое народнохозяйственное значение, был расчет оптимального уклона скоса канала. В программе решения этой задачи задавались параметры сыпучести грунта, глубины канала и некоторые другие. Крутой уклон экономит объем земляных работ, но может привести к быстрому осыпанию, поэтому важно найти математически обоснованный компромисс, который бы экономил объем работ при сохранении качества сооружения. Работа по созданию алгоритма и программы, потребовавшая серьезных математических исследований, была выполнена под руководством С. А. Лебедева, который в 1953 году был избран действительным членом АН СССР.

В структуре БЭСМ-1 уже тогда были реализованы основные решения, характерные для современных машин. Принцип ее работы был параллельного действия, что потребовало увеличения аппаратуры; и это было смелым по тем временам решением, например одна триггерная ячейка содержала четыре электронные лампы, надежность которых была мала, срок службы составлял всего 500—1000 часов, а в БЭСМ-1 было более 50 тыс. таких ламп.

Важной особенностью этой машины и большим структурным достижением являлись операции над числами с плавающей точкой, когда машина может производить операции над числами в диапазоне 2-32—232 автоматически, не требуя специальных операций масштабирования. Эти операции в машинах с фиксированной точкой составляют около 80 % от общего числа операций и увеличивают время решения задач. Одновременно БЭСМ-1 обеспечивала хорошую точность вычислений (около 10 десятичных знаков), а при решении некоторых задач могла работать хотя и с меньшим быстродействием, но с удвоенной точностью.

После БЭСМ-1 под руководством Лебедева были созданы и внедрены в производство еще две ламповые — БЭСМ-2 и М-20. Их характерной особенностью, пишет В. А. Мельников, было то, что они разрабатывались в тесном контакте с промышленностью, особенно М-20. Специалисты завода и академического института вместе участвовали в создании машины. Этот принцип хорош тем, что улучшается качество документации, т. к. в ней учитываются технологические возможности завода.

Вычислительная машина БЭСМ-2 сохранила систему команд и все основные параметры БЭСМ-1, но конструкция ее стала более технологичной и удобной для серийного выпуска.

В машине М-20 был сделан еще один новый шаг в развитии отечественной вычислительной техники. Во многом повторяя структуру БЭСМ-1, М-20 обладала производительностью 20 тыс. операций в секунду за счет совмещения работы отдельных устройств и более быстрого выполнения арифметических операций.

В шестидесятых годах наша промышленность начала массовый выпуск полупроводниковых приборов, что позволило перейти на новую элементную базу. Разработка полупроводниковых машин, которой руководил С. А. Лебедев, развивалась по двум основным направлениям. Первое — перевод наиболее совершенных ламповых машин на полупроводниковую элементную базу с сохранением структуры и быстродействия, но с повышением надежности, уменьшением размеров и энергопотребления. Ламповая машина М-20 стала в полупроводниковом варианте БЭСМ-ЗМ, БЭСМ-4 и М-220.

Второе направление развития полупроводниковых машин — это максимальное использование возможностей новой элементной базы с целью повышения производительности, надежности и совершенствования структуры машин. Яркий пример развития этого направления — БЭСМ-6, созданная под руководством С. А. Лебедева. Трудно переоценить значение и влияние на развитие вычислительной техники разработки этой высокопроизводительной, оригинальной по архитектуре и структуре машины. Макет БЭСМ-6 был запущен в опытную эксплуатацию в 1965 году, а уже в середине 1967 года был предъявлен на испытания первый образец машины. Тогда же были изготовлены три серийных образца. Машина БЭСМ-6 сдавалась вместе с необходимым математическим обеспечением, и государственная комиссия под председательством академика М. В. Келдыша, в то время президента АН СССР, дала ей высокую оценку. Вычислительная машина БЭСМ-6 — универсальная машина с быстродействием миллион операций в секунду, работала в диапазоне чисел от 2-63 до 2+63 и могла обеспечить точность вычислений 12 десятичных знаков. Она содержала 60 тыс. транзисторов и 180 тыс. полупроводников-диодов.

Вычислительная машина БЭСМ-6

Как пишут Л. Н. Королев и В. А. Мельников, машина БЭСМ-6 имела следующие принципиальные особенности:

□ магистральный, или, как в свое время (1964 год) назвал его академик С. А. Лебедев, "водопроводный" принцип организации управления, с помощью которого достигается глубокий внутренний параллелизм обработки потоков команд и операндов;

□ впервые осуществленный в БЭСМ-6 принцип использования ассоциативной памяти на сверхбыстрых регистрах с логикой управления, позволяющей аппаратно экономить число обращений к ферритовой памяти и тем самым осуществлять локальную оптимизацию в динамике счета;

□ аппаратный механизм преобразования математического, виртуального адреса в физический адрес, что дало возможность осуществить динамическое распределение оперативной памяти в процессе вычислений средствами операционной системы;

□ расслоение оперативной памяти, что позволяет осуществить одновременное обращение к блокам памяти по нескольким направлениям;

□ принцип полистовой организации виртуальной памяти и разработанные на его основе механизмы защиты по числам и командам, сочетающие простоту и эффективность;

□ развитая индексация, позволившая использовать индексные регистры для базирования, модификации адресов и в качестве указателей уровней вложенности процедур (дисплеев), что позволило строить свободно перемещаемые программы и рентерабельные процедуры;

□ развитая система прерываний и индикации состояния внешних и внутренних устройств машины, контроль обмена между оперативной памятью и центральным устройством машины, позволившие достаточно хорошо вести диагностику в режиме мультипрограммирования;

□ возможность одновременной работы парка устройств ввода-вывода и внешних запоминающих устройств на фоне работы центрального процессора.

С 1967 года все крупные вычислительные центры страны стали оснащаться компьютерами БЭСМ-6. И даже через многие годы, в 1983 году, на заседании отделения информатики, вычислительной техники и автоматизации Академии наук, академик Е. П. Велихов сказал, что "создание БЭСМ-6 явилось одним из основных вкладов АН СССР в развитие советской индустрии. Даже сейчас подавляющее большинство крупных народно-хозяйственных задач и проектов разрабатывается с помощью БЭСМ-6 и ее модификаций".

В начале 70-х годов Сергей Алексеевич Лебедев уже не мог руководить Институтом точной механики и вычислительной техники, в 1973 году тяжелая болезнь вынудила его оставить пост директора. Но он продолжал работать дома. Суперкомпьютер "Эльбрус" — это последняя машина, принципиальные положения которой были разработаны академиком Лебедевым и его учениками. Он был ярым противником начавшегося в начале 70-х годов копирования американской системы IBM/360, которая в отечественном вари- анте стала называться ЕС ЭВМ. Он понимал, к каким последствиям это приведет, но уже был не в силах воспрепятствовать этому процессу.

Сергей Алексеевич Лебедев скончался 3 июня 1974 года. Он похоронен на Новодевичьем кладбище.

Велики заслуги академика С. А. Лебедева перед отечественной наукой. Его деяния отмечены многими наградами и государственными премиями. Институт точной механики и вычислительной техники РАН носит его имя. В Киеве на здании, где располагался Институт электротехники АН Украины, висит мемориальная доска, текст которой гласит: "В этом здании в Институте электротехники АН УССР в 1946–1951 гг. работал выдающийся ученый, создатель первой отечественной электронной вычислительной машины, Герой Социалистического Труда, академик Сергей Алексеевич Лебедев".

 

Исаак Семенович Брук

Родоначальник отечественных малых вычислительных и управляющих машин

Исаак Семенович Брук

Исаак Семенович Брук так же, как и Сергей Алексеевич Лебедев, стоял у истоков отечественной вычислительной техники. Если Лебедев является отцом отечественных мэйнфреймов, то Брук создавал новую "нишу" в вычислительной технике — малые и управляющие машины.

Как пишет Б. Н. Малиновский, "схожесть биографий этих двух замечательных ученых поразительна.

Оба родились в один год, учились в одном институте, "становились на ноги" как ученые в одной научной организации, оба занимались вопросами энергетики, от нее шли к вычислительной технике, оба стали руководителями ведущих научных школ в области цифровых вычислительных машин".

Интересно, что в цифровую технику Брук пришел, занимаясь разработкой аналоговых машин, — в 1939 году под его руководством был создан дифференциальный анализатор, подобный анализатору Ванневара Буша.

А в 1948 году он вместе с Б. И. Рамеевым разрабатывает проект цифровой электронной вычислительной машины, и в декабре того же года они получают первое в СССР авторское свидетельство об изобретении цифровой машины. Но, увы, этот проект остался нереализованным. В дальнейшем под руководством Брука были созданы малые цифровые вычислительные машины М-1, М-2, М-3, М-4 и др.

Как вспоминает В. Ф. Дорфман, работавший в бруковском институте с 1961 года, "И. С. Брук по своим личным качествам не был прирожденным Главным конструктором, но прирожденным создателем машин он, безусловно, был и этим своим ярким горением привлекал созвучно одаренных людей со всех концов страны. Н. Я. Матюхин, Г. П. Лопато, М. А. Карцев и многие-многие другие, наиболее яркие и самобытные советские разработчики ЭВМ, а также видные специалисты во многих других областях, прямо или косвенно связанные с вычислительной техникой (вплоть до экономики) — трудно перечислить всех".

Он родился 8 ноября 1902 года в Минске в бедной семье служащего табачной фабрики. В 1920 году окончил реальное училище, а в 1925 году — электротехнический факультет МВТУ им. Н. Э. Баумана в Москве. Еще будучи студентом включился в научную деятельность — его дипломная работа была посвящена новым способам регулирования асинхронных двигателей. По окончании МВТУ его направили во Всесоюзный электротехнический институт, где он получил большой практический опыт, участвуя в разработке новой серии асинхронных двигателей.

"Способности и интерес к технике он унаследовал от отца, — вспоминает его сестра, Мирра Семеновна Брук. — Учась в Минском реальном училище, он особенно увлекался точными науками — математикой, физикой, техникой. В учебных лабораториях ему иногда отдавали отработанные старые приборы. На заводе "Энергия", куда стал приходить Исаак, мастера, видя исключительную любознательность мальчика к технике, объясняли ему устройство машин и станков, отдавали некоторые старые детали.

Брат много читал, любил произведения Жюля Верна, Джека Лондона, Фенимора Купера. Увлекался астрономией и мне дал читать "Стеллу" Фламариона. Он хорошо рисовал, собирал репродукции картин. Из моего репертуара (я училась в музыкальной школе) любил слушать сочинения Бетховена, Чайковского, Грига".

В 1930 году Брук переехал в Харьков, где на одном из заводов под его руководством были разработаны и построены несколько электрических машин новой конструкции, в том числе взрывобезопасные асинхронные двигатели. В 1935 году он возвратился в Москву и поступил на работу в Энергетический институт АН СССР (ЭНИН). В организованной им лаборатории электросистем он развертывает исследования по расчету режимов мощных энергосистем. Для моделирования сложных электросетей в лаборатории создается расчетный стол переменного тока — своеобразное специализированное вычислительное устройство. За эти работы в мае 1936 года Бруку была присвоена ученая степень кандидата наук, а в октябре того же года он защитил докторскую диссертация на тему "Продольная компенсация линий электропередач".

В конце 30-х годов XX века Брук занялся созданием механического дифференциального анализатора для решения систем дифференциальных уравнений до 6-го порядка включительно. Анализатор занимал площадь 60 кв. м, и одних только зубчатых колес в нем было более тысячи. После завершения работы над дифференциальным анализатором Брук был избран членом-корреспондентом Академии наук.

В годы войны, продолжая исследования в области энергетики, И. С. Брук работал над системами управления зенитным огнем, изобрел синхронизатор авиационной пушки, позволяющей стрелять через вращающийся пропеллер самолета. В первые послевоенные годы под его руководством велись исследования по статической устойчивости энергосистем, разрабатывалась аппаратура регулирования частоты и активной мощности для крупнейших электростанций страны. Продолжались работы по аналоговым вычислительным машинам. В конце 40-х годов, заинтересовавшись зарубежными публикациями о цифровых вычислительных машинах, Брук становится активным участником научного семинара при Президиуме АН СССР, обсуждавшего вопросы автоматизации вычислений. В 1947 году на семинаре был поднят вопрос о создании специального института вычислительной техники. Благодаря активной поддержке президента Академии С. И. Вавилова в июле 1948 года был создан Институт точной механики и вычислительной техники. Исполняющим обязанности директора был назначен Бруевич. Казалось бы, Брук со своей лабораторией, как пионер вычислительной техники, должен был войти в состав нового института. К этому времени в его распоряжении уже был проект цифровой ЭВМ, составленный им и Рамеевым, ими же были разработаны "Проектные соображения по организации лаборатории при Институте точной механики и вычислительной техники для разработки электронной цифровой вычислительной машины". Но этого не случилось.

В 1949 году Рамеева призвали в армию. Брук лишился единственного исполнителя. Составленный проект цифровой электронной ЭВМ так и остался на бумаге. Тем не менее честолюбивая эмоциональная натура Брука, безусловно, подогревалась сведениями о начале работ по созданию ЭВМ в ИТМ и ВТ АН СССР, которые развернулись с приходом в институт М. А. Лаврентьева, а затем С. А. Лебедева, и в СКБ-245, где появился Рамеев.

В январе 1950 года И. С. Брук обратился в отдел кадров Московского энергетического института с просьбой направить к нему способных молодых специалистов, оканчивающих радиотехнический факультет. В марте 1950 года отдел кадров МЭИ направил к нему в лабораторию Николая Яковлевича Матюхина, получившего диплом с отличием за блестящую учебу и участие в научных исследованиях еще на студенческой скамье, но не прошедшего кадровую комиссию при поступлении в аспирантуру.

О том, сколь удачным для лаборатории было такое пополнение в единственном лице, говорит тот факт, что уже в апреле, т. е. всего через два месяца И. С. Брук, уверовавший в талант нового помощника, оформляет постановление Президиума АН СССР о создании цифровой вычислительной машины.

Вот как описывает в своей книге Б. Н. Малиновский эти события полувековой давности: "Вначале молодой специалист в области радиотехники не представлял, что такое ЭВМ. Ему не сразу стало понятным первое задание руководителя — спроектировать важный узел ЭВМ, дешифратор, да еще безламповый. Исаак Семенович сам подобрал для него необходимую литературу, многократно беседовал с приглянувшимся ему новичком, подробно рассказал о принципах работы ЭВМ, двоичной системе счисления, численных методах вычислений. Он же подбросил ему очень важную идею — использовать для построения логических элементов вместо электронных ламп поступившие по репарациям немецкие купроксные выпрямители. Сейчас, когда нет ни Брука, ни его любимого "ученика", вряд ли кто-нибудь может сказать, каким образом проводилась ими последующая разработка структуры и архитектуры ЭВМ М-1. Можно лишь утверждать, со слов остальных участников создания машины, что Н. Я. Матюхин фактически был главным конструктором М-1, формально не являясь таковым, а И. С. Брук в полной мере выполнил роль научного руководителя разработки.

Меньше чем через полтора года М-1 заработала! А ведь ее созданием занимались всего девять сотрудников лаборатории, не имевших ученых степеней (за исключением И. С. Брука). Если вспомнить условия, в которых они трудились, то это можно оценить как замечательный творческий порыв молодого коллектива. У разработчиков М-1 сохранился отчет "Автоматическая вычислительная машина М-1", утвержденный директором Энергетического института АН СССР академиком Г. М. Кржижановским 15 декабря 1951 года".

ЭВМ М-1

В 1982 году, выступая перед коллективом Института вычислительных комплексов, его директор М. А. Карцев, который в начале 50-х годов был ведущим разработчиком ЭВМ в бруковской лаборатории, поделился воспоминаниями о создании вычислительной машины М-1: "В 1950 году в лабораторию электросистем Энергетического института АН СССР им. Г. М. Кржижановского, которую возглавлял в то время член-корреспондент АН СССР Исаак Семенович Брук, начали собираться первые молодые люди для того, чтобы поднимать советскую вычислительную технику. Первым дипломированным специалистом среди нас был Николай Яковлевич Матюхин — ныне член-корреспондент Академии наук СССР, а тогда молодой специалист, окончивший Московский энергетический институт весной 1950 года. Ему помогали несколько дипломников из МЭИ. А я, инженер- недоучка, студент пятого курса МЭИ, поступил по совместительству. После демобилизации пришел к нам в качестве молодого специалиста окончивший техникум Рене Павлович Шид- ловский, ныне заместитель главного конструктора, начальник одного из ведущих отделов института, лауреат Государственной премии СССР. Всего нас было человек десять. Никто из нас до прихода в лабораторию электросистем ЭНИНа не только не был специалистом по вычислительной технике, но даже не знал, что может существовать электронная вычислительная машина и что такое вообще возможно. Такими-то силами мы начали делать одну из первых советских вычислительных машин — М-1. В начале 1950 года среди имущества, привезенного с трофейного склада, была обнаружена странная деталь (не могу сказать точно, кем была сделана эта находка, может быть, Бруком, может быть, Матюхиным, может быть, Рамеевым, который ранее работал у нас). Ее назначения и происхождения долго никто не мог понять, пока не сообразили, что это — миниатюрный купроксный выпрямитель. Эта деталь была по достоинству оценена, и М-1 стала первой в мире ЭВМ, в которой все логические схемы были сделаны на полупроводниках.

Летом 1951 года, примерно одновременно с машиной МЭСМ, заработала и машина М-1 (Карцев имеет в виду, что ЭВМ М-1 стала выполнять в полуавтоматическом режиме основные арифметические операции). Комплексная отладка машины завершилась к концу года. Со слов разработчиков, эксплуатация М-1 началась в январе 1952 года. Первые задачи, которые решались на ЭВМ М-1, ставились академиком Сергеем Львовичем Соболевым, который в то время был заместителем по научной работе у академика Курчатова. На это чудо техники, которое давало 15–20 не тысяч, не миллионов, а 15–20 операций в секунду над 23-разрядными числами и имело память емкостью в 256 слов, приезжали смотреть и президент Академии наук СССР А. Н. Несмеянов и многие видные советские ученые и государственные деятели".

В апреле 1952 года лаборатория Брука приступила к созданию более совершенной цифровой вычислительной машины М-2. Коллектив разработчиков возглавил М. А. Карцев. Из упомянутого выше выступления Карцева (1982 год): "Весной 1952 года (я как раз успел к этому времени получить диплом) Брук выделил мне группу в составе 7 человек и поручил спроектировать и построить вычислительную машину. То, как мы это делали тогда, мне сейчас трудно себе представить. Мы разрабатывали техническую документацию, вели производство на опытном заводе Института горючих ископаемых Академии наук, в опытном производстве ОКБ МЭИ, на заводе медаппаратуры на "Соколе" (и еще примерно в десятке организаций) собирали и налаживали машину. Начали мы работы весной 1952 года, а к 10 октября 1952 года, к открытию XIX съезда КПСС, были включены первые две стойки — устройство управления и арифметическое устройство, к 7 ноября был включен шкаф питания и магнитный барабан, к 5 декабря, ко Дню Конституции СССР, был включен последний шкаф машины — шкаф электронной памяти. И уже в январе 1953 года машина работала с магнитным барабаном, а к лету того же года и с электронной памятью.

Машина М-2, вообще говоря, осталась в единственном экземпляре, ее попробовали повторить в Китае, но сведений о том, что она там заработала, у нас не было. Но это была машина серьезная. На ней велись очень большие и очень важные расчеты. Собственно говоря, в течение нескольких лет в Советском Союзе было две работающих машины: наша М-2 и машина БЭСМ Института точной механики и вычислительной техники АН СССР. Большие расчеты вел Сергей Львович Соболев для Курчатова. Считались задачи для фирмы Акселя Ивановича Берга. Нам были поручены (специальным распоряжением правительства) расчеты прочности плотин строившихся тогда Куйбышевской и Волжской гидроэлектростанций. Эти расчеты вел Институт механики Академии наук. Считали на нашей машине свои задачи М. А. Михеев (Институт теоретической и экспериментальной физики А. И. Алиханова, тогда он назывался Теплотехнической лабораторией Академии наук) и многие-многие другие".

Вычислительная машина М-2

Машина М-2 не была запущена в серию, несмотря на ее превосходные характеристики и отличное конструктивное исполнение. Время подтвердило ее высокие качества: в Энергетическом институте АН СССР она бессменно проработала 15 лет, обеспечив решение множества задач в различных областях науки и техники. В отличие от малой ЭВМ М-1, машина М-2 имела ту же производительность, что и ЭВМ "Стрела" (2000 операций в секунду) и БЭСМ в первый период эксплуатации.

Когда М-2 еще находилась на стадии отладки, в лаборатории Брука началось проектирование малой электронной вычислительной машины М-3. Главным конструктором был назначен Н. Я. Матюхин.

Как и предыдущие машины М-1 и М-2, машина М-3 также осталась бы в единственном экземпляре, если бы не проявил к ней заинтересованность директор ВНИИЭМа — А. Г. Иосифьян. На завершающем этапе разработки была создана совместная группа: Матюхин и Белынский (лаборатория Брука), Коган, Долкарт и Лопато (ВНИИЭМ). В 1956 году первый образец М-3 был предъявлен Государственной комиссии.

На торжественном заседании, посвященном 90-летию И. С. Брука, Б. М. Коган рассказал о судьбе машины М-3: "Поскольку работа по созданию ЭВМ М-3 была инициативной и не входила в какие-либо планы, Государственная комиссия во главе с академиком Н. Г. Бруевичем с участием М. Р. Шуры-Буры проявила характер и не хотела принимать машину: мол, родилась незаконно. Но все же приняли. И два года не удавалось по-государственному решить вопрос — запустить ее в серийное производство. В это время организовался Ереванский институт математических машин, и по нашей документации на ЭВМ М-3 этот институт построил свои первые ЭВМ. В те же годы построили завод в Минске, но оказалось, что делать ему нечего. Минчане узнали, что есть машина у Иосифьяна, которую никто не соглашается поставить на серию. И только тогда было принято решение передать документацию на М-3 из ВНИИЭМ на этот завод. Так работа по созданию ЭВМ М-3 стала основой для развития математического машиностроения в Ереване и Минске.

Хочу также отметить, что и в Китае и в Венгрии по нашей документации были построены первые машины. Во ВНИИЭМ эти работы явились толчком к дальнейшему интенсивному развитию комплекса крупномасштабных исследований и конструкторских работ, связанных с созданием управляющих вычислительных машин и систем".

В 1956 году И. С. Брук выступил с докладом на сессии Академии наук СССР по автоматизации, где изложил главные направления промышленного применения ЭВМ. В 1958 году под его руководством была разработана проблемная записка "Разработка теории, принципов построения и применения специализированных вычислительных и управляющих машин".

Проблемная записка И. С. Брука явилась толчком к организации в стране ряда научно-исследовательских и конструкторских бюро по управляющим машинам и системам.

На базе лаборатории электросистем ЭНИНа в 1956 году была создана Лаборатория управляющих машин и систем (ЛУМС) АН СССР, а в 1958 году — Институт электронных управляющих машин (ИНЭУМ) АН СССР, первым директором которого стал И. С. Брук. В это же время Брук был утвержден Президиумом АН СССР научным руководителем по проблеме "Разработка теории, принципов построения и применения управляющих машин".

В ИНЭУМ АН СССР под руководством Брука были созданы управляющие машины: М-4 (1957–1960) для решения специальных задач в системах Радиотехнического института АН СССР (главный конструктор — М. А. Карцев); М-5 (1959–1960) — для решения экономических задач, планирования и управления народным хозяйством (главный конструктор — В. В. Белынский); М-7-200 и М-7-800 (1966–1969) — для задач управления мощными энергоблоками (Конаковская ГРЭС, Славянская ГРЭС) и технологическими процессами (главный конструктор — Н. Н. Ленов).

Будучи директором института, И. С. Брук уделял" много внимания нуждам растущего института, созданию здорового работоспособного коллектива, воспитанию высокой научной требовательности у своих учеников. Выйдя на пенсию в 1964 году, Исаак Семенович оставался научным консультантом и руководителем научно-технического совета ИНЭУМ.

О некоторых чертах его характера вспоминает В. Ф. Дорфман: "Брук, как и Бэббидж, был неуживчив, едок и язвителен и умел одним словом дать уничтожающую характеристику явлению. Например, когда я почему-то стал оправдывать руководителей, стремящихся к ведению нескольких параллельных тем ради запаса прочности, Брук заметил коротко: "Понимаю, многоножки". Подобные и более сильные образы "стреляли" из него, как искры в поле высокого напряжения, эти разряды, кажется, чувствовались уже вблизи его кабинета, и если биополя действительно существуют, Брук был их сильнейшим генератором.

Брука сильно раздражала жизненная и административная суета, и если для Бэббиджа главным раздражителем были уличные музыканты, то Брука порой выводил из себя острый запах духов, которыми без чувства меры пользовались некоторые сотрудницы. Из запахов он больше всего любил "аромат" машинного масла и редкий день обходил стороной механическую мастерскую".

За последние пять лет жизни он получил 16 авторских свидетельств, а всего в списке публикаций — более 100 научных работу 50 изобретений.

Он умер 6 октября 1974 года, через три месяца после кончины С. А. Лебедева.

 

Николай Петрович Брусенцов

Архитектор первого в мире троичного компьютера

Николай Петрович Брусенцов

Да, Николай Петрович Брусенцов впервые в мире создал троичный компьютер "Сетунь", который, к тому же, серийно выпускался нашей промышленностью.

В 50-е годы XX века много писалось статей о тех или иных системах счисления и их использовании в вычислительной технике.

Причем для их оценки рассматривались различные критериальные подходы. Один из критериев связан с экономичностью системы счисления. Под этим понимается тот запас чисел, которые можно записать в данной системе с помощью определенного количества знаков. Математически было доказано, что самой экономичной системой счисления является система с основанием е = 2,71… (основание натурального логарифма). Ближайшим к этому иррациональному числу является число 3, т. е. троичная система — самая экономичная. Но "главное преимущество, — как писал в те годы Брусенцов, — троичного представления чисел перед принятым в современных компьютерах двоичным состоит не в иллюзорной экономичности троичного кода, а в том, что с тремя цифрами возможен натуральный код чисел со знаком, а с двумя невозможен. Несовершенство двоичной арифметики и реализующих ее цифровых машин обусловлено именно тем, что двоичным кодом естественно представимы либо только неотрицательные числа, либо только неположительные, а для представления всей необходимой для арифметики совокупности — положительных, отрицательных и нуля — приходится пользоваться искусственными приемами типа прямого, обратного или дополнительного кода, системой с отрицательным основанием или цифрами + 1, —1 и другими ухищрениями".

И все же, несмотря на положительные качества троичной системы счисления, не следует забывать, что ее применение в вычислительной технике вместо двоичной влечет некоторые конструктивные трудности: элементы, на которых строится машина, должны иметь не два устойчивых состояния, а три.

Необходимые для реализации троичной системы три устойчивых состояния Н. П. Брусенцов получил с помощью пары магнитных усилителей.

Николай Петрович Брусенцов родился на Украине в городе Днепродзержинске 7 февраля 1925 года. Его отец, Петр Николаевич, участвовал в строительстве, а затем работал на коксохимическом заводе, а мать, Мария Дмитриевна, заведовала детским садом при заводе.

Во время войны вместе с заводом семья была эвакуирована в Оренбургскую область.

В феврале 1943 года, когда Николаю исполнилось 18 лет, его призвали в армию и послали в Свердловск на курсы радистов, по окончании которых его отправили на фронт. Он воевал в Белоруссии, Прибалтике и Восточной Пруссии, день Победы встретил под Кенигсбергом.

После демобилизации Николай Брусенцов закончил десятый класс школы рабочей молодежи в г. Калинине (ныне Тверь) и в 1948 году поступил на радиотехнический факультет Московского энергетического института. Он учился в институте вместе с М. А. Карцевым, который впоследствии также стал одним из выдающихся конструкторов вычислительных систем.

Как исследователь, Брусенцов проявил себя уже при написании дипломного проекта — он рассчитал и составил таблицы дифракции на эллиптическом цилиндре, известные как таблицы Брусенцова.

По окончании института в 1953 году Брусенцова направили на работу в СКБ при Московском университете. В тот год бывший сокурсник М. А. Карцев познакомил его с машиной М-2, только что разработанной им в бруковской лаборатории, и это определило дальнейшую судьбу Николая Брусенцова.

В конце прошлого столетия газета "Computerworld Россия" опубликовала серию статей, посвященных развитию компьютерной отрасли в мире за последние 50 лет. Одна из статей называлась "Первая и единственная" и была посвящена машине "Сетунь". Наш дальнейший рассказ о Николае Петровиче Брусенцове построен на материалах статьи и на воспоминаниях Бориса Николаевича Малиновского.

Возглавлявший в те годы кафедру вычислительной математики мехмата МГУ Сергей Львович Соболев намеревался заполучить М-2 в университет. Но по стечению обстоятельств машина в МГУ не попала. Соболев же загорелся идеей разработки малой ЭВМ специально для использования в учебных заведениях. Для этого при организующемся ВЦ МГУ была открыта специальная проблемная лаборатория, а при ней — семинар, где первые университетские программисты (Шура-Бура, Семендяев, Жоголев и, конечно, сам Соболев) искали пути к созданию малогабаритной, надежной, простой в использовании и недорогой машины. Брусенцов, который также по инициативе Соболева был переведен на мехмат, включился в работу семинара.

Один из основных обсуждавшихся вопросов — на какой элементной базе строить машину. Ламповые машины уже тогда казались громоздкими и энергоемкими. Транзисторы только начали появляться и были слишком ненадежны. Остановились на магнитных элементах. 23 апреля 1956 года состоялось заседание семинара, участники которого приняли окончательное решение о разработке малой цифровой машины на магнитных логических элементах (пока речь идет о машине с двоичным представлением данных), сформулированы технические требования и назначен руководитель разработки — Брусенцов. Он же и единственный исполнитель.

К этому времени уже существовала машина, полностью выполненная на магнитных элементах, — в ИТМиВТ, в лаборатории Гутенмахера. За несколько лет до того именно Гутенмахер должен был стать основным разработчиком ЭВМ в СКБ-245, причем планировалось делать машину на разработанных им феррит-диодных элементах. Однако с приходом в СКБ Рамеева работа была переориентирована на электронные лампы, в результате чего появилась ЭВМ "Стрела". Гутенмахер же закончил свою машину в ИТМиВТ, где она и работала. Машина была низкой производительности, с большим количеством недостатков. Поскольку новую универсальную ЭВМ решено было строить на магнитных элементах, Брусенцова по протекции Соболева допустили в окутанную атмосферой секретности лабораторию Гутенмахера на стажировку.

Размышления о том, как устранить многочисленные проблемы этой машины, неожиданно привели его к мысли об использовании троичной системы счисления. Вот что он пишет: "Оказалось, что эти элементы не только весьма удобны для построения троичных цифровых устройств. Троичные устройства получаются существенно более быстрыми и структурно более простыми, чем двоичные устройства, реализованные на тех же элементах".

Соболев поддержал замысел Брусенцова — создать троичную ЭВМ. Штат лаборатории увеличился до 20 человек, которые изготовили опытный образец машины (он эксплуатировался в МГУ 15 лет). Наладка была выполнена очень быстро — за десять дней. Назвать новую машину решили по имени речки, протекавшей недалеко от университета — "Сетунь".

Наверно, такая необычная машина могла родиться только в университетских стенах. Своей простотой и практичностью "Сетунь" обязана представлению чисел и команд в симметричном коде — (—1, 0, 1). По существу, у университетских разработчиков получился первый RISC-компьютер: длина машинного слова — 9 тритов, всего 24 команды, при этом ей удавалось с большой эффективностью реализовать разнообразные алгоритмы. На "Сетуни" решались задачи математического моделирования в физике и химии, оптимизации управления производством, краткосрочных прогнозов погоды, конструкторских расчетов, компьютерного обучения, обработки экспериментальных данных и т. д.

Троичный компьютер "Сетунь"

Еще одной особенностью машины была страничная двухуровневая организация памяти. Магнитный барабан, позаимствованный у ЭВМ "Урал", был связан с быстрой оперативной памятью постраничным обменом. Таким образом, получался своего рода кэш, который способствовал повышению производительности машины.

Серийное производство "Сетуни" было поручено Казанскому заводу математических машин. Завод производил 15–20 машин в год, всего было выпущено 50 машин, 30 из которых работали в вузах страны.

В 1961–1968 годах Брусенцов вместе с Жоголевым разработал новую машину, впоследствии названную "Сетунь-70". Действующий образец прошел испытания в апреле 1970 года. Но, к сожалению, после завершения работ по "Сетуни-70" лаборатория Брусенцова была вынуждена по указанию нового начальства прекратить разработки машин. "Сетунь-70" стали использовать и в системе компьютерного обучения "Наставник".

"Мне, конечно, было горько от того, что нас не поняли, но затем я увидел, что это нормальное положение в человеческом обществе, и что я еще легко отделался, — с горьким юмором писал Брусенцов. — А вот Уильям Оккам, проповедовавший трехзначную логику в XIII веке, с большим трудом избежал костра и всю жизнь прожил изгоем. Другой пример — Льюис Кэрролл, которому только под личиной детской сказки удалось внедрить его замечательные находки в логике, а ведь эта наука до сих пор их замалчивает и делает вид, что никакого Кэрролла не было и нет". И далее он продолжает: "Все же главным применением трехзначной логики стали теперь силлогистика и модальная логика Аристотеля. Арифметические и машинные достоинства троичности в достаточной степени были освоены нами уже в "Сетуни-70" — операции со словами варьируемой длины, оптимальный интервал значений мантиссы нормализованного числа, единый натуральный код чисел, адресов и операций, идеально естественное округление при простом усечении длины числа, алгебраические четырехвходные сумматоры и реверсивные счетчики, экономия соединительных проводов и контактов за счет передачи по каждому проводу двух несовместимых двузначных сигналов (т. е. одного трехзначного). Короче говоря, все, о чем мечтает Д. Кнут в "Искусстве программирования для ЭВМ", мы уже осуществили. Адекватное отображение логики Аристотеля в трехзначной системе откроет выход компьютерам на те проблемы, которые он в свое время исследовал, которые сегодня, по-моему, актуальнее вычислительной математики, электронной почты и тем более одуряющих компьютерных игр".

Основные устройства компьютера "Сетунь": 1 — телетайп — CTA2M; 2 — фотовывод (2 шт.); 3 — электронно-вычислительное устройство с пультом управления; 4 — ЭУМ-46; 5 — перфоратор ленточный; 6 — перфоратор ручной; 7 — устройство перемотки ленты; 8 — стенд проверки блочков

Отдельные примеры алгебраизации аристотелевской логики Н. П. Брусенцов изложил в статьях "Диаграммы Льюиса Кэрролла и аристотелева силлогистика" и "Полная система категорических силлогизмов Аристотеля", опубликованных в конце 70-х — начале 80-х годов XX века.

Всего им опубликовано более 100 научных работ, в том числе монографии "Малая цифровая вычислительная машина "Сетунь", "Миникомпьютеры", "Микрокомпьютеры", а также получено 11 авторских свидетельств на изобретения.

Американцы до сих пор интересуются троичным компьютером "Сетунь" и его создателем Николаем Петровичем Брусенцовым.