Н.В. Рындина
Возможности металлографии в изучении древних изделий из меди и ее сплавов (эпоха раннего металла)
[45]
Металлография — наука о внутреннем строении и особенностях структуры металлов и сплавов, характер которых определяется и металлургическими процессами их получения, и способами их обработки. Строение и микроструктура древнего металла изучается на его подполированных образцах в отраженном свете с помощью специальных металлографических микроскопов, позволяющих получать увеличение от 100 до 2000 раз (оптическая металлография). В некоторых случаях возникает необходимость более детального исследования микроструктуры с помощью больших увеличений. Для этого используется метод электронной микроскопии. Рабочее увеличение при использовании электронного микроскопа находится в диапазоне от 100 до 100000 крат. В дополнение к микроструктуре такой микроскоп позволяет устанавливать химический состав ее составляющих в областях размером от двух до пяти микрон.
Оптическая металлография является необходимым этапом исследования: с ее помощью удается быстро и надежно получать общие сведения о микроструктуре металла и выявлять задачи ее дальнейшего более тонкого изучения. Настоящая работа построена преимущественно на обобщении данных оптической металлографии, накопленных в лабораториях разных стран, в том числе, в лаборатории структурного анализа кафедры археологии Московского университета.
Металлографические исследования, проводимые в лаборатории МГУ, нацелены, прежде всего, на выяснение древних способов производства, выплавки и переработки металла, которые представляют интерес как для истории техники (в частности металлургии, кузнечного, литейного, ювелирного дела), так и для установления общего уровня хозяйственного развития эпохи. Общеизвестно, какую громадную роль сыграло в истории человечества применение металла. От развития металлообработки зависел технический строй всего производства, поскольку с глубокой древности основные орудия труда земледельца, строителя, ремесленника были сделаны из металла.
При сравнении уровня одной археологической культуры с уровнем другой естественно, если в каждой из них есть металл, уделить ему особое внимание. При этом недостаточно знать его химический состав, так как даже при использовании однородного металла методы его обработки в процессе изготовления вещей могут быть различными. Поэтому необходимым дополнением к анализу сырья служат металлографические данные о технологии его формовки. Они являются важным источником для выяснения происхождения вещей. Исходный центр их производства определяется, прежде всего, единством их формы и технологии, поскольку сырьевой металл часто поступал со стороны.
Накопление массовых металлографических наблюдений помогает решению проблем торговых контактов и взаимовлияний между различными культурами и производственными общностями (очагами, центрами и пр.), идущими по линии распространения не только новых типов орудий и украшений, но и новых технических достижений их обработки.
Велика роль металлографии в исследовании проблем организации и структуры древнего металлопроизводства. Уровень его специализации определяется с помощью анализа сложности и трудоемкости освоенных мастерами кузнечных и литейных операций.
Перечисленные преимущества использования металлографии в археологии не исчерпывают всех ее возможностей. В приложении к каждой исторической эпохе и даже к каждой конкретной культуре металлографический анализ решает особые, вполне конкретные задачи.
Ранние этапы в истории металла (энеолит, бронзовый век) выдвигают на первый план вопрос о закономерностях развития металлургических знаний в центрах их независимого возникновения. В литературе существует несколько схем, отражающих их динамику (Рындина, 2004. С. 96, 97). При их создании одни исследователи принимают во внимание только процессы усовершенствования экстрактивной металлургии. Они считают обоснованной лишь последовательность: самородная медь → окисленные руды → сульфидные руды (Р. Форбс, А. Галле, М. Лауз, Г. Вайсгербер). Другие объединяют в своих построениях экстрактивную металлургию с перерабатывающей (Г. Чайлд, Г. Коглен, К. Ренфрю, Т. Вертайм). Накопленные к настоящему времени результаты более 500 микроструктурных анализов древнейшего металла Ближнего Востока и Юго-Восточной Европы в наибольшей мере подтверждают «родословное древо» металлургии, предложенное Г.Г. Когленом (Coghlan, 1951. Р. 28–33). Он выделяет четыре фазы в эволюции древнейшего металлопроизводства. Фаза «А» характеризуется кузнечной обработкой самородной меди. Ее куют сначала вхолодную, а затем и вгорячую. Фаза «В» начинается с открытия плавления самородной меди и появления первых изделий отлитых в открытых формах. Фаза «С» связана с открытием выплавки меди из окисленных руд и началом действительной металлургии. Усложняется литейная техника, впервые осваивается литье в разъемные и составные формы. Фаза «D» знаменуется переходом к бронзам — любым искусственным сплавам на медной основе. Их появление сопровождают первые опыты по плавке сульфидных руд.
Факт использования на Ближнем Востоке кованой самородной меди (фаза «А» Г. Коглена) подкреплен в последнее время достаточно основательно с помощью металлографического изучения металла конца VIII–VII тыс. до н. э. из памятников докерамического неолита. Они распространены в обширной зоне от Анатолии и Восточного Средиземноморья на западе до Юго-Западного Ирана на востоке. Благодаря аналитическим работам, проведенным в лабораториях разных стран, установлено получение в процессе кузнечной обработки самородков бусины из Телль Рамада в Сирии, пронизки из Али Кош в Иране, шила из Телль Магзалии на севере Ирака (рис. 1), серии бус из Ашикли Гуюк, а также многочисленных шильев, рыболовных крючков и проволочных украшений (44 находки) из Чайеню Тепези в Анатолии (France Lanord, Contenson, 1973. P. 111–115; Smith, 1968. P. 237; Рындина, Яхонтова, 1985. С. 157–161; Jalgin, Pemicka, 1999. S. 47–53; Maddin, Muhly, Stech, 1999. P. 39–41).
Микроструктура природных самородков крупная, но неравномерная: рядом с огромными зернами находятся мелкие зерна, именуемые полиэдрами (рис. 2,1,2). В самородках часто наблюдается так называемое полисинтетическое двойникование — многократное повторение узких, длинных, расположенных параллельно кристаллов (Craddock, 1995. Р. 248). Такая структура была обнаружена французскими металловедами при изучении подвески из Телль Рамада (рис. 2,1,2).
Рис. 1. Медные изделия VII тыс. до н. э., отлитые из самородков. 1 — пронизка из Али Кош; 2 — подвеска из Телль Рам ад; 3 — шило из Телль Магзалия.
Строение самородков, как правило, меняется при переходе от одного места к другому за счет частого присутствия в них включений иных минералов: домейкита (Cu3As), кальцита, кварца, самородного серебра и др. (.Вернадский, 1955. С. 258). К примеру, мы наблюдали на сканирующем электронном микроскопе вытянутые в направлении ковки вкрапления серебра в структуре шила из Телль Магзалии, датированного VII тыс. до н. э. (рис. 2, 4). Таким образом, роль металлографии при вычленении изделий из кованой самородной меди является решающей.
Совсем иначе обстоит дело с переплавленными самородками: при их расплавлении примеси растворятся в меди и она получит структуру, обычную для металлургического металла (Wayman, Duke, 1999. P. 55, 62, 63). В этом случае отличить самородную медь не удается и с помощью анализа ее химического состава. Уже давно известно, что она может быть и очень чистой, и очень грязной (Риндина, 1985. С. 12). Изложенные методические трудности привели к тому, что фаза «В» Г. Коглена, связанная с литьем самородков, до сих пор четко не обозначена. Ее существование подкрепляется пока лишь косвенными наблюдениями о живучести самородного сырья в некоторых районах Ближнего Востока вплоть до V — середины III тыс. до н. э. (Piggot, 1999. Р. 108, 109; Heskel, Lamberg-Karlovsky, 1999. P. 232, 233). Эти пережиточные явления не затушевывают того факта, что период преимущественного хождения изделий из самородков приурочен на Ближнем Востоке к очень раннему времени конца VIII–VII тыс. до н. э.
Весьма основательно документирована аналитическими данными фаза «С» Г. Коглена. На Ближнем Востоке она вписывается в рамки второй половины VI — первой половины IV тыс. до н. э. Древнейшим свидетельством освоения технологии выплавки металла из оксидных медных руд служит шлак из слоя VI А Чатал Гуюка на юге Анатолии, датированный по радиоуглероду серединой VI тыс. до н. э. (Neuninger, Pittioni, Siegl, 1964. S. 98-110).
Несомненно отлитые медные предметы зафиксированы с помощью металлографии в коллекциях находок V–IV тыс. до н. э. из памятников Восточного Средиземноморья. Среди них шилья из «первого смешанного горизонта» Амукских теллей Сирии, слои которого относятся ко второй половине V — первой половине IV тыс. до н. э. (Braidwood Burke, Nachtrieb, 1951. P. 92. Fig. 6-a). Древнейшими литыми предметами Израиля считаются четырнадцать медных долот из знаменитого клада Нахал Мишмар середины IV тыс. до н. э. (Shalev, 1995. Р. 113; Tadmor, Kedem, 1995. P. 122).
Наиболее яркие и многообразные примеры раннего литья дают археологические материалы Ирана. Древнейшим литым предметом здесь является наконечник стрелы из Сиалка III (Wertime, 1964. Р. 1260). Изделие рубежа VI и V тыс. до н. э., по данным американского металловеда С. Смита, после литья было отковано и отожжено. Последней третью V тыс. до н. э. датируется литое шило из слоя V В Тепе Гийян, по-видимому, полученное в открытой форме (Contenau, Ghirshman, 1935. P. 137, 138). По результатам металлографических анализов литьем с последующей ковкой изготовлены два клиновидных топора и проушное тесло из Сиалка III4 середины IV тыс. до н. э. (Ghirshman, 1938. Р. 206) и близкие по времени украшения и мелкие колющие орудия из Тепе Яхья VC–VB (Heskel, 1981. Р. 69, 81, 140–144).
В отличие от Ирана, находки V — первой половины IV тыс. до н. э. с территории Месопотамии и Анатолии почти не исследовались с помощью металлографии. Тем не менее, данные поверхностного технологического изучения крупных ударных орудий этого времени свидетельствуют о безусловном использовании местными мастерами литья не только в открытые, но и в разъемные формы. С помощью литья, без сомнения, исполнены клиновидные топоры и тесла-долота из XVII–XVI слоев Мерсина (Garstang, 1953. Р. 108), плоское долото из XVII раннеубейдского слоя Тепе Гавра (Tobler, 1950. Р. 213), клиновидный топор из убейдского комплекса Арпачии (Mallowan, Rose, 1935. P. 104. Pl. XI).
Наиболее явными и массовыми аналитическими наблюдениями подкреплена фаза «D» Г. Коглена. Переход от меди к бронзам, сначала мышьяковым, а потом и оловянным, хорошо прослежен по результатам химического и металлографического исследования ближневосточного металла второй половины IV–III тыс. до н. э. (Авилова, 1996. С. 77, 78; Frangipane, 1985. Р. 216).
Другим независимым центром становления металлургии был Юго-Восток Европы. Ее население приобщается к металлу на два тысячелетия позже, чем Ближний Восток. Но темпы дальнейшего накопления металлургических знаний имеют здесь опережающий характер. Этап сложения предпосылок металлургии в Балкано-Карпатье (стадии А-В по Г. Коглену) по-видимому приурочен к V тыс. до н. э. Гипотеза о его существовании в рамках неолитических культур Старчево-Кереш-Криш, Какань, Сакалхат-Лёбе, Усое II и др. пока опирается не столько на данные металлографии, сколько на результаты химического и морфологического изучения древнейших находок из меди и малахита (Рындина, 1998. С. 190). Их набор идентичен ближневосточным изделиям докерамического неолита (мелкие колющие орудия, украшения).
Значительно ярче вырисовывается этап «С» Г. Коглена благодаря массовому металлографическому изучению в лаборатории кафедры археологии МГУ изделий из металла энеолитических культур региона (Марица, Гумельница, Варна, Триполье). Итоги 382 микроструктурных анализов позволяют заключить, что он вписывается в рамки IV тыс. до н. э. (Рындина, 1992. С. 62–75). Металлография обнаружила феноменально высокий уровень навыков европейских мастеров, более совершенный, чем на Ближнем Востоке. В Балкано-Карпатье в рамках этапа «С» осваиваются огромные рудники типа Аи Бунара, дававшие фантастическое количество выплавленной из окисленных руд меди; используются сложные по конструкции литейные формы из графита, позволявшие отливать многие сотни тяжелых ударный орудий; практикуется прием насыщения меди кислородом при литье для предотвращения ее газовой пористости; широко применяется ковка металла в предплавильных режимах (900-1000 °C). Но контраст в темпах и уровне развития металлургии Юго-Восточной Европы и Ближнего Востока в период освоения литейных и плавильных технологий (этап «С») не умаляет важного факта общей направленности этого развития, которое идет в сторону накопления все больших объемов металла и постепенного освоения приемов его сложного литья и легирования (фаза «В» Г. Коглена).
Таким образом, накопленные металлографические данные показывают, что схема Г.Г. Коглена правильно отражает генеральную линию эволюции древнейшего металлопроизводства в случае его независимого возникновения. Металлографические исследования подкрепляют основной вывод Г.Г. Коглена о том, что открытия и изобретения в истории металлургии предопределяют друг друга и следуют друг за другом в определенной последовательности вне зависимости от сложности и противоречивости процесса ее регионального развития. Тем не менее, на фоне нынешнего состояния аналитических источников, удается не только подтвердить периодизацию металлургии Г.Г. Коглена, но отчасти и дополнить техническую характеристику выделяемых им этапов. Оказалось, к примеру, что вскоре после открытия плавки чистых окисленных руд меди (начало фазы «С») последовало освоение восстановительной плавки руд смешанных оксидносульфидных. Прямое доказательство этому обнаружено при металлографическом изучении так называемых «штейновых» включений в медных изделиях и шлаковых настылях на стенках тиглей поздней Гумельницы, датируемых серединой IV тыс. до н. э. (Рындина, 1998. С. 74–77). Ранее такого рода плавки оценивались как позднее явление, связанное с эпохой бронзы (фаза «В» Г.Г. Коглена).
В пределы фазы «С» удается теперь вписать и еще одно, чрезвычайно важное изобретение, связанное с упрочнением меди холодной ковкой. Из 120 изученных в нашей лаборатории крупных ударных орудий, связанных с энеолитическими памятниками Восточного Средиземноморья, Балкано-Карпатской и Восточной Европы, 118 обнаружили на лезвийной части следы упрочняющего наклепа (рис. 3, 4) в виде вытянутых холодной ковкой, разбитых полиэдров. Чтобы представить возможность этого технического достижения, достаточно обозначить твердость их металла на лезвийной кромке и вдали от нее. На лезвии она колеблется от 110 до 130 кг/мм2, вдали от него составляет 77–89 кг/мм2. Для сравнения обозначим твердость железа, выплавленного из гематита. Она равна 106–110 кг/мм2, т. е. соответствует показателям упрочненной меди. Резкое повышение твердости за счет целенаправленного наклепа делает медь успешным соперником камня даже в производстве крупных ударных орудий и оружия.
Установленные с помощью металлографии закономерности совершенствования знаний о металле помогают выявить те технологические признаки, которые наиболее важны при классификационном членении ранних металлоносных культур.
При всех различиях периодизационных схем, предложенных археологами к концу XIX века, почти все они опирались на характеристику материалов, используемых в производстве жизненно необходимых орудий и технологические особенности их обработки. Периодизация по материалу орудий легла в основу выделения знаменитых археологических веков. Пионеры археологической классификации Кристиан-Юргенс Томсен и Якоб Ворсо строили свои периодизационные схемы, исходя прежде всего из технологических принципов анализа материалов (Worsaae, 1843; Thomsen, 1836). Эти принципы позднее оказались решающими как для общего членения каменного века на палеолит и неолит (Lubbock, 1885), так и для периодизации палеолита (Mortillet, 1872). И попытки периодизации эпохи раннего металла не составляют здесь исключения (Мерперт, 1981. С. 4—20). Специфика материала определила первые опыты, выделения наиболее ранней ее фазы — медного века (энеолита). Инициатором внедрения в археологию этого периода был венгерский археолог Ф. Пульский (Pulszky, 1884). Он определял его как время использования человеком медных изделий, предшествующих бронзовым, а значит собственно бронзовому веку. Однако, в дальнейшем стало ясно, что первые опыты освоения меди связаны еще с неолитом. Стал актуальным вопрос о том, какие технологические признаки выступают на первый план при попытках разграничения неолита и энеолита. Выявлению этих признаков способствовали металлографические наблюдения.
Массовое металлографическое исследование древнейших медных находок из памятников Болгарии, Молдовы, Украины и России, проведенное нами в лаборатории кафедры археологии МГУ, позволило установить, что в непосредственной зависимости от уровня металлургических знаний человека находится и набор используемых им предметов из металла (Рындина, 1978. С. 78–81). В металлоносных культурах неолита, носители которых делают первые шаги в освоении меди и не знают способов ее упрочнения ковкой, металл находит применение только в производстве украшений и в меньшей степени орудий колющего и режущего действия — шильев, рыболовных крючков, ножей. Топоры и другие орудия ударного действия (тесла, долота, молотки, мотыги) получают распространение только в связи с открытием эффекта упрочнения меди ковкой и совершенных способов ее литья в разъемные формы. С этим и связан переход к энеолиту. Таким образом, само понятие энеолита, с какими бы экономическими и культурными критериями не сопрягалось оно на конкретных территориях, напрямую связано с технологическими показателями обработки медных орудий, выделяемыми с помощью металлографии.
Важные результаты дает использование металлографии при исследовании проблемы происхождения металлургических знаний во вновь возникающих центрах металлопроизводства. Обобщение массовых микроструктурных анализов показывает, что начальные стадии развития нового независимого центра металлургии оказываются во многом похожими на начальные этапы развития металлургии в целом: лишь освоив простейшие, универсальные по своему характеру приемы — кузнечную ковку, сварку, плющение и пр. — представители нового центра переходят к освоению литья и сопутствующих ему сложных приемов металлообработки. Иными словами, независимый путь становления нового центра предполагает некоторый период ученичества, первичного знакомства с металлом и методами его простейшей обработки. Отсутствие каких-либо признаков такого ученичества, внезапный «всплеск» сложных технологий металлопроизводства свидетельствует о привнесенном со стороны характере металлургических знаний. Такая модель соответствует полученным нами данным о влиянии Передней Азии на сложение и развитие очага металлургии в ареале майкопской культуры раннего бронзового века Северного Кавказа.
В течение последних столетий IV и почти всего III тыс. до н. э. майкопские племена освоили в Предкавказье значительную территорию от Таманского полуострова на западе до Дагестана на востоке (Маркович, Мунчаев, 2003. С. 51). В этой зоне в памятниках энеолита металл почти неизвестен (единичные украшения), В майкопское же время металлические изделия сразу приобретают массовый характер. Находки исчисляются многими сотнями и представлены орудиями и оружием из мышьяковых и мышьяково-никелевых бронз; украшениями, сосудами, культовыми предметами из золота и серебра. Ряд изделий отличается специфическими формами, типичными только для Северного Кавказа. Среди них желобчатые двулезвийные кинжалы, про ушные топоры, двузубые «вилки», крюки, котлы и пр. Для выяснения реальной культурной и техноготической основы, на базе которой возникли предпосылки блестящего расцвета местной металлообработки, мы сосредоточили внимание на результатах химико-технологического изучения майкопских находок. Сто пятьдесят предметов, образцы с которых были получены из коллекций Эрмитажа, а также из музеев Адыгеи и Кабардино-Балкарии, были подвергнуты металлографическому исследованию с помощью оптической и электронной микроскопии на установке Camebax. В итоге проведенной работы было установлено, что местные мастера владели изощренными приемами металлообработки, явно привнесенными из южных культурных центров. Среди сложнейших технологий неместного происхождения можно назвать литье по восковой модели; ковку мышьяковых сплавов (4–8 % As) с высокотемпературными отжигами, вызывавшими их размягчение (эффект гомогенизации); инкрустацию бронз серебром и золотом; различные приемы получения серебристых покрытий на изделиях (лужение, серебрение, покрытие мышьяком).
Рассмотрим в более детальной форме серебристые покрытия на различных майкопских предметах. Серебро уже в раннем бронзовом веке уступало по ценности только золоту (La Niece, 1990. P. 101). Высоко ценившийся материал стал символом социального статуса и именно это породило стремление мастеров получать более дешевые его имитации. Чтобы создать иллюзию серебрения, они прибегали к помощи различных приемов, среди которых наиболее популярным было покрытие поверхности предметов мышьяком. Метод того или иного «серебрения» может быть определен только с помощью металлографического исследования поперечного сечения изделия. Поэтому обнаружив в музейных условиях на ряде майкопских кинжалов наличие пленки серебристого цвета, мы обратили преимущественное внимание на анализ микроструктуры срезов с их клинков. Изучив с помощью оптического и электронного микроскопов 58 кинжалов, зафиксировали обогащенный мышьяком наружный слой на 15 из них (см. табл. 1). Все пятнадцать относятся к позднему новосвободненскому этапу майкопской культуры, причем 9 из этой серии связаны непосредственно с курганами станицы Новосвободной (урочище Клады). В типологическом отношении кинжалы с серебристыми покрытиями неоднородны (рис. 5). Все они имеют выделенный черенок, узкий заостренный на конце или слегка скругленный клинок, но характер оформления поверхности клинка различен. Это позволяет обозначить среди них четыре типологические группы: кинжалы с гладким листовидным клинком (6 экз. — из кургана 1, камеры 1 станицы Новосвободной); кинжалы с выступающей на поверхности клинка двусторонней плоской площадкой (5 экз. — урочище Клады, к.31, п.5; курган, Иноземцево; ст. Новосвободная, к.1, камера 1; Чегем 2, к.21, п.5); кинжалы с желобчатым клинком (2 экз. — Кишпек 2, к.2, п.7; Кишпек 2, к. З, п.2) и, наконец, кинжал с выпуклым двусторонним ребром на клинке (1 экз. — Клады, к.31, п.5).
Несмотря на типологические различия, микроструктура всех кинжалов отличалась единообразием (рис. 6). Ее характеризуют следующие признаки: 1) наличие крупных рекристаллизованных зерен (0,06-0,2 мм) с двойниками и полосами скольжения вдали от лезвийной кромки (рис. 6, 1. 3); 2) вытянутость рекристаллизованных зерен в направлении деформации поблизости от лезвийной кромки (рис. 6, 2, 5); 3) отсутствие типичных для литья остаточных дендритов; 4) присутствие по границам зерен серебристых, обогащенных мышьяком прослоек; 5) наличие на поверхности изделий серебристого слоя толщиной от 5 до 8 микрон (рис. 6, 2, 4, 6).
Исследование состава металла на электронном микроскопе Camebax показало, что все кинжалы изготовлены из мышьяковых бронз, в которых содержание мышьяка колеблется от 4,0 до 8,1° о. Серебристая фаза на поверхности кинжалов, так же как серебристо-голубоватые прослойки по границам зерен представлены интерметаллитным соединением Cu3As, известным в минералогии как домейкит (28–29,5 % Аs).
По итогам поверхностного технологического осмотра и результатам металлографического исследования можно заключить, что в процессе изготовления кинжалов их литая заготовка подвергалась формующей холодной ковке со степенью обжатия металла в 40–50 %. Циклы холодной ковки сопровождались отжигами гомогенизации, которые выровняли дендритную ликвацию. Как показали опыты И.Г. Равич и М.С. Шемаханской, полная гомогенизация мышьяковых бронз протекает только после их отжига при температуре 750 °C в течение 15 минут (Ravich, Shemakhanskaya, 2005. Р. 109). Такой режим обработки скорее всего был выбран специально для улучшения физических свойств сплава и, прежде всего, повышения его ковкости за счет удаления хрупкой эвтектической фазы, неизбежной в высокомышьяковой бронзе.
Заключительная кузнечная операция обработки кинжалов была связана с холодным наклепом их лезвийной кромки (вытянутость краевых полиэдров, полосы скольжения на их фоне). Это повысило твердость рабочей части их клинков до 165–200 кг/мм2.
Появление осветленного, серебристого слоя на поверхности кинжалов из мышьяковых бронз до сих пор не находит однозначного объяснения в историко-металлургической литературе. В результате дискуссии обозначились две точки зрения в решении вопроса. Согласно первой, поверхностный слой возникал в результате так называемой обратной ликвации сплава медь-мышьяк, т. е. его расслаивания в процессе охлаждения в литейной форме заготовки изделий (McCerrel, Туlесоtе, 1972. Р. 216, 217; Shalev, 1988. Р. 307; Meeks, 1993. Р. 267–270). Другая точка зрения кажется более оправданной и сводится к предположению о том, что серебристое покрытие образовалось в результате коррозионных процессов, протекавших естественно или вызванных искусственно древним мастером на завершающей стадии обработки предметов (Northover, 1998. Р. 118; Budd, 1991. Р. 101–104).
В лабораторных условиях были проведены опыты по моделированию процессов коррозии в мышьяковых сплавах, предварительно обработанных по описанной технологической схеме. Смоделированный в процессе ковки с отжигом до 750 °C образец (Cu + 4 % As) поместили в чашу без крышки, содержавшую песчаный грунт, увлажненный раствором NaCl. Испытание проводили в течение одного месяца. Изучение микроструктуры поперечного сечения образца показало, что процессы коррозии привели к осветлению его поверхности за счет возникновения серебристой пленки Cu3As, содержавшей 29,5 % As (Равич, Рындина, Шемаханская, 2001. С. 120–124). Учитывая скорость образования серебристого покрытия, нельзя исключить предположение о том, что древние мастера могли специального подвергать кинжалы осветляющей обработке, используя воздействие специальных реактивов. В пользу этого мнения говорит тот факт, что все «серебристые» кинжалы майкопской культуры происходят из погребений элиты общества, ранжированных присутствием золота и разнообразным набором уникальных даров (см. табл. 1, а также: Кореневский, 2004. С. 81, 82). Кроме того, все они изготовлены по одинаковой технологии и все имеют повышенное содержание мышьяка в сплаве (4–8 %), что заметно отличает их от кинжалов, лишенных покрытий: концентрация мышьяка в их металле колеблется в пределах 2–4 %.
Приведенные доводы в пользу осознанного получения майкопскими мастерами мышьяковых покрытий становятся еще более весомыми, если вспомнить набор изделий, отличающихся идентичными структурными признаками из других регионов. В их ряду вновь оказываются кинжалы, а иногда и мечи, имевшие в древности особую престижную ценность. Обращает на себя внимание факт их датировки преимущественно III тыс. до н. э. Среди европейских древностей клинки с серебристой пленкой на поверхности представлены в культуре Лос Мильярес Испании (Rovira, James, 1993. P. 192), в культуре Мондзее Австрии (Budd, 1992. Р. 9, 10), в усатовском варианте позднего Триполье юго-западной части СНГ (Рындина, Конькова, 1982. С. 35–37). Тот же эффект серебристости был обнаружен на целой серии палестинских кинжалов и мечей конца III — начала II тыс. до н. э. (Shaiev, 1988. Р. 307–310).
Умение получать обогащенную мышьяком серебристую поверхность отличает продукцию анатолийских мастеров раннего бронзового века. Поверхностный серебристый слой украшает ряд кинжалов, датируемых первой половиной III тыс. до н. э. (Muhly, 1980. Р. 26). Он же присутствует на культовых фигурках буйволов из погребений в Хорозтепе (Smith, 1973. Р. 99).
В подходе к проблеме происхождения рассматриваемой технологии наиболее важно учитывать аналогии ей, связанные с кругом памятников одного культурно-хронологического пласта. Если принять во внимание уже давно прослеженное культурное единство Северного Кавказа и Передней Азии в период конца IV–III тыс. до н. э., то наиболее естественно акцентировать внимание на приведенных примерах мышьяковых покрытий в пределах Малой Азии и Южного Леванта.
Один из редких для бронзового века случаев получения серебристого слоя на поверхности изделий связан с покрытием их оловом (лужение). Среди майкопских древностей зафиксированы три случая лужения, обнаруженные при металлографическом изучении сосудов. Два из них представлены обломками, по которым исходная форма не восстанавливается. Они открыты Н.И. Веселовским в конце XIX в. при раскопках кургана 1 у ст. Новосвободной (хранение ГИМ, инв. № 42405). Третий сосуд имеет вид кубка с округлым туловом и высоким цилиндрическим горлом, вдоль края которого проходит утолщенный, прямоугольный в сечении венчик (рис. 7). Горло отделено от тулова скругленным валиком. Сосуд снабжен низкой цилиндрической крышечкой, украшенной сверху расположенными по кругу отпечатками дуговидного штампа. Донная часть изделия утрачена.
Сосуд был обнаружен случайно, в размыве берега Кубани, неподалеку от многослойного поселения Чишхо. Установить его связь с майкопскими напластованиями поселения невозможно. Конкретизировать комплекс, из которого он происходит, также не удается, хотя известно, что в нескольких километрах от места его находки расположен Псекупский могильник, включающий погребения майкопской культуры. В некоторых из них встречаются керамические кубки, неотличимые по форме от металлического сосуда (Кореневский, 2004. С. 177. Рис. 47, 2).
Майкопская принадлежность находки подкрепляется и составом ее металла, а точнее составом его внутренней матричной зоны, зафиксированной на установке Camebax. Согласно анализу, корпус сосуда изготовлен из низкомышьяковой бронзы (0,7 % Аз), которая по характеру примесей четко вписывается во вторую геохимическую группу майкопского металла, выделенную Е.Н. Черных по материалам Прикубанья (Черных, 1966. С. 31. Рис. 11). Однако, наружная часть сосуда уже при визуальном осмотре обнаружила свою неоднородность: по всей ее поверхности чередуются блестящие белые участки с участками красноватого цвета, характерного для низкомышьяковых сплавов. Рентгеноспектральное исследование показало, что осветленные зоны поверхности обогащены оловом и, скорее всего, связаны со слоем лужения.
Луженые сосуды отличаются эффектным серебристым блеском. Вероятно, они играли такую же престижную роль, как и сосуды из серебра. В этой связи приобретает особое значение поразительное сходство формы кубка из Адыгеи с некоторыми серебряными сосудами из большого Майкопского кургана, а также с сосудом из Старомышастовского клада (Мунчаев, 1994. С. 201. Табл. 51,3, 6. §; 52, 14). С.Н. Кореневский включает их в единую типологическую группу М-2, подчеркивая ее связь с местным металлопроизводством (Кореневский, 2004. С. 39).
Микроструктура двух шлифов, полученных поверхностной подполировкой пластинчатых срезов с тулова сосуда (шлифы 1 и 4, рис. 7), исследовалась после травления двумя разными реактивами. Один из них в виде раствора хромпика в серной кислоте выявил строение мышьяковой части поверхности сосуда (рис. 8, 1). В ее пределах хорошо видны крупные полиэдрические зерна (размер 0,06-0,09 мм), на фоне которых едва различимы сильно вытянутые в продольном направлении остаточные дендриты литой бронзы. Они фиксируют высокую степень ее деформации при кузнечной формовке тулова сосуда (70–80 %). Это наблюдение позволяет заключить, что оно было получено выколоткой из предварительно отлитого бронзового диска.
Строение окружающих полиэдры беловатых прослоек на шлифах 1 и 4 удалось обнаружить с помощью другого реактива, целенаправленно используемого металловедами для исследования полуды (Беккер, Клемм, 1979. С. 230). Этот травитель, представленный однопроцентным раствором азотной кислоты в этиловом спирте, обнаружил мелкие округлые дендриты олова, а местами крупные участки их скоплений (рис. 8, 2).
Слой полуды удалось наблюдать и на шлифах 2 и 3. Светлая полоса покрытия толщиной 0,01-0,03 мм зафиксирована до травления особенно отчетливо вдоль края шлифа № 2, выпиленного с венчика и подполированного вдоль его наружной поверхности (рис. 8, 3). После травления хромпиком слой покрытия приобрел серый цвет, он получил четкую линию раздела с основной структурой горловины сосуда, которая оказалась литой (рис. 8, 4). Крупные дендриты бронзы свидетельствуют о медленном остывании отливки, полученной по восковой модели в глиняной, сильно разогретой форме. Об использовании утрачиваемой модели говорят следы заглаживания воска на поверхности горла.
Итак, рассмотренный сосуд состоит из двух частей: литого горла и растянутого выколоткой тулова. Технологию крепления горловины к тулову удалось установить с помощью исследования зоны их стыка методом рентгеновского просвечивания. Просвечивание выполнено на установке РУП 150/300-10 при напряжении 70-120 кВ, токе 9 мА в течение двух минут. Кассету с пленкой помещали во внутреннюю часть горловины сосуда в район ее окаймления валиком, а источник рентгеновских лучей закрепляли у лицевой его части на расстоянии 1,3 м от кассеты. В результате получили контрастный снимок, восстановивший характер соединения частей сосуда. Оно производилось с помощью вытягивания и последующего наложения друг на друга краев стыкующихся деталей. Для придания большей прочности стыку соединенные края волнообразно изгибали и сваривали кузнечным способом. Удары при сварке наносили миниатюрным молоточком по наружной части основания горловины, в то время как внутри нее укрепляли опорное деревянное кольцо, мешавшее металлу расползаться в стороны.
Заключительная операция обработки сосуда была связана с лужением. Самый простой и, скорее всего, самый древний способ лужения описан Н. Миксом (Meeks, 1993. Р. 137). Образцы бронзы слегка нагревали, флюсовали канифолью и погружали в расплав олова. После высыхания полученного слоя их полировали мхом или мягкой шерстяной тканью. Наведенная таким способом полуда отличалась не только серебристым цветом, но и мелкодендритной литой структурой, аналогичной той, которую удалось наблюдать на сосуде из Адыгеи и из кургана 1 станицы Новосвободной (рис. 8, 2, 3, J, 6).
Таким образом, процесс изготовления майкопской металлической посуды был чрезвычайно сложен. Он требовал больших знаний и навыков. Возникновение традиции их производства, без сомнения, следует искать в более южных переднеазиатских районах. Для их локализации может оказаться продуктивным обозначение примеров распространения отмеченных нами редких технологий. Большинство из них, по-видимому, было освоено в Месопотамии на протяжении III тыс. до н. э. именно в связи с производством сосудов. Морфологический набор майкопских кубков, чаш, мисок нигде не находит тождества, в том числе и в Месопотамии (Müller-Кагре, 1993. Taf 172–179). Но именно здесь с урукского времени известна выколотка посуды из литых пластин мышьяковой бронзы (Müller-Karpe, 1990. S. 165). В эпоху Джемдет Наср появляются массивные кувшины, сделанные из нескольких отдельных частей: горло, тулово, дно, носик. Причем техника их соединения идентична майкопскому кубку и производится с помощью загибания и сваривания пластинчатых краев.
Рис. 9. Собачка из сплава меди с серебром (урочище Клады, к.31, п.5).
Связка частей посуды таким способом становится особенно популярной с начала раннединастического времени (первая половина III тыс. до н. э.) (Müller-Karjje, 1990. S. 162). Выразительные месопотамские параллели обнаруживает техника лужения. Исследование ряда полусферических медных сосудов из Телль Асмара (долина Диялы), хранящихся в Институте востоковедения в Чикаго, показало, что все они были покрыты оловом посредством погружения в его расплав (Potts, 1995. Р. 153). Сосуды относятся к эпохе ранних династий и датируются серединой III тыс. до н. э. Олово, имеющее дендритную структуру, зафиксировано на их поверхности с помощью оптической металлографии сотрудницей Института Барбарой Холл (Muhly, Wheeler, Madden, 1980. P. 254).
Литье по восковой модели распространяется в Передней Азии во второй половине IV тыс. до н. э. Почти одновременно оно становится популярным в Месопотамии (поздний У рук: Моогеу, 1999. Р. 256, 257), в Иране (эпоха Суз II: Talion, 1987. Р. 316), на юге Леванта (клад Нахал Мишмар: Shalev, Goren, Levy, 1992. P. 69).
В заключение обратимся к еще одному способу серебрения, освоенному майкопскими мастерами. Речь идет о методе «истощения» наружного слоя изделий из сплавов меди с серебром за счет процесса искусственно вызванной коррозии, которая растворяет медь и приводит к выходу на поверхность серебра (Hall, 1961. Р. 63). Подобный случай зафиксирован нами при металлографическом изучении фигурки собачки, найденной в одной из гробниц урочища Клады (к.31, п.5). Во всех публикациях комплекса этой гробницы отмечается, что в ней найдены две собачки: одна бронзовая, другая серебряная (Бочкарев, Резепкин, 1980. С. 98; Трифонов, 1987. С. 23; Резепкин, 1991. С. 173, 184); обе находились у головы погребенного (рис. 9, 10). Автор раскопок А.Д. Резепкин подчеркивает культовый характер этих фигурок.
Рис. 11. Микроструктура собачки из сплава меди с серебром (13 — ув. 600; 4 — ув. 1000; 1.2- до травления; 3, 4 — после правления).
Он пытается интерпретировать сюжетный смысл их присутствия в гробнице с точки зрения индоевропейских пофебальных традиций, отраженных в «Ригведе» (Резепкин, 1987. С. 31, 32). Действительно, в одном из пофебальных гимнов «Ригведы» упоминается о двух псах, которые провожают умерших к богу смерти Яме, причем они различаются мастью: одна темная, другая — светлая (Stevenson, 1920. Р. 193). В этой связи важно обратить внимание на то, что оба животных отлиты из разных по составу и цвету металлов, но технология их отливки единообразна: в обоих случаях при визуальном осмотре отчетливо фиксируется использование восковой модели. Учитывая популярность этой литейной технологии в производстве изделий, типичных для позднемайкопской металлообработки (двузубые «вилки», крюки, укороченные кинжалы с выступающим ребром жесткости и пр.), естественно предположить, что обе собачки также изготовлены в местных мастерских. К этому можно добавить, что химизм металла бронзовой собачки (Cu + 0,67 % As) ничем не отличается от второй майкопской группы мышьяковых сплавов, обозначенной Н.Н. Черных.
Другая собачка, как отмечалось выше, изготовлена из сплава меди с серебром. Это стало очевидным уже в процессе ее металлографического исследования. На поперечном срезе с хвостика собачки до травления обозначились две различные структурные зоны: наружная кольцеобразная и внутренняя округло-овальная (рис. 11, 1, 2). После травления водным раствором трехокиси хрома и сернокислого натрия во внутренней зоне выявилась двухфазная ли гая мелкодендритная структура, характерная для сплавов системы Cu-Ag, в которых составные элементы представлены в приблизительно равных количествах. В центральной части шлифа красноватые дендриты δ — твердого раствора на основе меди располагаются на белом фоне эвтектики серебро-медь (рис. 11, 3. 4). В наружной части шлифа обогащенная медью фаза подверглась коррозии, в результате которой образовались темные древовидные раковины. Очевидно, что здесь произошло «истощение» медной составляющей сплава посредством ее замещения серебром, что при поверхностном осмотре изделия и вызывает иллюзию его отливки из благородного металла.
Интересно проследить динамику изменения концентрации составляющих сплава в поперечном сечении хвостика собачки, прослеженную с помощью локального рентгеноспектрального анализа. Его результаты отражены на графике рисунка 12. Как видно из кривой, показывающей содержание серебра, в поверхностной части его количество колеблется в пределах 60–70 %. Такая картина сохраняется в слое толщиной в 5 микрон. Далее, по мере продвижения во внутреннюю часть отливки концентрация серебра резко падает и на расстоянии 7 микрон от поверхности составляет около 44 %, что соответствует его содержанию в исходном сплаве. Если оценивать кривую в целом, то можно отметать ее несимметричный характер. Это связано с неравномерностью развития процесса коррозии.
Обогащение поверхностной зоны изделия серебром сопровождается уходом из него меди. На кривой, связанной с медью, можно видеть, что в наружном слое ее присутствие колеблется в пределах 12–15 % и лишь на глубине 7–8 микрон достигает 50–53 %. Таким образом, уточняется характеристика исходного сплава: концентрация серебра составляла в нем 44 %, а меди — 53 %. Основной состав дополняется микропримесями As, Au, Zn, Ni, Co, Pb (десятые-сотые доли процента).
Удаление меди с поверхности собачки могло быть достигнуто двумя способами: 1) посредством естественной длительной коррозии сплава; 2) посредством ее искусственного осуществления в момент изготовления изделия (La Niece, 2002. P. 106). В случае с собачкой не вызывает сомнений использование второго способа. Сломанная в древности задняя ножка фигурки была восполнена при починке трубочкой, сделанной из настоящего серебра. Из этого следует, что фигурка в ее первозданном виде уже отличалась серебристым блеском.
По сведениям ряда авторов, вызвать искусственную коррозию сплавов серебра с медью, чтобы добиться ее удаления с наружной части изделия, можно разными методами. Так, согласно сообщению швейцарских исследователей, низкопробные римские сестерции, содержавшие всего 12–18 % Ag, погружали в ванну с кислотой или уксусом, после чего монеты блестели как серебряные (Равич, 1999. С. 97). Английский металловед Е. Холл отмечает, что подобного эффекта добивались древние китайские мастера, обрабатывая сплавы серебра с медью соком незрелых персиков (Hall, 1961. Р. 63). В Средней Азии в смеси соли и лимонной кислоты отбеливали поверхность кувшинов, изготовленных из сплавов меди с цинком и серебром (Михалевич, Сайко, 1975. С. 40).
Где и когда могли познакомиться майкопские мастера с подобной сложной технологией? При ограниченности накопленных на сегодняшний день химико-технологических анализов, связанных с исследованием металла раннего бронзового века Ближнего Востока, вряд ли удастся однозначно ответить на этот вопрос. И все-таки кажется перспективным обрисовать территорию, в пределах которой имели хождение подобные сплавы. Большинство изделий сходного состава происходит из «царской» гробницы, открытой в слое VI В Арслантепе в Восточной Анатолии. По мнению автора раскопок, слой синхронизируется с Амуком G в Сирии, с эпохой Джемдет Наср и периодом ранних династий в Месопотамии (Palmieri et all, 1998. P. 39–43). По радиоуглероду он датируется первой половиной III тыс. до н. э.
Наиболее интересными находками из «царской» могилы являются 28 изделий из сплавов меди с серебром. Концентрация серебра в них колеблется в пределах 23–60 %, но большинство предметов содержит около 50 % серебра (Hauptmann, Palmieri, 2000. P. 77). Из этого сплава сделаны преимущественно украшения (браслеты, бусы, диадемы). Исключением является один кинжал. Вне зависимости от состава исходного сплава, все предметы отличались ярким серебристым цветом. Металлографический анализ показал, что для получения блестящего слоя на их поверхности был применен метод «истощения», прослеженный нами на собачке. Преднамеренность его использования не вызывает сомнений: полученный в процессе искусственной коррозии обогащенный купритом слой был в заключение уплотнен с помощью специального проведенной ковки и отжига (Hauptmann, Palmieri, 2000. P. 76, 77; Hauptmann et all, 2002. P. 43).
Насколько нам известно, сплавы меди с серебром в других регионах Передней Азии встречаются в раннем бронзовом веке крайне редко. Единичные их примеры находим в Месопотамии и Северной Сирии.
Отдельные предметы, содержащие всего 1–6 % серебра в меди, происходят из Ура, но не имеют четкой даты (Hauptmann, Palmieri, 2000. P. 77). Скорее всего, в их металл серебро попало естественным путем при плавке полиметаллической медной руды. Наконечник стрелы (гарпун?), найденный в постройке позднеурукского периода в Уруке-Варке, был изготовлен из сплава, содержащего 26 % серебра и 69 % меди. Е. Перницка, опубликовавший результаты анализа, полагает, что сплав был получен преднамеренным смешением двух металлов (Pemicka, 1993. Р. 316. Abb. 17). Из сплавов меди с серебром (>10 % Ag) были выкованы пластинчатые аксессуары бронзовых фигурок из Телль Джудейде в долине Антиохии (шлемы и ожерелья трех мужских фигурок; головные уборы и воротники двух женских фигурок). Они относятся к периоду Амука G (Buchholz, 1967. An. №№ 293–299). Таким образом, на основании имеющихся материалов трудно решить, в каком месте Ближнего Востока возникла идея использования в металлопроизводстве медно-серебряных сплавов, нет ясности и в вопросе о месте появления технологии «выщелачивания» их поверхности. И все-таки очевидно, что мастер, отливший маленьких собачек, соблюдал и технологические, и сюжетно-мифологические традиции, сложившиеся в более южных районах. В.А. Трифонов установил, что сюжетной аналогией майкопским фигуркам могут служить изображения, известные по месопотамским, сузианским и иранским печатям убейдского и более позднего времени. Очень близкие майкопским парные изображения собак он обнаружил на керамических культовых предметах, найденных во дворце Мари (Трифонов, 1987. С. 23. Рис. 2). К этому можно добавить, что в коллекциях ювелирных изделий раннего бронзового века Ирана известны скульптурно исполненные фигурки собак, близкие по размерам, а иногда и по масти к собачкам урочища Клады (Сузы А; Гиссар III С: Talion, 1987. Р. 266. Fig. 31. Р. 315. №№ 1161, 1162; Jule, 1982. S. 23. Abb. 15–18,20).
Подведем итоги сделанным наблюдениям. Развитие майкопского металлопроизводства на Северном Кавказе достигло в эпоху ранней бронзы чрезвычайно высокого уровня. Неоднократно высказывалось мнение о том, что оно было стимулировано мастерами, продвинувшимися в ареал майкопской культуры с Ближнего Востока (Мунчаев, 1994. С. 213, 224; Марковин, Мунчаев, 2003. С. 78, 79; Кореневский, 2003. С. 96). Исходя из совокупности накопленных ныне данных, можно предположить, что мастера эти были связаны с весьма обширными и удаленными от Кавказа территориями. Они простирались на западе вплоть до Палестины, Сирии и Восточной Анатолии, а на востоке доходили до Южной Месопотамии и Западного Ирака. Контакты населения этой зоны с племенами Предкавказья обычно обсуждаются на уровне рассмотрения раннемайкопских материалов и решения проблемы происхождения Майкопа. Предполагается, что на рубеже IV и III тыс. до н. э. началось проникновение на Кавказ переднеазиатских этнических элементов, которые, ассимилировав местные энеолитические племена, положили начало развитию здесь новой, двуприродной (северокавказско-переднеазиатской) культуры эпохи раннего бронзового века (Мунчаев, 1994. С. 170; Андреева, 1977. С. 50–55; Кореневский, 2004. С. 90, 91). Пришлые племена принесли в Предкавказье гончарный круг, традиции изготовления «знаковой» керамики, навыки выколотки серебряных и бронзовых сосудов, навыки сложнейшего литья изделий по восковой модели.
Хочу отметить, что целиком разделяю мнение В.А. Трифонова о том, что на позднем новосвободненском этапе переднеазиатские связи майкопской культуры сохранили прежнее направление (Трифонов, 1987. С. 23). Достаточно яркие проявления этих связей мы находим не только в форме многих бытовых вещей, не только в сфере мировоззренческих представлений майкопских племен (Мунчаев, 1994. С. 225), но и в области металлопроизводства. Не вызывают сомнений переднеазиатские корни прослеженных нами редких позднемайкопских технологий обработки металла: лужения, серебрения, покрытия кинжалов мышьяком, сложнейших приемов размягчения высокомышьяковых сплавов с помощью отжигов гомогенизации. Не исключено, что группы пришлого переднеазиатского населения появлялись на Северном Кавказе многократно, на протяжении не только конца IV, но и первой половины — середины III тыс. до н. э. Вместе с ними продвигались литейщики, кузнецы и ювелиры. Осев на новых землях, пришельцы стали работать, удовлетворяя вкусы местного населения. Изготовленные ими кинжалы, сосуды и прочие предметы ничем не отличались от традиционных майкопских форм. Внешние, ближневосточные воздействия дали толчок самобытному и поразительно мощному развитию собственного металлопроизводства на Кавказе. Естественно возникают вопросы, касающиеся конкретных исходных центров и путей передвижения переднеазиатских мастеров на Кавказ, действительных причин, вызвавших этот процесс, а главное механизмов их взаимодействия с местными рудознатцами. Дать на них аргументированные ответы помогут дальнейшие металлографические исследования массовых категорий майкопского металла.
Литература
Авилова Л.И, 1996. Металл Месопотамии в раннем и среднем бронзовом веке // ВДИ. № 4(219).
Андреева М.В., 1977. К вопросу о южных связях майкопской культуры // СА. № 1.
Беккер М., Клемм X., 1979. Справочник по металлографическому травлению. М.
Бочкарев B.C., Резепкин А.Д., 1980. Работы кубанской экспедиции // АО-1979. М.
Вернадский В.И., 1955. Избранные сочинения. Т. II. Самородные элементы. М.
Галибин В.А., 1991. Изделия из цветного и благородного металла эпохи ранней и средней бронзы // Древние культуры Прикубанья. JI.
Кореневский С.Н., 2004. Древнейшие земледельцы и скотоводы Предкавказья. М.
Кореневский С.Н., Петренко В.Г., 1982. Курган майкопской культуры у поселка Иноземцево // С А. № 2.
Маркович В.К, Мунчаев P.M., 2003. Северный Кавказ. Очерки древней и средневековой истории и культуры. М.
Мерперт Н.Я., 1981. К вопросу о термине «энеолит» и его критериях // Эпоха бронзы Волго-Уральской лесостепи. Воронеж.
Михалевич ГЛ., Сайко Э.В., 1975. Технические характеристики и приемы обработки металлов по трактату 1301 г. Кашани // Сообщение ВЦНИЛКР. Вып. 30. М.
Мунчаев P.M., 1994. Майкопская культура // Археология. Эпоха бронзы Кавказа и Средней Азии. Ранняя и средняя бронза Кавказа. М.
Попова Т.Б., 1963. Дольмены станицы Новосвободной. М.
Равич И.Г., 1999. Металлографическое исследование серебряных монет из кладов Средней Азии эпохи Караханидов (XI–XII вв.) // Художественное наследие. № 17. М.
Равич И.Г., Рындина Н.В., Шемаханская М.С., 2001. Особенности формирования серебристых поверхностей на археологических объектах из металла // Исследования в реставрации. М.
Резепкин А.Д., 1987. Интерпретация росписи из гробницы майкопской культуры близ станицы Новосвободной // КСИА. Вып. 192.
Резепкин АД., 1991. Курган 31 могильника Клады. Проблемы генезиса и хронологии майкопской культуры // Древние культуры Прикубанья. Л.
Риндина Н.В., 1985. Про використання самородноï мiдi в найдавнiшiй металyprii Близького Сходу // Археологiя. № 51. Киïв.
Рындина Н.В., 1978. К проблеме классификационного членения культур меднобронзовой эпохи // Вестник МГУ. Серия «История». Вып. 6.
Рындина Н.В., 1992. О периодизации древнейшего металлообрабатывающего производства Юго-Восточной Европы (неолит-энеолит) // Вестник МГУ. Серия «История». № 6.
Рындина Н.В., 1998. Дневнейшее металлообрабатывающее производство Юго-Восточной Европы (истоки и развитие в неолите-энеолите). М.
Рындина Н.В., 2004. О закономерностях развития древнейшей медной металлургии Ближнего Востока и Юго-Восточной Европы (по данным металлографических исследований) // Добруджа. Варна. № 21.
Рындина Н.В., Дягтерева А.Д., 2002. Энеолит и бронзовый век. М.
Рындина Н.В., Конькова Л.В., 1982. О происхождении больших усатовских кинжалов // СА. № 2.
Рындина Н.В., Яхонтова Л.К., 1985. Древнейшее медное изделие Северной Месопотамии // СА. № 2.
Трифонов В А., 1987. Некоторые вопросы переднеазиатских связей майкопской культуры//КСИА. Вып. 192.
Черных Е.Н., 1966. История древнейшей металлургии Восточной Европы. М.
Braidwood R.J., Braidwood L.S., 1950. Excavations in the Plain of Antioch, I. The earlier Assemblages phases, A-J // The University of Chicago Oriental Institute Publications. Vol. LXI. Chicago.
Braidwood R.J., Burke J.B., Nachtrieb N.H., 1951. Ancient Syrian Coppers and Bronzes // Journal of Chemical Education. Chicago. Vol. 28. № 2.
Buchholz H.G., 1967. Analysen prahistoricher Metallfunde aus Zypem und den Nachbarlandern // Berliner Jahrbuch fur Vor und Frühgeschichte. Band 7. Berlin.
Budd P., 1991. A Metallographic Investigation of Eneolithic arsenical Copper Artefacts from Mondsee, Austria // Journal of the Historical Metallurgy Society. Vol. 25. № 2. London.
Budd P., Ottaway B.S., 1990. The Properties of arsenical-copper Alloys: Implications for the Development of Eneolithic Metallurgy // Archaeological Sciences. Oxford Monographs. Vol. 9. Oxford.
Coghlan H.H., 1951. Notes on the Prehistoric Metallurgy of Copper and Bronze in the Old World. Oxford.
Contenau G., Ghirshman R., 1935. Fouilles du Tepe-Giyan. Paris.
CraddockP.J., 1995. Early Metal Mining and Production. Edinburgh.
France-Lanord A., Contenson H. de, 1973. Une pendeloque en cuivre natif de Ramad // Palêorient. V. 1.
Frangipane M, 1985. Early Developments of Merallurgy in the Near East // Studi di paletnologia in onore di Salvatore in Puglisi. Roma.
GarstangJ., 1953. Prehistoric Mersin. Oxford.
Ghirshman R., 1938. Fouilles de Sialk, П. Paris.
Hall E.T., 1961. Surface-enrichment of buried Metals // Archaeomelry. № 4. London.
Hauptmann A., PalmieriA., 2000. Metal Production in the Eastern Mediterranean at the Transition of the 4th/3th Millennium: Case Studies from Arslantepe // Der Anschnitt. № 6. Anatolian Metal I. Bochum.
Heskel D., 1981. The Development of Pyrotechnology in Iran during the Fourth and Third Millennia B.C. // Ph. D. Dissertation, Harvard University. Cambrige.
Heskel D., Lamberg-Karlovsky C., 1999. An Alternative Sequence for the Development of Metallurgy: Tepe Yahya, Iran // The Coming of the Age of Iron. New Haven — London.
La Niece S., 1990. Silver Plating on Copper, Bronze and Brass // The Antiquaries Journal. Vol. LXX. Oxford.
Lubbock J., 1885. Prehistoric Times, as Illustrated by Ancient Remains and the Manners and Customs of Modem Savages. London.
Maddin R., Muhly J.D., Stech T., 1999. Early Metalworking at Çayônü // The Beginning of Metallurgy. Der Anschnitt. Beiheft 9. Bochum.
Mallowan M.E.L., Rose J.C., 1935. Excavations at Tell Arpachiyah, 1933 // Iraq. V. II.
McKerrel H., Tylecote R.E, 1972. The Working of Copper-Arsenic Alloys // Proceeding of Prehistoric Society. № 38.
Meeks N., 1993. Surface Characterization of tinned Bronze, tinned Iron and arsenical Bronzes // Metal Plating and Patination. Oxford.
Moorey P.R.S., 1982. Archaeologia and Pre-Achaemenid Metalworking in Iran: a fifteen Year Retrospective // Iran. Vol. 20.
Moorey P.R.S., 1999. Ancient Mesopotamian Materials and Industries. The Archaeological Evidence. Oxford.
Mortillet G. de, 1872. Classification des diverses périodes d l’Age de la Pierre // Comptes rendu du Congres International d’Anthropologie et d’Archéologie préhistorique. Bruxelles.
Muchly J.D., 1980. The Bronze Age Setting // The Coming of the Age of Iron. New Haven — London.
Muchly J.D., Wheeler T.S., Maddin /?., 1980. New Research on Ancient Copper and Copper Alloys // Proceedings of the 16th International Symposium on Archaeometry and Archaeological Prospects. Edinburgh.
Müller-Karpe H., 1990. Metallgefàsse des dritten Jahrtausends in Mesopotamien // Archàologisches Korrespondenzblatt. № 20. Mainz.
Müller-Karpe H., 1993. Metallgefasse im Iraq I (von den Anfangen bis zur Akkad-Zeit) // Prâhistorische Bronzefunde. Abt. II. Bd. 14. Stuttgart.
Neuninger H., Pittioni R., Siegl W., 1964. Friihkeramikzeitliche Kupfergewinnung in Anatolien // Archaeologia Austriaca. Heft 35.
Northower J.P., 1989. Properties and Use of Arsenic-Copper Alloys // Archaeometallurgie der Alten Welt. Beitrage zum Intemationalen Simposium «Old World Archaeometallurgy». Heidelberd, 1987. Bochum.
Palmieri A., Hauptmann A., Hess K., 1998. Les Objets en Métal du Tombeau Monumental d’Arslantepe de 3000 av. J.-C. (Malatya, Turquie) Il Revue d’Archeométrie. № 22. Paris.
Pemicka £., 1993. Analytisch-chemische Untersuchungen an Metallfunden von Uruk-Warka und Kis // Müller-Karpe H. Metallgefàsse im Iraq I. Prâhistorische Bronzefunde. Abt. II. Bd. 14. Stuttgart.
Philip G., Clogg P.W., Dungworth D., 2003. Copper Metallurgy in the Jordan Valley from the Third to the First Millennia B.C.: Chemical, Metallographic and Lead Isotope Analyses of Artefacts from Pella // Levant. № 35.
Piggot C., 1999. A Heartland of Metallurgy. Neolithic/Chalcolithic Metallurgical Origins on the Iranian Plateau // Der Anschnitt. Beiheft 9. Bochum.
Potts T., 1995. Mesopotamia and the East. An Archaeological and Historical study of Foreign Relations ca. 3400–2000 BC // Oxford University Committee for Archaeology. Monograph 37. Oxford.
Pulszky T. von, 1884. Die Kupferzeit Ungam. Budapest.
Ravich I.G., Shemakhanskaya M.S., 2005. On the Problem of Gomogenization and Corrosion of Copperarsenic Alloys // Metallurgy: a Teuchstone for cross-cultural Interaction. Abstracts of International Archaeometallurgy Conference. London.
Rovira S., Games P., 1993. Las primeras etapas metalurgicas en la peninsula Ibérica. Estudios metalograficos. Madrid.
Shalev S., 1988. Redating the Philistine Sword at the British Museum: a case Study in Typology and Technology // Oxford Journal Archaeology. № 7.
Shalev S., Goren J., Levy T., 1992. A chalcolithic Mace Head from the Negev Israel: technological Aspects and cultural Implication // Archaeometry. Vol. 34. № 1.
Shalev S., 1995. Metals in Ancient Israel: Archaeological Interpretation of Chemical Analyses // Israel Journal of Chemistry. Vol. 35. № 2. Jerusalem.
Smith C.5., 1968. Metallographic Study of Early Artifacts Made from Native Copper // Actes du XI Congres International d’Histoire des Sciences. Wroclaw-Varsovie-Cracovie. V. VII.
Smith C.S., 1973. An Examination of the Arsenik-rich Coating on a Bronze Bull from Horoztepe H Application of Science in the Examination of Works of Art. Boston.
TadmorM., Kedem D., 1995. The Nahal Mishmar Hoard from the Judean Desert: Technology, Composition and Provenance H Antiqot. Prehistoric, Protohistoric and Bronze Age Studies. Jerusalem. V. XXVII.
Talion E, 1987. Métallurgie susienne I. De la fondation de Suse au XVIIIe siècle avant J.-C. Paris.
Thomsen G.J., 1836. Ledetraad tit Nordick Oldkindighen. Kobenhavn.
ToblerAJ., 1950. Excavations at Tepe Gawra. Philadelphia.
Waetzoldt H., 1990. Zur Bewaffnung des heeres von Ebla // Oriens Antiquus. № 29.
Wayman M.L., Duke 1999. The Effect of Melting on Native Copper // The Beginning of Metallurgy. Der Anschnitt, Bochum.
Wertime T.A., 1964. Man’s First Encounters with Metallurgy // Science. V. 146. № 3649.
Worsaae J.J., 1843. Danmarks oltid oplyst ved Oldsager og Gravhoje. Kobenhavn.
Yalçin Ü., Pemicka E., 1999. Frühneolithische Metallurgie von Asikli Hôyük // Der Anschnitt. Beiheft 9. Bochum.
Potentials of metallography in investigations of early objects made of copper and copper-base alloys (The Early Metal Age)
N.V. Ryndina
Resume
Application of methods of optical and electronic metallography in investigations of early copper and copper-base alloys enables us to solve the questions that are far beyond the investigational field traditionally covered by the history of metallurgy. These refer to revealing the modes of metalworking developed in different cultures and production units; establishing dependence between the metalworking technology and the raw material used; analysis of the raw material from the standpoint of metallurgical processes taking place when producing it; investigation of the problem of production structure and organization, and so forth. Among the problems studied with the help of metallography of special importance is that one concerning regularities in the progress of earliest metallurgical knowledge. Over 500 microstructural analyses are discussed in the work; they form the investigational base for considering the production dynamics in the Near East and South-Eastern Europe, that is, how more and more complicated regularities can be observed in their development stage by stage from the Eneolithic to the Early Bronze Age. Special attention is paid to the metalworking technologies that permit to discriminate between the Neolithic and the Eneolithic. In conclusion the author raises the question concerning interaction of primary and secondary centres of metal production on the example of the metallographic analyses carried out on the metal samples of Maikop culture of the North Caucasus.