— Выходит, что первая атака на ядро не совсем удалась? Физики довольно легко овладели отдельными бастионами и взяли богатый трофей — ядерную энергию, — но крепость-то не пала?! А каков будет следующий штурм и есть ли общий стратегический план всей операции?

— Сражения происходят непрерывно на всех направлениях, однако генерального плана пока нет.

Составить общий план овладения тайнами ядра не так-то просто из-за необычности и недоступности тех сил, что держат оборону атомного ядра.

С момента обнаружения крошечной крепости в центре атома на Земле появилось третье поколение людей, и никто из них ни разу не пожаловался на какие-либо неприятности, которые доставило бы им незнание свойств ядерных сил. Дело в том, что они никак не проявляют себя в нашей повседневной жизни. Не то что гравитация или электричество! Но недоступные чувственному опыту силы ядра — основа куда более могучих и всеохватывающих процессов в природе.

Гравитационные поля, пронизывающие просторы космоса, формируют галактики и звездные скопления, но именно ядерные реакции зажигают эти звезды.

Бесспорно утверждение, что окружающий нас мир густо насыщен самыми разнообразными электромагнитными явлениями. Биологические, химические и многие-многие другие процессы регулируются этими взаимодействиями. Но все многообразие стабильных веществ опять-таки обеспечивают ядерные силы, сдерживающие протоны и нейтроны в атомных ядрах химических элементов.

Впервые эти могущественные силы громко заявили о себе, когда Э. Резерфорд с помощью альфа-частиц «щелкнул по лбу» атомное ядро.

Не сразу удалось физикам точно установить, кто же нанес ответный удар. И подозрение поначалу пало на старых знакомых: тяготение и электромагнитные силы. Но первая кандидатура быстро отпала. Элементарные частицы столь легки, что даже на ничтожно малых расстояниях в атомном ядре они едва-едва ощущали гравитационное притяжение друг к другу. Со второй дело было немного сложнее.

Очень чувствительное к изменению расстояния между зарядами, электромагнитное взаимодействие удесятеряет свою мощь в микромире. Обычное электростатическое притяжение удерживает вокруг положительно заряженного ядра все атомные электроны, а число их в некоторых тяжелых элементах достигает сотни.

Электростатические силы действуют и внутри ядра. Но они не могут быть цементирующей силой: все протоны, имеющие одинаковый положительный электрический заряд, отталкивают друг друга и стремятся разорвать ядро. В конце концов это и должно наступить.

Наконец непонятно было, что заставляет оставаться пленниками ядра нейтральные частицы — нейтроны. Вначале ученые предположили, что тут вступают в игру силы магнитного притяжения, но их было явно недостаточно для сцепления нейтронов с протонами.

Аргументы «против» перетягивали чашу весов, и вторая кандидатура также была признана несостоятельной.

Не оставалось ничего иного, как предположить, что в атомных ядрах распоряжались новые, неизвестные дотоле силы, которым даже электромагнитные проигрывали в отношении 1:104! И теоретикам предстояло создать теорию атомного ядра, естественно, с учетом этого отнюдь не облегчающего, а усложняющего их задачу обстоятельства.

Квантовая механика как будто могла стать хорошей основой для построения теории ядерного взаимодействия по аналогии с электромагнитным, которое мыслилось как результат обмена фотонами.

Следуя этой аналогии, а также правилам «хорошего тона», принятым в строгой теории, надо было признать, что существуют некое поле ядерных сил и частицы-кванты этого поля. Протоны и нейтроны, обмениваясь между собой этими квантами, оказываются связанными друг с другом.

К сожалению, никто не мог сразу указать на подходящий к данному случаю предмет обмена. Лишь через 15 лет после открытия нейтрона экспериментаторы обнаружили в космических лучах пи-мезон — частицу, которая могла служить переносчиком ядерного взаимодействия.

Теоретики воспрянули духом. Теперь оставалось мысленно вычленить из ядра пару нуклонов и, как на кинопленке, точно зафиксировать их манипуляции с пи-мезонами на языке формул. А там, казалось, недалеко и до генерального плана.

Подход неновый, им пользовался еще пушкинский Сальери:

Звуки умертвив, Музыку я разъял, как труп. Поверил Я алгеброй гармонию…

Но по отношению к ядру задача оказалась столь сложной, что не только алгебра — спасовала и высшая математика. С одной стороны, методы квантовой механики оказались не вполне пригодными для описания столь сильного взаимодействия, как ядерное. А с другой — выяснилось, что одни пи-мезоны не могли обеспечить достаточно тесного контакта между нуклонами.

Казалось, мезонная теория ядерных сил исчерпала свои возможности. Но в последнее время появились новые надежды. Оживление в рядах создателей теории было связано с открытием в эксперименте на ускорителях более тяжелых, чем пи-мезоны, векторных мезонов. Это были долгожданные партнеры пи-мезонов, частицы, которыми нуклоны, по-видимому, обмениваются на самых малых расстояниях. Пока количественного описания обмена этими частицами получить не удалось, но теоретики продолжают упорно работать в этом направлении.

А линия фронта ядерной физики все удлинялась. Исследования на ускорителях элементарных частиц дополнялись опытами, поставленными на ускорителях тяжелых ионов. Результаты, полученные в лабораториях, сравнивались с результатами поисков сверхтяжелых ядер в космических лучах и на дне океанов и наблюдений за астрономическими объектами галактик.

Потребность даже не в предсказании новых явлений, а хотя бы в объяснении уже известных, была чрезвычайно острой. Все поглядывали на теоретиков, ждали от них слова, надеялись, что теория вот-вот приступит к выполнению своих обязанностей. Но время шло, а теория молчала.

Физики заложили основу науки о микромире из теории относительности, квантовой механики и других фундаментальных законов и принципов. На этой основе они и должны были создать строгую, математически безупречную теорию атомного ядра.

Попытки протянуть непрерывную цепь аналитических выражений от общих физических законов до предсказания конкретных ядерных явлений не удались. И многие теоретики, махнув рукой на желанную респектабельность теории, стали искать более короткие пути к цели.

Не задумываясь о сущности механизма взаимодействия между протонами и нейтронами, они подбирали для него такие математические выражения, управляя которыми с помощью многочисленных произвольных параметров, можно было удачно описать характер взаимодействия двух нуклонов и рассчитать различные ядерные свойства.

Другой путь, тоже в обход строгой теории, проложили те, кто решил вообще не заниматься выяснением природы связей между составными элементами ядра, а сумел увидеть в нем нечто цельное — ядерное вещество. Они попытались объяснить экспериментальные результаты, исходя из самых общих его свойств.

— Неужели разумно говорить о каком-то особом ядерном веществе, словно у него есть собственный вкус или цвет?

— В некотором смысле все атомные ядра сделаны из материала одного и того же артикула.

— Но ядра же состоят из протонов и нейтронов; при чем здесь артикул?

— И все-таки ядро можно вообразить частицей вещества, отдельные качества которого действительно напоминают привычные свойства окружающих нас вещей.

Первыми, кто высказал предположение, что ядро — это кусочек своеобразного ядерного вещества, были экспериментаторы, открывшие атомное ядро.

Специализации по ядерной физике среди теоретиков тогда не существовало. Первооткрыватели работали по принципу самообслуживания: кто обнаружил новое явление, тот сам должен ставить опыты для его изучения, сам обдумывать полученные результаты.

Физики, обнаружив атомное ядро, добросовестно принялись исследовать новый объект. И прежде всего попытались получить ответы на самые простые из вопросов, приходивших в голову.

С помощью альфа-частиц, этого первого незамысловатого инструмента ядерной физики, удалось измерить электрические заряды атомных ядер. Затем, учитывая предрасположение альфа-частиц к ядерному притяжению, решили использовать их для того, чтобы узнать, какую область пространства занимает атомное ядро. Повозившись с одним-другим веществом, справедливо решили, что ядро ядру рознь; и не может, например, тяжелое ядро урана уместиться на том же крошечном пятачке, что и ядро легкого элемента. Перемерив размеры многих ядер, получили простую, но интереснейшую формулу. Словами ее можно было пересказать так: объем любого ядра пропорционален числу всех его нуклонов.

Конечно, эта скучная и сухая фраза не раскрывает, а скорее затушевывает скрытую в ней сногсшибательную новость. Но не надо слишком вдумываться в смысл полученного экспериментаторами результата, чтобы понять его так: на каждый нейтрон и на каждый протон в любом ядре приходится один и тот же объем.

Значит, можно говорить о ядерном веществе, как об особом материале, не имеющем, правда, специфического вкуса или запаха, но обладающем постоянной плотностью — свойством, которое присуще обычному веществу.

Итак, ядерное вещество — не фикция, а объективная реальность. И легкие и тяжелые ядра оказались только большими или меньшими изделиями из одного и того же материала, главное качество которого — плотность — не зависело от количества нуклонов в ядре.

Но что превращало частички ядерной материи (здесь слово «материя» употребляется как синоним слова «вещество» и неидентично философскому понятию материи) — протоны и нейтроны — в некое однородное вещество с особыми свойствами?? Может быть, изменяются в ядре сами нуклоны, как меняются крупинки муки в тесте?

Свободный нейтрон — нестабильная частица. Через 12 минут после рождения он распадается на протон, электрон и нейтрино, частицу без заряда и массы покоя. Теряя свободу, нейтрон в стабильном ядерном веществе приобретает право на столь же завидное долголетие, каким обладает свободный протон, который практически бессмертен. Положение же протона в ядерном веществе менее прочное, чем в свободном состоянии. В радиоактивном ядре он превращается в нейтрон, позитрон и нейтрино.

И все-таки изменения нуклонов в ядре не настолько радикальны, чтобы ими можно было объяснить особые свойства ядерного вещества. Мука превращается в тесто благодаря воде и энергичным рукам хозяйки. И то и другое в микромире заменяют ядерные силы. На них же падает и полная ответственность за качество «ядерного теста».

Пока теоретики ломали копья, споря о том, как происходит ядерное взаимодействие и какими частицами перебрасываются нуклоны, экспериментаторы с помощью первых мощных ускорителей постепенно узнавали главные «кулинарные» секреты создания ядерного вещества.

Направляя ускоренные протоны на мишени из водорода и тяжелого изотопа водорода — дейтерия, — физики заставили нуклоны «разговориться». И те на понятном экспериментаторам языке рассеяния (отклонения одних частиц при столкновении с другими в разных условиях) поведали кое-что о ядерных силах.

После сложной обработки множества результатов измерений ученым удалось установить некоторые главные свойства ядерных сил, которые едва обозначившемуся образу атомного ядра придали большую четкость. Каковы же эти свойства?

Во-первых, ядерные силы не делают никакого различия между протонами и нейтронами и совершенно одинаково связывают любую пару нуклонов.

Во-вторых, от гравитационного и от электромагнитного взаимодействия ядерные силы резко отличает способность к насыщению.

Нуклоны в ядрах контактируют одновременно только с несколькими ближайшими соседями и совершенно не взаимодействуют (некоммуникабельны) со всеми остальными ядерными частицами. Ядерные силы резко обрывают свое действие на расстоянии 10–13 сантиметра, что значительно меньше размера ядра, и создают крепко связанные между собой группки нуклонов. Так ядерные силы «замешивают» крутое ядерное вещество из протонов и нейтронов.

Подобное представление о ядре, опирающееся на известные из многочисленных экспериментов свойства ядерного вещества, помогло теоретикам объяснить результаты ядерных реакций и даже предсказать новые свойства ядер.

Надо заметить, что шли к этому представлению ученые по пути фантазии, догадок и интуиции. Путь этот не требовал срочной математизации ядерного взаимодействия. Надо было лишь догадаться, на что похоже ядерное вещество. Перефразируя слова выдающегося французского мыслителя Ш. Монтескье, можно сказать, что задача состояла в том, чтобы узнать подобие разных вещей и разницу подобных.

— Не представляю себе, как ядро, такой уникальный, по вашему заявлению, объект, может быть похожим на что-либо, кроме как на самого себя?

— Мы же убедились в том, что имеет смысл говорить о ядре как о кусочке вещества с определенной плотностью. Следовательно, нет ничего удивительного и в том, что однажды оно показалось теоретикам в чем-то похожим на обычную каплю воды.

— Это шутка?

— Нет. Оснований для подобной аналогии не так-то уж мало.

Ядро, воображаемое в виде капли ядерного вещества, и капля воды похожи даже внешне. Большинство ядер имеет сферическую или близкую к ней форму. Но такая же форма наиболее выгодна энергетически и для капли воды: в этом случае ее поверхность минимальна.

А заглянем внутрь этих систем! Вода — несжимаемая жидкость с определенной плотностью. Плотность постоянна и у ядерного вещества, кстати, тоже несжимаемого. Капля воды состоит из большого числа отдельных молекул; ядро — из протонов и нейтронов. Аналогия частично распространяется также на свойства связей между внутренними элементами в этих столь различных системах. Действующие между молекулами воды химические силы — единственные в природе, которые обладают тем же свойством насыщения, что и ядерные.

Подобные факты, наверное, не могут не убедить и самого заядлого скептика. «Но к чему все эти сравнения?» — спросит он.

А вот к чему. Единственная цель поисков чего-то общего между ядром и каплей состояла в том, чтобы, опираясь на эту аналогию, вычислить массу ядра, объяснить результаты ядерных реакций. То есть обойти главный недостаток ядерной физики — незнание закона ядерного взаимодействия.

Как только было доказано, что ядро аналогично капле воды, стало возможным пытаться примерять к нему и другие особенности этого макрообъекта и самую главную — поверхностное натяжение в капле.

Частицы воды, образующие поверхность капли, притягиваются внутренними молекулами и как бы стягивают эту поверхность, создавая вдоль нее натяжение. А может быть, и свойства ядра-капли тоже можно описать с помощью поверхностного натяжения?

А почему бы и нет! В этом-то и заключается изюминка капельной модели ядра!

Ядерные силы — короткодействующие. Значит, нуклоны на поверхности ядра так же испытывают притяжение со стороны внутренних частиц и тоже создают поверхностное натяжение. Следовательно, ядерные силы вполне можно представлять себе как поверхностное натяжение в ядре-капле.

С точки зрения взаимодействий между нуклонами ядро — это ринг, на котором постоянно противоборствуют электростатическое отталкивание и ядерное притяжение. Стабильное ядро — это ринг, где все раунды оканчиваются победой сил притяжения.

В теоретическом образе ядра-капли против электростатического отталкивания протонов, которое стремится разорвать каплю, выступает поверхностное натяжение.

На результат поединка эта формальная замена действия ядерных сил на поверхностное натяжение не оказывает никакого влияния, потому что новый участник, по сути дела, хорошо загримированный старый. Но физики сразу получили возможность вычислить, например, полную энергию ядра. К энергии отталкивания протонов прибавили энергию поверхностного натяжения, определять которую так же просто, как для капли воды.

Найденная по формуле А. Эйнштейна масса атомных ядер, соответствующая вычисленной энергии, неплохо согласовалась с экспериментальными значениями.

Это была первая крупная удача теории — награда за подсмотренную качественную аналогию между атомным ядром и каплей жидкости, разница в природе между которыми поистине огромна.

Плотности ядерного вещества и капли воды просто несоизмеримы: ядерное вещество в 1014 раз плотнее!

Несравнимы и величины поверхностного натяжения. Если на рамку шириной в 10 сантиметров с подвижной нижней проволокой натянуть мыльную пленку, то ее поверхностное натяжение вполне уравновесит грузик весом в один-полтора грамма. А поверхностное натяжение пленки из нуклонов, если бы ее можно было натянуть на ту же рамку, уравновесил бы груз весом не менее двухсот миллиардов тонн!

Первым, кто угадал подобие столь разных «вещей», был известный физик-теоретик Г. Гамов. Он успешно воспользовался им для создания теории радиоактивного альфа-распада. Однако триумфом этой замечательной идеи стало объяснение реакции деления ядер урана.

За 28 лет, что прошли после открытия ядра, физики приобрели некоторый опыт в общении с микромиром. И к новым ядерным реакциям, с которыми то и дело сталкивались экспериментаторы, работающие на ускорителе, относились уже довольно спокойно и сдержанно. Почему же такую суматоху и возбуждение вызвали на первых порах полученные Э. Ферми результаты в опытах с поглощением тепловых нейтронов ядрами урана? Почему ученым так трудно было решиться на то, чтобы сказать: «ядро урана разделилось на два более легких»? Ответ прост — новое явление противоречило всему, небольшому правда, опыту ядерной физики.

Два миллиона электрон-вольт требовалось для расщепления такой непрочно связанной системы из одного протона и одного нейтрона, как ядро тяжелого изотопа водорода — дейтерия. А в более тяжелых ядрах на отрывание одной частицы надо было затратить энергию в три или четыре раза большую. Первый же ускоритель протонов, запущенный в 1931 году в лаборатории Э. Резерфорда, разгонял частицы всего лишь до энергии в один миллион электрон-вольт.

Снарядом такой малой мощности расщепить очень тяжелые ядра, и в частности ядра урана, не приходилось и мечтать. И вдруг почти без всяких затрат энергии, «бесплатно», ядро урана ни с того ни с сего расщепилось на две части. Как мог один-единственный медленный нейтрон, присоединившийся к 250 нуклонам ядра урана, привести его к катастрофе?

Известный советский физик-теоретик Я. Френкель, ученый, которому в большой степени был присущ образный подход к описанию физических явлений, обратил внимание на то, что основные особенности деления урана можно понять, если вновь воспользоваться аналогией с поведением капли воды.

В народе говорят, что трясогузка весной хвостом лед на реке разбивает. Конечно, когда все готово к началу ледохода, «поможет» и трясогузка.

Нейтрон, поглощенный ядром урана, приносит в ядро дополнительно всего 8 миллионов электрон-вольт энергии. Эта энергия ничтожна по сравнению с той, что содержится в самом ядре, но она нарушает условия поединка двух могущественных противников — электромагнитного отталкивания и ядерного притяжения, и раунд заканчивается победой отталкивания.

Нечто аналогичное делению ядра происходит в определенных условиях и с каплей воды или другой несжимаемой жидкости.

Если каплю воды, взвешенную в масле, слегка деформировать, то, несколько растянувшись поначалу, она опять вернется к исходной форме шара. Более сильное воздействие может растянуть каплю настолько сильно, что в конце концов она разорвется пополам. А тяжелое ядро урана-235 никогда не имело идеальной сферической формы. Победа ядерным силам давалась с большим трудом и готова была смениться поражением. 8 миллионов электрон-вольт, подаренные ядру тепловым нейтроном, как удар по ядерной капле, усиливали ее деформацию. Капля приобретала продолговатую форму, и электростатическое отталкивание на концах капли начинало преобладать над силами притяжения. В ядерной капле появлялась перетяжка, и ядро делилось на две части.

Известный датский физик-теоретик Н. Бор со своим сотрудником Дж. Уиллером на основе капельной модели ядра создали теорию деления урана. Вооруженные капельной моделью, теоретики решились даже на предсказание нового ядерного явления. Если ядро урана делится пополам только из-за того, что дополнительный нейтрон усиливает его деформацию, то оно вполне может разделиться и само по себе. Даже случайная перегруппировка движущихся нуклонов может стать причиной развала ядра урана. И предсказание оправдалось!

Молодые советские физики К. Петржак и Г. Флеров вскоре обнаружили, что ядра урана действительно способны к самопроизвольному делению.

Образ ядра-капли полонил воображение ученых. Первые успехи окрыляли, вселяли надежду на объяснение и других свойств атомных ядер. Но прошло некоторое время, и обнаружились слабые стороны капельной модели ядра.

— Видимо, физики слишком понадеялись на сходство ядра с каплей воды?

— Точнее сказать, теоретики пытались «выжать» из капельной модели больше того, что она могла дать. Например, эта модель, как выяснилось, неспособна объяснить «магические» числа нуклонов.

— Неужели в образовании ядер участвуют не только ядерные силы, но еще и магия?

— Экспериментаторы обнаружили такие свойства ядер, которые позволили теоретикам представить эти объекты совсем иными, совершенно непохожими на каплю ядерного вещества.

Знаменитые мистификаторы позавидовали бы богатым возможностям ядерных сил морочить физикам головы. Я. Френкель говорил, что «…физик-теоретик подобен художнику-карикатуристу… Хорошая теория сложных систем должна представлять лишь хорошую „карикатуру“ на эти системы, утрирующую те свойства их, которые являются наиболее типическими…»

Изображение ядра в виде капли жидкости как нельзя более отвечало этим требованиям. Казалось, что ничего лучшего создать и невозможно. Капельная модель ядра освобождала физиков от забот, связанных с необходимостью каким-то образом фиксировать состояния отдельных ядерных нуклонов. Можно было забыть о них и о треклятых ядерных силах. Удачно найденная модель разрешала вообще не задумываться над проблемой внутренней структуры ядра. Действительно, в несжимаемом ядерном веществе, имеющем огромную плотность, непрерывно сталкивающиеся нуклоны должны были так сильно взаимодействовать друг с другом, что понятие «состояние нуклона в ядре» теряло всякий смысл.

Однако на одну и ту же натуру каждый художник смотрит по-своему. Один и тот же пейзаж воплощается в совершенно разные картины. Трудно было ожидать, что и ядро всем физикам представится в одном и том же свете. Несмотря на то, что первая «карикатура» на него многими была признана изумительно точной, кое-кто думал иначе.

Уже через 2 года после возникновения идеи о ядре-капле американский физик Бартлетт предложил свой оригинальный набросок, свое видение ядра. К сожалению, это было сделано не вовремя. Успех, выпавший на долю капельной модели в объяснении альфа-распада и реакции деления ядер урана, сделал всех просто неспособными обратить серьезное внимание на предложенную новую картинку.

Возможно, восприятию ее мешало одно существенное обстоятельство. В новой модели нейтроны и протоны размещались в ядре не равномерно, а, наоборот, в каком-то определенном порядке — группировались по особым оболочкам.

Подобное построение ядра казалось чрезвычайно искусственным и не соответствующим действительности, а модели Бартлетта, которая была названа оболочечной, не удалось завоевать сердца физиков ни через год, ни через два; они были отданы другой…

В течение 16 лет «карикатура» Бартлетта считалась злым шаржем и покрывалась пылью на полках «запасника». Но со временем все чаще и чаще на нее приходили взглянуть… экспериментаторы.

Дело в том, что от случая к случаю они получали такие результаты, которые могли охладить пыл самых ревностных почитателей модели жидкой капли.

Опустив в карман пять монеток по десять копеек, каждый может утверждать, что у него есть полтинник. Следуя этой привычной логике, естественно было ожидать, что и магнитные, и механические моменты количества движения всех ядерных нуклонов тоже складываются. Но вычисления приводили к несуразностям. Измеренные на опыте магнитный и механический моменты количества движения атомных ядер не имели ничего общего с предполагаемыми значениями.

Ученые искренне считали, что простое сложение моментов нуклонов согласуется с моделью жидкой капли, а оказалось, что вопрос о величине механического и магнитного моментов ядра невозможно решить, используя эту модель. Вот тогда-то бартлеттовская «карикатура» на ядро и показалась физикам уже гораздо симпатичнее, чем раньше. Они подумали: что, если затруднения в определении величин магнитных и механических моментов ядер связаны с тем, что протоны и нейтроны не теряют в ядре свою индивидуальность, и, следовательно, имеет смысл говорить о состоянии отдельного нуклона? Возможно, ядро имеет и внутреннюю структуру, благодаря которой магнитные и механические моменты нуклонов оказываются определенным образом ориентированными относительно друг друга!

В начале 50-х годов накопилось столько несогласующихся с капельной моделью экспериментальных фактов, что к этому времени она всем стала казаться далеко не всемогущей. Обнаружили, что ядра, содержащие 2, 8, 20, 28, 50, 82 и 126 протонов или нейтронов (эти числа прозвали в шутку «магическими»), обладают особыми свойствами. Они, эти ядра, отличаются особой устойчивостью по сравнению с другими. Но рекордсменами устойчивости являются владельцы дважды магических чисел нуклонов. Например, изотопы гелия-4 (два нейтрона и два протона), кислорода-8 (восемь протонов и восемь нейтронов), свинца-82 (82 протона и 126 нейтронов) и некоторые другие. Элементы, ядра которых содержали магические числа нуклонов, оказались распространенными в солнечной системе.

Но самым примечательным было подмеченное учеными периодическое изменение и повторение некоторых свойств у тех ядер, которые имели число нуклонов, близкое к магическому. Тут уж сама собой напрашивалась аналогия между внутренним устройством ядра и строением самого атома.

Повторение химических свойств элементов в периодической системе связано с периодическим заполнением электронами все новых и новых оболочек. И атомы с заполненными оболочками наиболее устойчивы в химическом отношении (например, инертные газы). А что, если и магические числа нуклонов соответствуют количеству мест в нуклонных оболочках ядер?

Недолго думая, физики торжественно вытащили на свет божий оболочечную модель и немало подивились тому, что очевидное ее сходство с оригиналом не вызывает никаких сомнений, а теоретики немедля принялись развивать, подчищать и уточнять основные детали этой идеи оболочечного строения ядра. За обоснование и глубокую разработку нового взгляда на ядро немецкие физики М. Гепперт-Майер и И. Йенсен и были удостоены в 1963 году Нобелевской премии по физике.

В рамках этой модели считается, что протоны и нейтроны движутся в ядрах по определенным орбитам. И в том ядре, где число нуклонов совпадает с магическим, предполагают физики, как раз и заполняется очередная оболочка. Так проявляют себя «волшебники» — ядерные силы.

Но физики и здесь умудрились замаскировать ядерные силы под некое усредненное силовое поле, которое управляет нуклонами. Подобно тому как гравитационное поле Солнца управляет планетами, а электромагнитное поле ядра — атомными электронами.

Новое представление о поведении нуклонов позволило, наконец, впервые правильно вычислить магнитный и механический моменты ядер и объяснить некоторые другие свойства.

Этот успех привел к реабилитации понятия «состояние отдельного нуклона» и подтвердил тот факт, что протоны и нейтроны движутся в ядре в какой-то степени независимо друг от друга.

Но никто из авторов разных моделей ядра и не заикнулся об отмене сильного взаимодействия между протонами и нейтронами. Как же можно было говорить о каких-то орбитах нуклонов внутри невероятно плотного ядерного вещества?

Этот вопрос, абсолютно корректный по отношению к макрообъектам, оказывается чересчур прямолинеен и даже неуместен по отношению к объектам микромира.

К сожалению, понятий, адекватно отражающих то, что происходит в мире ядер, нет в нашем языке. Словосочетания «сильно взаимодействуют» и «не взаимодействуют», которыми за неимением более подходящих пользуются физики, выражают только отдельные моменты, выхваченные из свойственной представителям микромира особой, квантовой манеры поведения.

Конечно, протоны и нейтроны взаимодействуют друг с другом сильно, иначе, как легко догадаться, им никогда не создать крепко связанной системы — ядра. И капельная модель, не обращающая внимание на состояние отдельных нуклонов, всячески подчеркивала эту особенность ядерного вещества.

По оболочечной же модели ядерный коллектив нуклонов существует в раз и навсегда заданном мирке определенных квантовых отношений. И строгие законы этого мира, в частности принцип Паули, запрещают даже двум одинаковым частицам находиться в одном и том же состоянии.

Получается заколдованный круг. С одной стороны, нуклоны должны взаимодействовать друг с другом (и сильно!), чтобы создавать крепко связанные, прочные ядра. С другой — ядерные протоны и нейтроны не могут общаться между собой, потому что в результате любого контакта «кто-то теряет, а кто-то находит» энергию, и обе взаимодействующие частицы обязательно должны перейти в другие квантовые состояния. Но какие? Свободные места в ядре есть только на верхних оболочках, а более глубоко лежащие орбиты с меньшими энергиями никогда не пустуют. Куда же деваться той частице, которая при столкновении теряет энергию, оказывается в положении потерпевшей?

Вот и приходится считать протоны и нейтроны независимыми. Обреченные благодаря удачной маскировке ядерных сил на одиночество в плотной ядерной толпе себе подобных, нуклоны в то же время приобретают право на длительное перемещение по своим индивидуальным орбитам.

Два столь разных представления о ядре, по сути дела, непротиворечивы. И ядро-капля ядерного вещества, и идея об оболочечной структуре отражают вполне реальные, но противоположные черты в поведении этой уникальной системы из элементарных частиц.

— Не ядро, а прямо двуликий Янус!

— Увы, — крошечная сердцевина атома скорее напоминает «человека с тысячью лиц».

— Как же физики разбираются во всех этих «лицах»?

— Теоретики, как заправские модельеры, подбирают, а если не окажется подходящей, то создают новые модели для атомных ядер.

Атомные ядра в каждой конкретной ядерной реакции как будто проявляют себя с какой-то одной стороны. Тяжелые своим поведением напоминают каплю вязкой, несжимаемой жидкости, а более легкие демонстрируют независимость своих нуклонов друг от друга. Но детальное, глубокое исследование ядерных реакций опровергает это поверхностное впечатление. В ядре-капле часто проступают черты, определяемые оболочечной структурой. И наоборот, независимые нуклоны участвуют в коллективных движениях.

Теоретическое представление о ядре должно было отразить обнаруженное экспериментаторами единство двух противоположных черт.

Кажется, это так же трудно, как увидеть человека одновременно в фас и в профиль. Но портреты итальянского художника А. Модильяни убеждают нас в обратном. И для объяснения отклонения формы тяжелых ядер от сферической физикам удалось создать новую, обобщенную, модель атомного ядра, удачный синтез капельной и оболочечной моделей.

Уже говорилось, что деформация заметно меняет условия поединка сил внутри атомного ядра. Выявить, а тем более правильно вычислить величину искажения формы, на которую ядро расходует всего лишь несколько тысячных долей от своей полной энергии, так же сложно, как подметить элементы былой стройности в фигуре располневшего человека. Тем не менее с помощью оболочечной модели можно рассчитать, в какой степени искажают форму нуклоны, перемещающиеся на внешней незаполненной оболочке и оказывающие несимметричное давление на поверхность ядра. А по капельной модели — объемные и поверхностные колебания ядерной жидкости, производимые коллективными действиями всех крепко сцепленных друг с другом нуклонов.

Ядра с заполненными оболочками имеют идеально сферическую «фигуру» и не знают, что такое деформация. Однако форма большинства не очень легких ядер далека от идеальной. Как же связать деформацию ядра, возникающую от воздействия внешних нуклонов с коллективными колебаниями всех остальных протонов и нейтронов?

Можно представить, что любое тяжелое ядро состоит как бы из двух неразрывно связанных частей. Одна часть — это капля сферической формы с заполненными оболочками, а другая — это несколько нуклонов на внешней незаполненной оболочке.

Чем сильнее число внешних частиц отличается от ближайшего магического, тем больше они деформируют поверхность капли. Эта деформация тут же сказывается на состоянии внешних протонов и нейтронов, потому что меняется то усредненное поле сил, которое создают все нуклоны капли.

Так впервые удалось увязать свойства отдельных нейтронов и протонов с их коллективными движениями в ядре. И сразу же получили объяснение многие экспериментальные результаты. В частности, выяснилось, что порядок заполнения оболочек в тяжелых ядрах зависит от состояния всей его системы нуклонов в целом.

Обобщенная модель атомных ядер и сегодня пользуется большой популярностью у теоретиков. За ее создание совсем недавно, в 1975 году, Дж. Рейнуотер, О. Бор и Б. Моттельсон были удостоены Нобелевской премии.

Но ядро — этот удивительно многоликий объект микромира — зачастую проявляет себя с такой необычной стороны, что и с помощью этой модели невозможно объяснить все нюансы в его поведении. И теоретики вынуждены были создавать бесконечные вариации уже известных моделей, в которых учитывались бы дополнительные взаимодействия между нуклонами, и искать все новые и новые подходы к объяснению необычных экспериментальных фактов. Например, ядро сравнивается с различными макроскопическими системами. И не только с такими, скажем, как жидкость, газ или кристалл, но и с таким необычным состоянием вещества, в каком пребывает гелий при сверхнизких температурах.

Более 60 лет физики тщательно изучают «лики» атомных ядер. Но до сих пор единого портрета, передающего все своеобразие этой трудно уловимой для художника-теоретика натуры, сделать не удалось. Единой теории ядра и сейчас еще не существует.

Профессор Я. Смородинский сказал, что «ядро представляет собой очень сложную систему, с которой придется еще много повозиться, пока станут ясными хотя бы основные закономерности».

А пока эти закономерности не прояснились, исследователи вынуждены использовать широкий набор приближенных представлений о ядрах. В этом смысле, как остроумно заметил кто-то из физиков, Храм науки можно было бы назвать Домом моделей.

Сейчас качественное объяснение в рамках той или иной модели получают практически все факты, добываемые экспериментаторами, но количественные соотношения установить удается довольно редко. Да и они еще ни о чем не говорят. По свидетельству самих теоретиков, удачно подобранной формулой с 5 параметрами всегда удается описать 50 произвольно заданных чисел с 5-процентной точностью. Сегодня теория только объясняет то, что делает эксперимент, редко правильно интерпретирует результаты и еще реже отваживается на какие-либо предсказания. Лидером в ядерной физике по-прежнему остается эксперимент.

Некоторые теоретики, правда, надеются, что, как только будут правильно заданы силы, действующие между двумя нуклонами, они смогут описать и все свойства ядерной материи.

Однако может оказаться, что выполнение этого условия относительно ядерных сил будет недостаточным для решения всей проблемы атомного ядра. Ведь не удалось же воссоздать свойства простейшей клетки на основе законов молекулярной биологии!

Другие полагают, что точное описание взаимодействия двух нуклонов, особенно при малых расстояниях между ними, в принципе невозможно, и подтверждение этому находят в экспериментах по рассеянию протонов на протонах и нейтронах.

Ну что ж, ситуация вполне научная, ибо, как сказал известный советский физик П. Капица: «Там, где кончаются сомнения, кончается наука».