Твиты о вселенной

Чаун Маркус

Шиллинг Говерт

Галактики

 

 

86. Что такое галактики?

Галактики — большие острова звезд, дрейфующие в океане космического пространства. Это строительные блоки Вселенной, которых около 100 млрд.

Галактики разлетаются друг от друга как части космической шрапнели после колоссального взрыва — Большого взрыва.

Если бы Вселенная была сжата в сферу, около 1 км в поперечнике, каждая из 100 миллиардов галактик имела бы примерно размер таблетки аспирина.

Некоторые галактики являются постоянными, некоторые кажутся аморфными неровными звездными пятнами. Два наиболее распространенных типа — спиральные (как наш Млечный Путь) и эллиптические галактики.

Галактики содержат от нескольких миллионов звезд — в случае карликовой галактики, до нескольких триллионов — для гигантской эллиптической галактики.

Эллиптические галактики подобны большим пчелиным роям звезд. Они сферические или слегка вытянутые. Спиральные галактики, ну, они говорят сами за себя.

Спиральные галактики имеют центральную выпуклость из старых красных звезд и «спиральные рукава», где идет процесс образования из газа других новых звезд.

Эллиптические, в отличие от спиральных, вряд ли содержат газ. Созданные давным-давно в процессе звездного формирования, они (по-видимому) содержат только старые, красные звезды.

Взаимосвязь спиральных и эллиптических галактик неясна. Но, похоже, эллиптические создаются при столкновении двух спиральных. Звезды движутся беспорядочно.

Некоторые спиральные имеют любопытную «перемычку» в центре, из которой распространяются «спиральные рукава». Существует доказательство того, что наш Млечный Путь является спиральной галактикой с перемычкой.

Дуглас Адамс допустил неточность. Надо было написать о баре в центре галактики, а не о ресторане на краю Вселенной!

 

87. Как были обнаружены галактики?

В XVIII в. астрономы были безумно увлечены охотой за кометами. Но ночное небо содержит много туманных пятен, которые могут быть ошибочно приняты за кометы.

Для оказания помощи охотникам за кометами в 1784 Шарль Мессье составил каталоги небесных хищников. Неизвестные ему, некоторые из этих «туманностей» это галактики.

В Бир-Касле (Ирландия) в 1845 лорд Росс строит 72-дюймовый телескоп — самый крупный в мире. С помощью «Левиафана» он обнаруживает, что большинство туманностей имеют форму спирали.

Самая совершенная спиральная туманность — М51. Впоследствии ее назовут «Галактика Водоворот» (Whirlpool Galaxy).

Даже большие телескопы, построенные позже, показывают, что размытость спиральных туманностей связана с бесчисленными звездами, которые смазывают изображение.

В 1920 идут жаркие споры о существовании спиральных туманностей внутри нашего Млечного Пути. Или это отдельные «островные вселенные» далеко в океане космоса?

Харлоу Шепли поддерживал мнение, что спиральные туманности находятся в пределах Млечного Пути; Хебер Кертис утверждал, что они далеко за его пределами. Спор был разрешен в 1922.

Эдвин Хаббл, используя 100-дюймовый телескоп Хукера в обсерватории Маунт-Вилсон, недалеко от Лос-Анджелеса, увидел переменные Цефеиды в Большой Туманности Андромеды.

Колебания периода светимости Цефеид связаны с их собственной светимостью. Хаббл заключил, что Андромеда находится в миллионах световых лет за пределами Млечного Пути.

Андромеда и другие спиральные туманности, следовательно, находятся на огромных расстояниях от Млечного Пути. Это отдельные острова из миллиардов звезд.

Хаббл обнаружил фундаментальные строительные блоки Вселенной. Галактики усеивают космическое пространство в пределах, поддающихся исследованиям с помощью крупнейших телескопов.

Наконец, человечество узнало истинные масштабы Вселенной и потерялось в них. Она оказалась невообразимо более обширной, чем кто-либо когда-либо мог представить.

 

88. Откуда мы знаем, как далеко галактики?

Галактики — это строительные блоки Вселенной, поэтому вопрос «Как мы узнаем расстояния до галактик?» является синонимом вопроса «Откуда мы узнаем размер Вселенной?».

Чтобы найти расстояние до галактики, необходимо найти «стандартную свечу» — объект, светимость которого мы можем сравнить с аналогичными объектом, расположенным рядом.

Для ближайших галактик астрономы используют переменные цефеиды. Период, в течение которого они меняют свой блеск, связан с их истинной светимостью.

Цефеиды высокой светимости были замечены в галактике М100, что позволило определить расстояние до них в 56 млн световых лет за пределами Млечного Пути.

Двигаясь дальше, астрономы должны найти более яркие свечи, чем цефеиды: сверхновые типа la.

Сверхновые типа la возникают в двойных системах, в которых одна звезда сжимает вещество до суперкомпактного «белого карлика» размером с Землю, вызывая его взрыв.

Широко распространено мнение, что, когда такие белые карлики, наконец, взрываются как сверхновые, они всегда имеют одинаковую светимость.

Сверхновые типа la такие яркие, что они видны на краю Вселенной. Так были получены оценки расстояний до самых отдаленных галактик.

Измерения космических расстояний позволяют оценить «постоянную Хаббла», которая устанавливает масштабы Вселенной. Лучшая текущая оценка: 73 (км/с)/Мпк.

Это означает, что две галактики, разделенные расстоянием в 1 мегапарсек (3,26 млн световых лет), в среднем разлетаются со скоростью в 73 км/с из-за расширения в результате Большого взрыва.

Скорость галактик определяется из «растяжения» приходящих от них световых волн (красное смещение). Зная это и постоянную Хаббла, можно оценить расстояние.

Примечание: расстояние не вполне реальное. Дело в том, что при расчетах с использованием скорости света мы всегда получаем расстояние до движущегося объекта, существовавшего в «более раннее время».

Поэтому у астрономов принято ссылаться не на вычисленное расстояние до галактики, а на красное смещение как на более реальную меру ее удаленности от нас.

Квазары, или квазизвездные объекты, подобные звездным булавочным уколам света, находятся далеко за пределами расстояния, на котором может быть видна любая звезда.

Первооткрыватель квазаров (1963) — голландско-американский астроном Маартен Шмидт. Другие астрономы видели их, но он был первым, кто обосновал их существование.

Чтобы сверкать так ослепительно, находясь на ошеломляюще огромном удалении во Вселенной, квазары должны быть необыкновенно яркими.

Типичный квазар испускает 100-кратную энергию нормальной галактики типа Млечного Пути. Невероятно, но она исходит из объема меньшего, чем Солнечная система.

Ядерная энергия здесь ни при чем. Единственный возможный источник — «гравитационная энергия», высвобождаемая материальным объектом, падающим к центру черной дыры.

Свет излучается «аккреционным диском» квазара, образующимся при поглощении черной дырой его вещества, разогреваемого до белого каления из-за завихрений, подобных воронке в сливном отверстии.

Здесь речь идет не об обычной черной дыре, а о «супермассивной». Самые яркие квазары имеют почти в 30 млн раз большую массу, чем Солнце.

После открытия квазаров окружающие звезды кажутся «пушинками». Квазар это суперъяркое «ядро» галактики, затмевающее все остальное.

Квазары — примеры чрезвычайно «активных галактик», чей свет преимущественно обязан не звездам, а супермассивной черной Дыре.

Активных галактик приблизительно 1 % от общего числа. В дополнение к квазарам другие типы включают эллиптические «радиогалактики» и спиральные «сейфертовские» галактики.

Возможно, большинство галактик — даже наша собственная — прошли через активную фазу (квазар) в юности. Она закончилась, когда центральная черная дыра исчерпала топливо.

Сегодня вокруг нас нет квазаров. Их расцвет происходил миллиарды лет назад. Мы видим их сияние в наши телескопы подобно бриллиантовым маякам, светившим на заре времен.

 

90. Разве лишь в нескольких галактиках скрываются гигантские черные дыры?

В течение длительного времени после того, как квазары были обнаружены, их считали аномалиями — космическими диковинами, не связанными с нормальными галактиками.

Постепенно стало понятно, что большинство, если не все галактики, содержат в сердцевине супермассивные черные дыры — от миллионов до миллиардов масс Солнца.

Большинство супермассивных черных дыр являются неактивными, сидят, сложа руки, и часто их трудно видеть, потому что они скрываются в межзвездной пыли.

Даже Млечный Путь скрывает супермассивную черную дыру, хотя и скромную. Стрелец А* имеет массу приблизительно в 4,3 млн солнечных масс.

Имеется сильное подозрение, что большинство галактик, включая нашу собственную, прошло активную фазу квазара в юности. Он выключился, когда поступление газа закончилось.

Квазары, должно быть, вспыхивали в ранней Вселенной, потому что тогда было полно пищи вокруг. Газ был тогда израсходован на формирование звезд.

Так, галактики находились раньше ближе друг к другу (Вселенная расширяется). Столкновения галактик обеспечивали кормом центральную черную дыру.

Сверхмассивные черные дыры крохотны, а галактики велики. Но как ни странно, их свойства связаны. Черные дыры составляют 1/700 массы центральной выпуклости звезд.

Намекнем на близкую связь между черными дырами (ЧД) и галактиками. Либо галактика породила ЧД, либо ЧД породила галактику. Или они родились вместе.

Точный характер связи между супермассивными черными дырами и галактиками — одна из величайших нерешенных загадок в космологии.

 

91. Почему существуют гигантские черные дыры в галактиках?

В стандартной картине галактики образуются первыми. Позже возникают гигантские черные дыры, находящиеся в сердцевинах большинства, если не всех, галактик.

Сценарий: сердцевины первых галактик — меньших, чем сегодняшние, — набиты звездами. Они взорвались и оставили черные дыры, которые столкнулись/слились.

В переполненной ранней Вселенной галактики сталкивались, формируя большие галактики. В этом процессе центральные черные дыры сливались, становясь еще больше.

За последние 10 млрд лет такие «сверхмассивные» черные дыры (СМЧД) продолжали расти, пожирая газ и звезды вокруг галактик.

Проблемы со сценарием: хаотичность. Не объясняет, почему центральные дыры неизменно составляют 1/700 массы первичного галактического материала центральной звездной выпуклости.

Возможное объяснение: «струи». Сверхмассивные черные дыры вращаются и часто выпускают тонкие нити струй материи из своих полюсов (осей вращения).

Струи, как полагают, управляются, удерживаясь энергией магнитного поля, которая жестко скручивает их в супергорячий «аккреционный диск», вращающийся вокруг черной дыры.

Когда струи формируются, они сдувают газ — сырье для новых звезд, — препятствуя образованию звезды, что может объяснить величину отношения массы СМЧД и массы выпуклости.

Но некоторые, в том числе Джозеф Силк (Joe Silk) в Оксфорд думают, что сценарий развивался в обратном направлении, галактики создают СМЧД, а наоборот, галактики создаются сверхмассивными черными дырами.

По мнению Силка, после Большого взрыва остывшие обломки сгустились в гигантских облаках газа — предшественниках галактик, но оставались там, ничего не делая.

Ядра некоторых из них были настолько плотными, что сжались из-за собственной гравитации и сформировали сверхмассивные черные дыры. Тогда включились струи, рассекая пространство на миллионы световых лет.

Там, где струи врезались в инертное газовое облако, они сжали газ, запуская источники формирования звезд — создавая новую галактику.

Доказательство: квазар НЕ0450–2958, плавающий в пространстве, примерно в 23 000 световых лет от галактики (приблизительное расстояние Солнца от центра Млечного Пути).

НЕ0450–2958, похоже, не имеет никакой окружающей галактики. Известен как «голый квазар» — СМЧД, плавающая одиноко в пустоте.

Важно отметить, что струя от голого квазара ударяет как лазерный луч в галактику. Некоторые полагают, что струя квазара родила галактику.

 

92. Как гигантские черные дыры стали настолько большими так быстро?

Некоторые из наиболее отдаленных квазаров, которые образовались вскоре после Большого взрыва, уже содержали черные дыры с 10 млрд масс Солнца.

Существование чудовищных черных дыр в столь ранней истории Вселенной ставит сложный вопрос: как они стали настолько большими так быстро?

В стандартной картине черные дыры звездных масс в первых галактиках объединились в большие дыры. При столкновении галактик их дыры объединялись.

Такой многоступенчатый процесс должен был действительно протекать очень быстро, чтобы объяснить присутствие чудовищных черных дыр уже в самых далеких квазарах.

Американский астрофизик Митчелл Бегельман предложил альтернативный и более быстрый возможный путь создания сверх-массивных черных дыр.

Глубоко внутри облако сжимается, образуя одну из первых галактик, газ становится настолько плотным, что формируется гигантская черная дыра — без предварительного формирования звезд.

Центральная черная дыра быстро растет, питаясь окружающим газом, который поставляется ей с высокой скоростью, так как газовое облако все еще сжимается.

В сценарии имеется гигантский пылающий газовый шар — который Бегельман называет «квазизвездой» — с растущей черной дырой, скрытой в нем.

Обычно, если ЧД становится большой, ее тепло сдувает окружающий газ, ограничивая рост. Но черная дыра Бегельмана может расти с потрясающей скоростью.

Как оса-паразит в хозяине-гусенице, говорит Бегельман, черная дыра постепенно съедает газ, выходя из своего кокона.

В конечном счете сдуваются последние лоскутки окружающего газа. Вуаля, возникает полностью сформированная гигантская черная дыра.

Подтвердить сценарий будет проблемой. Однако такие квазизвезды выбрасывают огромное количество тепла (инфракрасный свет).

Возможно, что они будут обнаружены с помощью телескопа Джеймса Вебба (James Webb), который будет создавать инфракрасное изображение; он должен быть запущен в 2018.

 

93. Каковы самые крупные образования во Вселенной?

100 млрд галактик Вселенной не распределены равномерно по всему пространству. Вместо этого они толпятся вместе в скоплениях, или «кластерах».

Но так же как галактики теснятся в скоплениях, сами галактические скопления собираются в еще большие «сверхскопления».

Млечный Путь входит в собрание из ~30 галактик, называемых Местной Группой. Она присоединена к местному сверхскоплению, называемому Скоплением Девы.

Но даже сверхскопления не распределены равномерно по всей Вселенной. Они также прижимаются друг к другу в еще больших агломерациях.

Местами, соединяясь в огромные цепи, сверхскопления змеятся в пространстве; в других областях сверхскопления образуют завесы, или «стены» в космосе.

Великая стена Слоуна имеет массу около 10 000 нормальных галактик и простирается на 1,4 млрд световых лет (1/60 диаметра наблюдаемой Вселенной).

Великая стена Слоуна даже занесена в 2006 в Книгу рекордов Гиннесса как «самая крупномасштабная структура во Вселенной».

Существование крупных структур в начале космической истории, вероятно, представляет собой проблему для астрономии. Как они могли сформироваться так быстро после Большого взрыва?

Крупные структуры являются следствием случайных «квантовых флуктуаций» энергии в первую долю секунды жизни Вселенной увеличенных до огромных размеров.

Поразительно, но крупнейшие галактические группировки в сегодняшней Вселенной зародились в Большом взрыве из начальных структур, меньших одного атома.

 

94. Возможно ли, что галактики, которые мы видим, есть иллюзия?

В 1977 МЕРЛИН (MERLIN) — массив радиотелескопов, расположенных в Джодрелл-Бэнк в Великобритании, обнаружил два квазара, выглядевших удивительно похожими друг на друга.

Два квазара QSO 0957+561 были более чем похожи — они были одинаковыми. «Двойной квазар» был первый «гравитационно-линзированный» объект.

Гравитационное линзирование — искривление света вследствие гравитации — предсказала теория гравитации Эйнштейна (общая теория относительности) в 1915.

Если массивный объект (например, скопление галактик) находится между нами и удаленным объектом (например, квазаром), то гравитация может отклонить/сфокусировать свет от удаленного объекта.

Поскольку существует несколько возможных путей распространения света вокруг мешающего объекта, наблюдается несколько изображений. Максимально возможное их число — 5. Некоторые слишком слабые, чтобы быть легко видимыми.

G-линзирование (гравитационное) с помощью промежуточного объекта (линза) не только фокусирует свет от далекого объекта, но и усиливает его, повышая, или увеличивая, яркость.

Следовательно, гравитационное линзирование действует как природный телескоп, повышая яркость объектов, слишком далеких, чтобы их можно было наблюдать в обычных условиях.

Так, ближайшие к нам галактики мы видим реально. Но для удаленных больше шансов оказаться под влиянием промежуточных линз. Далекая часть Вселенной является более иллюзорной.

Кстати, вследствие гравитационного линзирования не всегда возможно получить правильное изображение. Гравитация скопления галактик приводит к искажению изображения удаленного объекта, искривляя его.

Гравитационное линзирование может быть использовано для обнаружения темной материи, которую нельзя увидеть непосредственным путем. В Большой синоптический обзорный телескоп (Чили) будет использовать слабое линзирование для выявления распределения материи, в частности темной материи, во Вселенной.

Телескопы были изобретены для того, чтобы исследовать свет. По иронии судьбы, Большой синоптический обзорный телескоп будет исследовать тьму!

Клаудио Маккене предложил использовать Солнце как гравитационную линзу. Фокусное расстояние «гравитационного телескопа» будет за орбитой Плутона, поэтому возникает вопрос, как его построить.

 

95. Почему телескопы считаются машинами времени?

Свет, хотя и быстрый, но не бесконечно быстрый. Ему требуется какое-то время, чтобы добраться до нас от объектов. Поэтому мы видим вещи такими, какими они были раньше.

Эффект запаздывания является незаметным для бытовых предметов, так как скорость света огромна — 300 000 км/с (свет в миллион раз быстрее пассажирского самолета).

Но Вселенная велика и расстояния огромные. Свету требуется много времени, чтобы добраться до нас от астрономических тел. Телескопы — реальные «машины времени».

Мы видим Луну такой, какой она была 1,3 секунды назад; Солнце — 8,3 минуты назад; ближайшую звезду — 4,2 года назад; самые дальние объекты, видимые невооруженным глазом (галактика Андромеды), — 2,5 млн лет назад.

Невозможно знать, как какой-то астрономический объект выглядит «сейчас» (бессмысленное понятие), мы можем знать только, как он выглядел, когда свет его покинул.

Предположим, свет распространяется так медленно, что ему необходимо 100 лет, чтобы пересечь улицу. Дом, который мы видим на дальней стороне, мог уже давно разрушиться. Похожая ситуация для далеких галактик.

Наиболее удаленные галактики, возможно, больше не существуют. Мы видим их такими, какими они были более чем 10 млрд лет назад — задолго до того, как родилась Земля.

Максимальное удаление назад, которое мы можем увидеть с использованием света (по существу, известных всем радиоволн), составляет 13,7 млрд лет, 380 000 лет после рождения Вселенной.

13,7-миллиарднолетний свет это «послесвечение» от Большого взрыва. До этого Вселенная была наполнена «туманом». Свет не мог распространяться по прямой линии.

1% телевизионных помех при приеме между станциями дает «послесвечение» от Большого взрыва — самый первый свет, на который приходится 99,9 % всех фотонов во Вселенной.