Твиты о вселенной

Чаун Маркус

Шиллинг Говерт

Вселенная

 

 

96. Насколько велика Вселенная?

Для того чтобы ответить на вопрос, как велика Вселенная, в первую очередь необходимо определить, что мы имеем в виду, говоря слово «Вселенная».

Ключевой факт: Вселенная не существовала всегда. Она была «рождена». Из того, что возникло в колоссальном взрыве 13,7 млрд лет назад, — в Большом взрыве.

Факт рождения Вселенной означает, что мы видим галактики, свет от которых шел к нам не более 13,7 млрд лет. Для более удаленных объектов — свет все еще в пути.

Мы видим объекты — около 100 млрд галактик — расположенные в гигантском «пузыре» пространства, с центром на Земле, известном как «наблюдаемая Вселенная».

Расстояние до края наблюдаемой Вселенной составляет около 42 млрд световых лет, что дает для наблюдаемой Вселенной около 84 млрд световых лет в поперечнике.

Вопрос. Как может граница располагаться в 42 млрд световых лет отсюда, если Вселенной только 13,7 млрд лет? Ответ. На начальной стадии Вселенная расширялась или «раздувалась» быстрее света!

Примечание: скорость света — максимальная скорость только в эйнштейновской специальной теории относительности (1905). В общей теории относительности (1915) пространство может расширяться с любой скоростью.

Наблюдаемая Вселенная ограничена воображаемой границей, называемой «световой горизонт» и отмечающей самый далекий объект, который можно увидеть с помощью телескопа.

Но «космический горизонт» очень сильно похож на горизонт в море. Так же, как мы знаем, что большая часть океана находится за горизонтом, так и большая часть Вселенной — за космическим горизонтом.

Согласно теории «инфляции», фактически может быть бесконечное количество областей Вселенной за пределами горизонта. Вселенная бесконечна!

 

97. Что такое Большой взрыв?

Около 13,7 млрд лет назад все пространство, время, энергия и материя вспыхнули в титаническом огненном шаре, называемом большой взрыв.

После Большого взрыва Вселенная расширяется, галактики — подобные нашему Млечному Пути, — сгущаются из охлажденных обломков.

История. В 1916 Альберт Эйнштейн применяет свою теорию гравитации (общая теория относительности) к самой большой гравитирующей массе — Вселенной.

Его теория говорит ему, что Вселенная должна быть в движении. Но Эйнштейн, полагая, что она неизменна, пропустит это сообщение в своих же собственных уравнениях.

Александр Фридман (1922) и Жорж Леметр (1927) независимо друг от друга установили истину. Вселенная — не «статичная», а «эволюционирующая» (с момента Большого взрыва).

Леметр, бельгийский католический священник, увидел параллель между рождением Вселенной в огненном шаре Большого взрыва и библейским «Да будет свет» из книги Бытия.

В 1929 Эдвин Хаббл обнаружил, что Вселенная расширяется. Все, кроме ближайших галактик, убегают от нас. Чем дальше, тем быстрее.

Хотя сейчас галактики летают отдельно, в прошлом они были близко друг к другу. 13,7 млрд лет назад все они были одна на другой. Так было при Большом взрыве.

Когда Вселенная была меньше, она была также горячее (как воздух, сжатый велосипедным насосом, нагревается). Таким образом, Большой взрыв был «горячим» Большим взрывом.

В 1948 Хойл, Бонди и Голд предлагают «Теорию стационару Вселенной». Вселенная расширяется, но за счет новой материи, рождающейся в щелях, так что плотность вещества остается одинаковой.

По иронии судьбы, термин «Большой взрыв» придумал Фред Хойя (который не верил в теорию «Большого взрыва») во время программы на радио ВВС в 1949.

В начале 1960-х радиотелескопы показывают квазары в далекой Вселенной, которых нет в сегодняшней Вселенной. Эволюционирующая Вселенная подтверждает Большой Взрыв.

В 1965 Арно Пензиас (Arno Penzias) и Роберт Уилсон (Robert Wilson) обнаружили горячее «послесвечение» огненного шара Большого взрыва — космическое фоновое излучение. Это был триумф теории Большого взрыва.

 

98. Где произошел Большой взрыв?

Термин «Большой взрыв» неправильно передает визуальную картину почти во всех мыслимых отношениях. В частности, он создает впечатление взрыва.

Взрыв, так же как взрыв динамита, происходит в одном месте. Но нет места, на которое вы можете указать и сказать: «Большой взрыв произошел здесь».

В момент Большого взрыва пространство взорвалось и сразу же начало расти везде. Это произошло одновременно везде.

Представьте себе изюм в поднимающемся пироге. С точки зрения какой-то одной изюминки, все другие изюминки удаляются (представьте бесконечный пирог без границ!!!).

Галактики, встроенные в расширяющееся пространство, как изюм в растущем торте. С точки зрения любой галактики, все другие галактики удаляются.

Так, в расширяющейся Вселенной каждый видит одну и ту же картину и каждому кажется, что он находится в эпицентре взрыва (хотя ни о ком так сказать нельзя).

Кроме того, при взрыве динамита шрапнель взрывается и разлетается в существующем до взрыва пространстве. Но для Вселенной не было ранее существующего пространства.

Большой взрыв не расширялся в чем-то. Пространство просто появилось, и каждая ячейка начала расширение, удаляясь от всех других.

Представьте бесконечный пирог снова. Если он бесконечный, то не существует чего-то внешнего для того, чтобы расшириться туда. Расширение означает, что все точки внутри отдаляются друг от друга.

Конечно, это могут быть пространственные кривые, замыкающиеся сами на себя, подобно многомерной версии поверхности шара Снова нет «внешнего», чтобы расшириться в него.

Если ваш мозг не может осознать это, то помните: Большой взрыв — 4-мерное явление (3 пространственных координаты и 1 временная) и поэтому принципиально непостижим для 3D-существ, таких как мы.

Все, что мы можем сделать, — это поймать отблески Большого взрыва, но никогда не сможем постичь его во всей полноте. Только общая теории относительности может это сделать.

 

99. Откуда мы знаем, что был Большой взрыв?

Вселенная расширяется, значит, должна в прошлом быть меньше. Наличие вселенского гелия (10 % атомов) можно объяснить, только если считать его произведенным в печи Большого взрыва.

Повседневные доказательства: 1 % от помех или «шума» в телевизоре, настроенном между станциями, идет непосредственно от Большого взрыва.

Огненный шар Большого взрыва подобен огненному шару Н-бомбы (водородной). Но в то время, как тепло бомбы рассеивается в окружающее пространство, это невозможно для Большого взрыва.

Теплу Большого взрыва некуда идти. Оно было закупорено во Вселенной — которая, по определению, и есть все это.

Тепло Большого взрыва, сильно уменьшившееся из-за расширения Вселенной за истекшие 13,7 млрд лет, все еще здесь. Теперь это всего 3 градуса выше абсолютного нуля (-270 °C).

Вместо того чтобы проявиться, как видимый свет, «послесвечение» Большого взрыва проявляется как микроволны (и миллиметровые волны) — невидимый свет, который попал в ваш телевизор.

Прежде чем ударить по вашей ТВ-антенне, микроволны Большого взрыва путешествовали 13,7 млрд лет, и последнее, чего они касались, был огненный шар Большого взрыва.

Колоссальное количество (99,9 %) всех фотонов (частиц света) во Вселенной не от звезд и галактик, но от послесвечения Большого взрыва.

Если бы мы могли увидеть Вселенную извне, то были бы потрясены «послесвечением создания». Все пространство светилось бы как внутренность лампочки.

Атмосфера и все холодные объекты (даже вы) испускают реликтовые микроволны, но, как это ни парадоксально, преобладающее излучение во Вселенной является невидимым.

«Космическое фоновое излучение» (реликтовое излучение) обнаружили только в 1965, и то случайно, два радиоастронома из «Белл телефон» (Bell Labs), в Холмделе, шт. Нью Джерси.

Несмотря на то что им удалось обнаружить микроволновое свечение, они думали, что это помехи от голубиного помета (птиц, гнездящихся в рупоре антенны радиотелескопа); Арно Пензиас и Роберт Уилсон получили Нобелевскую премию.

Космическое фоновое излучение несет в себе бесценную «детскую фотографию» Вселенной, когда она была всего лишь в возрасте 380 000 лет.

В местах, где послесвечение теплее/холоднее, чем в среднем, выявились первые сгустки материи после Большого взрыва — «зародыши» галактик.

За участие в поиске «зародышей» первых космических структур Джон Мазер и Джордж Смут в 2006 также получили Нобелевскую премию по физике.

 

100. Что было до Большого взрыва?

Вначале был «ложный вакуум», как гласит стандартная история. Это было необычное свойство — отталкивающая гравитация — так это «раздувалось».

Чем больше вакуума, который был создан, тем сильнее отталкивающая гравитация, и тем быстрее вакуум расширялся. Все быстрее и быстрее.

Чем больше вакуума создано, тем больше энергии накапливается. Энергия из ничего — еще одно удивительное свойство. «Основной бесплатный завтрак».

Но ложный вакуум был нестабилен. Его части распались случайным образом до «истинного» вакуума — нашего вакуума. Представьте себе пузыри, образующиеся в безбрежном океане.

Энергии ложного вакуума надо было куда-то идти. Это привело к возникновению материи в пузырях-вселенных и нагреванию ее до огромных температур. Произошел горячий Большой взрыв!

В этой «инфляционной» картине наша Вселенная является лишь одной из огромного числа, навсегда разделенных постоянно растущими пространствами ложного вакуума.

Когда инфляция практически исчерпала себя, началось нормальное расширение. Сравните взрыв динамитной шашки с расширением при взрыве водородной бомбы.

Откуда появился высокоэнергетический ложный вакуум? Квантовая теория допускает появление энергии из ничего (неопределенность Гейзенберга).

Возможно, когда появилась малая часть ложного вакуума, то началось расширение. Инфляция непобедима, поскольку вакуум расширяется быстрее, чем съедается.

Очевиден следующий вопрос: каковы же законы физики (квантовая теория), которые позволяют энергии спонтанно рождаться из ничего?

Бесконечный регресс. Может быть, это не лучше, чем заявлять, что Вселенная покоится на спине черепахи. Тогда возникает вопрос: а на чем стоит черепаха?

Как сказала дама на лекции Бертрана Рассела по космологии: «Вы очень умны, молодой человек. Но эта черепаха все время падает!»

 

101. Как быстро расширяется Вселенная?

Степень расширения Вселенной количественно определяется постоянной Хаббла. Лучшая современная оценка: 73 (км/с)/мегапарсек (1 Мпк = 3,26 млн световых лет).

Это означает, что галактики, расположенные в 3,26 млн световых лет друг от друга, удаляются со скоростью 73 км/с из-за расширения от Большого взрыва.

Однако Вселенная не всегда расширялась с такой скоростью, с какой она расширяется сегодня. Фактически у скорости расширения была пестрая история.

Наивно было думать, что Вселенная быстро расширилась от Большого взрыва и замедлялась с этого момента, поскольку расширение заканчивается конденсацией. Все гораздо сложнее.

Первоначально был только вакуум. Он «раздулся» с феноменальной скоростью, удвоив размер Вселенной по крайней мере в 60 раз в первые доли секунды.

Когда «инфляция» закончилась, огромная энергия вакуума была вброшена в создание материи и нагревание ее до огромных температур. Это был горячий Большой взрыв.

После инфляции Вселенная расширялась с гораздо меньшей скоростью, постепенно уменьшающейся из-за тормозящего действия галактик, придерживающих друг друга.

Но в последнее время — в течение последних нескольких млрд лет — налицо большой сюрприз. Расширение Вселенной, которое было замедлено, ускорилось снова.

Астрономы полагают, что пустое пространство содержит странный вид энергии. Отталкивающая гравитация этой «темной энергии» ускоряет расширение Вселенной.

Очевидный вопрос: есть ли связь между растущей инфляцией и увеличением темной энергии? Никто не знает.

Если управляемое темной энергией расширение продолжится, то оно раздвинет галактики. К 100-млрдному году н. э. в наблюдаемой Вселенной останется только галактика Млечный Путь.

 

102. Почему небо ночью темное?

Первым человеком, который задал этот вопрос, в 1610 был Йохан Кеплер, главный математик императора Священной Римской империи.

В Падуе Галилео с помощью новомодного телескопа показал звезды, невидимые невооруженным глазом. Он задался вопросом: Что, если звезды движутся всегда?

Так же как если бы вы изучали густой сосновый лес и увидели бы только деревья, при изучении Вселенной вы должны видеть только звезды.

Кеплер заключил: вопреки ожиданиям, ночное небо должно быть не черным, а столь же ярким, как поверхность типичной звезды. Таким же ярким, как Солнце!

Фактически, типичные звезды — «красные карлики» — составляют 70 % всех звезд; таким образом, ночное небо должно быть как кровь, красным от горизонта до горизонта.

Загадка, почему ночное небо темное, а не яркое, стала известной как парадокс Ольберса, в честь немецкого астронома XIX в., который популяризировал этот факт.

Эдгар Аллан По предложил наиболее правдоподобное объяснение. Вероятно, небо темное потому, что свет от самых далеких звезд еще не прибыл на Землю.

Идея Эдгара По поддерживается открытием конечного возраста Вселенной. Мы видим только те объекты, свет от которых идет менее 13,7 млрд лет, чтобы добраться сюда.

Но не Большой взрыв объясняет парадокс, потому что — ну, нет никакого парадокса! Даже в бесконечно старой Вселенной ночное небо не будет ярким.

Кеплер молчаливо предположил, что звезда может гореть вечно и может отдавать неограниченное количество света в пространство. А это неправильно.

В самом деле, даже если бы все звезды во Вселенной обратили все свое топливо в звездный свет, этого было бы недостаточно, чтобы заполнить пространство и сделать ночное небо Земли светящимся.

Представьте ванну со слишком малым количеством воды, чтобы заполнить ее. Со Вселенной то же самое. Звезды просто содержат слишком мало энергии, чтобы наполнить все небо светом.

Кто бы мог подумать, что темнота ночного неба была загадкой на протяжении 400 лет и вызвала столько космологических гипотез!

 

103. Что такое темная материя?

Никто не знает. В отличие от обычной материи (атомов) она не выделяет света или дает слишком мало света для того, чтобы быть обнаруженной с помощью наших лучших современных инструментов.

Она перевешивает видимую материю Вселенной — звезд и галактик — в шесть-семь раз.

Мы знаем о ее существовании потому, что ее гравитация тянет видимые звезды, заставляя их двигаться, как если бы в их составе присутствовало больше материи, чем мы можем видеть.

Первые доказательства «недостающей массы»: слишком быстрые вертикальные перемещения звезд в диске Млечного Пути обосновал в 1932 Ян Оорт — влиянием невидимой материи.

Затем в 1934 Фриц Цвики обнаружил, что галактики в скоплениях вращаются вокруг центра скопления слишком быстро, как бы реагируя на силу тяжести невидимого материала.

В 1980-х Вера Рубин обнаружила звезды на окраине спиральной галактики, вращающиеся слишком быстро. Как дети на ускоряющейся карусели, они должны были бы улететь.

Звезды не улетают в межгалактическое пространство, утверждают астрономы, потому что они удерживаются гравитацией невидимой темной материи.

Каждая спиральная галактика, включая наш Млечный Путь, считается встроенной в гигантское сферическое гало темной материи, намного превосходящей массу звезды.

Природа темной материи — одна из величайших загадок физики. Есть разгадка, одобренная большинством ученых: до сего времени не открытая субатомная частица.

Так как темная материя существует повсеместно, она должна быть и в пределах Земли. Для ее обнаружения проведено несколько экспериментов в шахтах.

Существует реальная возможность, что претендент на звание носителя темной материи будет найден с помощью Большого адронного коллайдера — гигантского ускорителя частиц недалеко от Женевы.

Тот, кто отгадает загадку темной материи, несомненно, заслужит Нобелевскую премию.

 

104. Что такое темная энергия?

Она «невидима». Заполняет все пространство. И характеризуется отталкивающей гравитацией, которая ускоряет расширение Вселенной.

Темная энергия обнаружена в 1998 двумя группами — одна во главе с американцем Саулом Перлмуттером и другая — австралийцами Ником Сантцеффом и Брайаном Шмидтом.

«Стандартные свечи», характеризующие свечение сверхновых в удаленных областях Вселенной, слабее, чем ожидалось, — звезды должны располагаться дальше, чем при нормальном расширении пространства.

Вопреки всем ожиданиям, космическое расширение ускоряется (должно быть замедление из-за «тормозящего» действие гравитации между галактиками).

Само пространство должно содержать своего рода «упругий» материал — темную энергию, борющуюся с гравитацией, которая пытается собрать все галактики вместе.

Темная энергия является основным компонентом Вселенной. На ее долю приходится примерно 73 % всей космической массы-энергии (темной материи 23 %, обычной материи 4 %).

Невероятно — найти основную составляющую Вселенной только в 1998. Урок для физиков, которые еще в XIX в. утверждали, что в физике практически не осталось нерешенных задач.

На самом деле темная энергия очень разрежена. Но эффект накапливается. Объясняет, почему незаметен на Земле, в то время как он властвует над космическими объемами.

Без сомнения, темная энергия является одним из самых неожиданных открытий в истории науки. Кроме того, одним из самых непостижимых.

Квантовая теория дала нам компьютеры и лазеры и ядерные реакторы; понимание того, почему Солнце светит и почему земля под нашими ногами твердая…

…Но затем квантовая теория используется для прогнозирования энергии вакуума — темной энергии — и дает число 1 со 120 нулями — это намного больше, чем то, что мы наблюдаем.

Темная энергия представляет самое большое расхождение между предсказанием и наблюдением в истории науки. Что-то не так?

Большинство физиков считают, что отсутствует «руководящая идея». И только тогда, когда кто-то найдет ее, мы сможем, наконец, понять темную энергию.

 

105. Эта Вселенная специально создана для жизни?

Кажется, что это действительно так, хотя мы должны быть очень осторожными с такими заявлениями, поскольку кажущееся в науке может оказаться обманчивым.

Если бы гравитация была на несколько % сильнее, она бы сжала/нагрела солнечное ядро так, что топливо выгорело бы менее чем за 1 млрд лет, — этого времени недостаточно для развития разумной жизни.

С другой стороны, если бы гравитация была на несколько % слабее, солнечное ядро не смогло бы достаточно сократиться/нагреться для того, чтобы создать все. Жизнь не смогла бы зародиться на Земле.

Аналогично, если бы ядерные силы были на несколько % больше, Солнце сожгло бы топливо не за 10 млрд лет, а горело бы менее 1 секунды, и мы получили бы взрыв!

Всюду в природе, куда бы мы ни бросили взгляд, оказывается, что законы физики «тонко настроены» под наше пребывание здесь. Вопрос: какой вывод мы можем сделать из этого?

Единственная возможность — хотя и не научная — Бог тонко настроил законы физики. Тем не менее не существует доказательств влияния сверхъестественного на развитие Вселенной.

Другая возможность — есть множество вселенных, каждая со своими законами, и мы оказались в одной, хорошо приспособленной для жизни. Как нам было не появиться здесь?

Идея, поставленная с ног на голову, — законы физики таковы, потому что иначе мы не могли бы существовать как наблюдатели — называется «антропным принципом».

Внимание: пока еще нет полной «теории всего». Можно показать что силы в природе взаимосвязаны. И это может означать менее тонкие настройки, чем мы думаем.

Однако одна проблема — невероятно крошечные величины темной энергии — неизбежно приводит к антропному объяснению.

Темная энергия отталкивания должна быть крайне мала, чтобы не препятствовать сжатию газовых облаков для образования галактик, необходимых для нашего существования.

 

106. Существует больше, чем одна, Вселенная?

Природа, по-видимому, стучит у нас над головой и кричит нам, что это не единственная Вселенная. Доказательства приходят из многих источников.

Много разных версий «мультивселенной». Пока неясно, как они сочетаются друг с другом в целостной картине. Это новые парадигмы.

Мы, конечно, много знаем о Вселенной за «космическим горизонтом». Согласно теории «инфляции», существует бесконечное число доменов (регионов), подобных нашему.

Каждый домен образовался в результате Большого взрыва. Но из охлажденных осколков должны были сформироваться различные галактики/звезды. Отсюда разные истории.

Кажущиеся тонко настроенными здесь для нас законы физики намекают, что имеются и другие вселенные с иными, отличающимися, законами физики.

Конструкция, которая предусматривает множество доменов с различными законами, есть «теория струн», в которой частицы — колеблющиеся «струны» массы-энергии.

Теория струн указывает, что количество вселенных может определяться числом с 500 нулями. (Проблема: почему мы в этой, а не в другой?)

Теория струн говорит, что Вселенная имеет 10 измерений; существует диапазон вселенных не только с различными законами, но и с разным количеством измерений.

Квантовая теория также предполагает, что либо атомы существуют во многих параллельных реальностях, либо ведут себя, как будто это так (большинство физиков утверждает последнее).

Прямой намек на связь между квантовой теорией «множества миров» и альтернативной историей, заканчивающейся в областях за пределами горизонта Вселенной.

Физик Макс Тегмарк даже считает, что это может быть не одна (единственная) мультивселенная, а целый набор, вложенных одна в другую наподобие русских матрешек.