— Получается, что, когда по атомному ядру бьют снарядами больших энергий, из него сыплются разные частицы и всякого рода сведения. А можно ли стукнуть по ядру так, чтобы ни одна частица не вылетела из него?
— Проще простого.
— Что же с ним произойдет? Расколется ли оно, как орех от удара, или, может быть, зазвенит как-нибудь ни свой лад?
— Второе предположение ближе к истине. Ядро действительно будет вибрировать, как выведенная из равновесия струна, до тех пор, пока не вернется в первоначальное состояние.
Все сущее в природе неизменно следует единому стереотипу, навязываемому вторым законом термодинамики. И гигантская звезда, и невидимый атом одинаково упорно стремятся иметь минимальную энергию. Атомные ядра тоже предпочитают более спокойное положение владельцев самым минимальным запасом энергии. Но подчас и им навязывается дополнительная порция энергии, например, в ядерной реакции или при радиоактивном распаде, когда дочернее ядро получает энергию в наследство от родительского. Такие ядра физики называют возбужденными.
Слово «возбужденный», которое физики вынуждены применять по отношению к ядру, не передает всего своеобразия одного из сокровеннейших процессов в том мире, где безраздельно властвуют квантовые законы.
Один из красивейших гейзеров Камчатки невозможно увидеть в любое время. Либо он бездействует, либо выбрасывает на большую высоту струю воды и пара.
И в микромире, где энергия всегда передается определенными порциями, нет промежуточных градаций. Ядро или находится в основном состоянии с минимальной энергией, или в возбужденном.
Атомное ядро обладает высокой плотностью энергии. Это энергия связи нуклонов и их кинетическая энергия, на постоянном фоне которых формируется вещество ядерной капли.
Насыщение дополнительной энергией приводит в действие какие-то новые пружины сложнейшего механизма ядерных сил. Вот почему возбужденное ядро представляет собой очень интересный объект исследования.
Сплав, который идет на изготовление космических кораблей, инженеры подвергают специальным испытаниям для определения запаса прочности и выявления изменений в структуре.
А как себя ведет насыщенный энергией ядерный сплав из протонов и нейтронов? Какие изменения возникают в ядерном веществе на пределе прочности?
И экспериментаторы и теоретики пытаются выяснить: приходит ли в движение вся ядерная «капля», или только один из нуклонов перескакивает на более высокую оболочку?
Наблюдая за первыми ядерными реакциями, экспериментаторы убедились в том, что атомные ядра поглощают не любые, а вполне определенные порции энергии. Природа наделила каждый тип ядер сложнейшей схемой запасных состояний, или уровней, на случай приобретения дополнительной энергии.
Зная, в какой именно реакции участвовало ядро, можно вычислить полученный им избыток энергии, момент количества движения в новом состоянии. Нетрудно установить и другие параметры возбужденного уровня. Но гораздо сложнее выяснить, какие конкретно изменения произошли в ядерном веществе.
Когда ядро получает порцию энергии меньше энергии связи одного нуклона, то, естественно, ядерный коллектив нуклонов не теряет ни одного из своих членов. В положенный момент времени ядро возвращается в нормальное состояние, испуская гамма-квант с той же энергией, что досталась ядру по распределению в ядерной реакции или перешла от родительского ядра при бета-распаде.
Но что происходило в ядре в течение тех немногих мгновений, когда избыточная энергия находилась в его полном распоряжении?
Ядерная система нуклонов, получившая добавочную порцию энергии не более одного миллиона электрон-вольт, чаще всего, как выяснили экспериментаторы, использует ее только на коллективные движения ядерной материи. Они могут быть самыми разнообразными: это и вращение ядра-капли, и колебание его поверхности. В эти моменты капля ядерного вещества, по-видимому, может принимать самые причудливые очертания и походить то на дыню, то на грушу и даже на сферу с буграми.
Сложное ядро, состоящее из десятков или сотен нуклонов, имеет гораздо больше степеней свободы, чем например, воображаемая конструкция из многочисленных легких шариков, соединенных между собой тончайшими упругими пружинками. Даже легкий толчок заставит шарики описывать самые замысловатые траектории. Очень трудно найти порядок, которому подчиняется движение всех шариков вместе и каждого в отдельности. Столь же нелегко разобраться и в закономерностях возникновения той или иной формы общего движения нуклонов.
Тем не менее физики четко установили, в каких именно ядерных реакциях образуются ядра с тем или иным типом возбуждения.
Вращающиеся возбужденные ядра, например, всегда возникают в тех случаях, когда ускоренная заряженная частица, задевая за край ядра-мишени, заставляет ее вращаться, как юлу. В последнее время в реакциях с тяжелыми ионами, которые своим мощным электрическим полем чиркали по поверхности ядер, удавалось получать возбужденные ядра с очень высоким угловым моментом вращения.
Целая армия специалистов по ядерной спектроскопии (так называется область исследований возбужденных ядер) занимается сейчас выяснением природы и сортировкой обнаруженных в опытах многочисленных ядерных уровней. Теория помогает из огромной массы возбужденных состояний выделять группы, связанные с вращением ядра или с колебаниями его поверхности.
До самого последнего времени эксперимент и теория мирно шли рука об руку, и казалось, ничто не угрожало их взаимному согласию. Но совсем недавно новую загадку предложила реакция взаимодействия пи-мезонов с ядрами.
На Международной конференции по физике высоких энергий и структуре ядра, которая проходила в 1975 году в американском городе Санта-Фе, одним из наиболее интересных было сообщение о неожиданном результате, впервые полученном большим интернациональным коллективом сотрудников Лаборатории ядерных проблем ОИЯИ, а чуть позже в Швейцарском институте ядерных исследований. При торможении пи-мезонов в веществе-мишени экспериментаторы обнаружили возбужденные ядра в совершенно невероятном для данной ситуации состоянии.
По мнению физиков, исследование ядер с помощью пи-мезонов всегда напоминает схватку с многоголовым мифическим существом — Гидрой, у которой вместо одной отрубленной головы вырастают две новые, ибо каждый новый эксперимент по поглощению пи-мезонов ядрами больше ставит проблем, чем решает.
Так было и на этот раз. Атомные ядра мишени, находящейся в пучке отрицательно заряженных пи-мезонов с малой энергией, как обычно, захватывали эти частицы с соблюдением пи-мезоатомного церемониала, то есть с очень малыми угловыми моментами. А потом с парами происходило что-то непонятное: мгновенно освободившись от нескольких нейтронов, ядерная капля приходила в быстрое вращение. Каким же образом удается пи-мезону закрутить так сильно ядро, не обладая необходимыми для совершения этой операции качествами?
Не имея пока поддержки от теоретиков, экспериментаторы строят разные предположения относительно того, что могло бы означать их неожиданное открытие. Возможно, большую угловую скорость всему ядру передают самые периферийные нуклоны, вращающиеся быстрее тех, которые, как мы уже знаем, и поглощают мезоны в пи-мезоатомах.
Возбужденное атомное ядро не всегда тратит полученную энергию, так сказать, на проведение внутренних мероприятий, требующих непременного участия всех нуклонов. Иногда вся порция энергии целиком передается лишь одному протону или нейтрону, которые могут перейти на другую, незанятую оболочку. В этом случае говорят об одночастичном возбуждении ядра.
И колебательные, и вращательные, и одночастичные уровни атомных ядер часто расположены вперемешку по шкале энергии. И ядро в необходимый момент выбирает то или другое из запасных состояний в зависимости от условий, при которых ему достается дополнительная энергия.
Но физики давно заметили, что некоторым ядрам для перехода в одночастичное возбужденное состояние требуется энергии больше, чем для перехода на колебательные или вращательные уровни. Только начиная с порции энергии, превышающей примерно полтора миллиона электрон-вольт, эти ядра могли использовать ее на изменение состояния отдельных нуклонов.
С чем же связано существование этой таинственной запретной зоны по энергии до первого одночастичного возбужденного состояния ядра?
Даже мало-мальски вразумительного объяснения этому обстоятельству нельзя было дать ни с помощью капельной модели, ни с позиции оболочечной. Лишь значительно позже выяснилось, что энергетическую щель между основным и первым возбужденным одночастичным уровнями создавали сверхпроводящие свойства атомных ядер.
При низкой температуре сверхпроводимость металлического проводника обеспечивается электронами проводимости, связанными в пары колебаниями кристаллической решетки. Небольшие колебания ядерного вещества в основном состоянии дополнительно (помимо ядерных сил притяжения) склеивают между собой пары нуклонов. Ни одна частица ядра не может перейти на другую оболочку, предварительно не освободившись от влияния своей соседки. Ширина энергетической щели как раз и равна энергии, необходимой для разрыва этой связи между нуклонами.
— Не может ли возбужденное ядро застрять на своем уровне?
— Представьте себе, может. Обычно ядра, разряжаясь, быстро возвращаются в нормальное состояние. Но иногда они неожиданно надолго застревают в возбужденном состоянии.
— Значит, получаются какие-то новые ядра?
Ф. Содди, молодой английский химик, который вместе с Э. Резерфордом исследовал радиоактивные вещества в университете Монреаля, первый понял, что мир атомов гораздо разнообразнее мира химических элементов.
Примерно в то время, когда Э. Резерфорд обнаружил атомное ядро, Ф. Содди открыл изотопы — разновидности известных химических элементов, отличающиеся только атомными весами. Как выяснилось намного позже, ядра изотопов имели разное число нейтронов.
Сопоставляя химические и физические свойства веществ, Ф. Содди пришел к мысли, что даже изотопы не исчерпывают всего многообразия атомов, что наверняка существуют еще более похожие, но все-таки разные кирпичики материи.
Атомы «изотопов высшего порядка», как назвал их ученый, должны были, по его мнению, отличаться только радиоактивными свойствами. Но среди тех немногочисленных радиоактивных веществ, что были известны физикам в 1917 году, никто не мог обнаружить изотопов какого-то высшего порядка; и гипотеза Ф. Содди не получила подтверждения. Лишь четыре года спустя немецкий ученый О. Ган, тот, что впоследствии открыл реакцию деления ядер урана, нашел вдруг два вещества, ядра которых действительно имели одинаковые электрический заряд и массу. Каждое из этих радиоактивных веществ состояло из особой разновидности атомов одного химического элемента — протактиния. Два типа атомов протактиния отличались только радиоактивными свойствами: имели разное время жизни.
Это и были предсказанные Ф. Содди «изотопы высшего порядка», или, как сказали бы сегодня физики, изомерная пара. Атомные ядра одного изотопа протактиния находились в основном состоянии, а другого — застряли в возбужденном.
Теоретики ничего не могли сказать по этому поводу, так как не имели тогда еще ни одной модели ядра и не знали, из чего оно состоит. В такой ситуации им проще было не придавать значения находке О. Гана. Полная неопределенность в вопросе об изомерах царила вплоть до открытия искусственной радиоактивности.
В 1935 году, когда во многих лабораториях полным ходом шли работы по получению новых изотопов, советские физики И. Курчатов, Л. Мысовский, Л. Русинов и Б. Курчатов обнаружили новую изомерную пару ядер.
И. Курчатов и его сотрудники проводили эксперименты по исследованию свойств радиоактивных атомов брома, которые возникали при облучении стабильных ядер нейтронами.
Мишень, состоящую из смеси двух изотопов брома, экспериментаторы подносили сначала к источнику нейтронов, а затем к счетчику для регистрации радиоактивного излучения. И в каждой серии измерений прибор неизменно фиксировал три сорта нестабильных атомов с тремя разными временами жизни. Но два стабильных изотопа брома, находящиеся в мишени, могли превратиться только в два же новых, радиоактивных. А как возникал третий?
Об ошибке не могло быть и речи. Эксперимент был настолько прост, что придраться было решительно не к чему. Да и тщательные химические проверки подтверждали несомненную принадлежность всех трех радиоактивных веществ именно химическому элементу брому.
Поистине достойна восхищения широта мысли и интуиция Ф. Содди, который сумел на два десятилетия раньше предвидеть подобное недоразумение. Опираясь на гипотезу об «изотопах высшего порядка» и существующие в природе два типа атомов протактиния, физики внесли существенное дополнение к заключению химической экспертизы. Бром, как ему и полагалось, имел только два радиоактивных изотопа. А третья обнаруженная экспериментаторами разновидность ядер брома состояла из изомеров его более легкого изотопа.
Изомерное ядро брома-80 оказалось вторым в длинном списке необычных возбужденных ядер. От обычных ядер, вынужденных временно находиться в состоянии с повышенной энергией, изомеры отличаются только бóльшим временем жизни.
Возбужденное ядро, быстро спускающееся в основное состояние по ступенькам уровней энергии, иногда вдруг резко тормозит на одной из них. Вынужденная остановка может затянуться от долей секунды до нескольких дней и даже месяцев. Это и есть изомерный уровень, переход с которого квантовыми правилами запрещен.
Только с помощью модели оболочек физикам удалось разобраться в особенностях изомерного состояния. В столь неопределенном положении ядро оказывается всякий раз, когда нуклон, захвативший всю добавочную энергию, попадает на оболочку, близкую к поверхности. Он начинает с такой скоростью двигаться по орбите, что сильная инерция мешает ему перейти к более медленному движению, какое он имел на исходной нижней оболочке. С наибольшей вероятностью это происходит с ядрами, у которых число нуклонов приближается к магическим — 50, 82 и 126. Вблизи заполненных оболочек образуются своего рода островки изомерных ядер.
Явление изомерии атомных ядер — прямое доказательство оболочечной структуры ядерной материи.
В 1962 году группа физиков Лаборатории ядерных реакций ОИЯИ обнаружила совершенно новый тип изомерных ядер у некоторых тяжелых химических элементов. Вокруг этого открытия до сих пор не затихают споры между теоретиками.
Ядерные капли с большим количеством нуклонов подвержены случайным изменениям формы — деформации. Даже небольшая деформация может так нарушить равновесие между ядерными силами притяжения и электростатическим (кулоновским) отталкиванием между протонами, что капля-ядро самопроизвольно разделится на две части. Скажем, ядрам каждого трансуранового элемента свойственна определенная степень деформации и соответствующая ей вероятность деления. Но вот экспериментаторы с удивлением заметили, что среди искусственно полученных изотопов делящихся элементов встречаются ядра, у которых это событие происходит с вероятностью в 1026 раз большей. Эти новые «подвиды» атомов известных элементов имели одинаковую массу и разное время жизни. Несомненно, это были изомеры какой-то необычной природы.
Возбужденное ядро делящегося элемента не может быстро вернуться в нормальное состояние, испуская гамма-квант. И если бы ему были несвойственны другие способы распада, оно ничем не отличалось бы от ядер обычного изомера. Но тяжелые изомерные ядра чрезвычайно успешно использовали для разрядки реакцию деления. Поэтому время жизни этих возбужденных ядер намного меньше, чем в основном состоянии.
Столь большая способность к делению изомерных ядер требовала четкой теоретической интерпретации. Наиболее естественное объяснение заключалось в том, что форма делящихся ядер гораздо сильнее отличается от сферической в изомерном состоянии, чем в основном.
Изомерия формы — так назвали это явление — предоставляет ученым интересные возможности исследовать состояние ядерного вещества вблизи границы устойчивости по отношению к деформации.
— Можно лишь удивляться тому, как точно физики объясняют, на что именно похоже атомное ядро. А знают ли они, на что похожи «перегретые» ядра, о которых говорилось раньше? Неужели и в нагретом виде ядра — эти объекты «не от мира сего» — похожи на пресловутую каплю?
— Да. Ядро, насыщенное дополнительной энергией, напоминает каплю нагретой жидкости. Можно даже говорить об испарении нуклонов из кипящего ядра.
Герои произведений Ф. Достоевского часто рассуждают и действуют в состоянии крайнего возбуждения, в моменты предельного нравственного напряжения раскрываются самые глубокие причины совершаемых ими поступков.
Ученые хорошо понимают, что им никогда не докопаться до общих законов, управляющих динамикой и структурой ядерного вещества, если они не будут исследовать поведение ядра в предельных условиях, и в частности при очень сильных возбуждениях или «перегреве».
Априори можно сказать, что ядро, получившее энергию, большую энергии связи нуклона, обязательно потеряет одну или несколько частиц.
Но что представляет собой возбужденное ядро в тот небольшой промежуток времени, когда оно уже не имеет прав на владение одним или несколькими нуклонами, а те еще не порвали связи с коллективом ядерных частиц. О таком необычном квазисвязанном, то есть похожем на связанное, состоянии ядерной системы можно судить, зная, как она образовалась, сколько времени просуществовала и каким образом перешла в нормальное состояние.
Во многих ядерных реакциях, в которых ядрам-участникам перепадала энергия в десятки и сотни миллионов электрон-вольт, экспериментаторы обнаруживали бурлящие перегретые ядра. Опознать их было несложно прежде всего по неимоверно большому, в ядерном масштабе, времени жизни. До 10–14 секунды продолжалось кипение ядра-капли, пока испарение нуклонов с поверхности не приводило его в спокойное состояние.
Физики твердо усвоили, что большая порция энергии, полученная ядром, превращает его в систему быстро и хаотически движущихся частиц. Между нуклонами будто полностью обрывались те тончайшие связи, благодаря которым при малых энергиях возбуждения возникали коллективные движения в ядерном веществе, и ядро уже ничем не напоминало конструкцию из легких, соединенных между собой пружинками шариков, способных к сложным согласованным колебаниям.
Но стоило появиться синхротронам — ускорителям электронов, как представления ученых о сверхвозбужденных нуклонных системах резко изменились. Ядра-мишени с большой вероятностью поглощали электромагнитное излучение из синхротрона. Гамма-кванты с энергией 10–25 миллионов электрон-вольт впитывались ядрами особенно охотно. Система нуклонов переходила в квазисвязанное состояние, но совсем непохожее на кипение ядерной капли.
Это была потрясающая новость даже для физиков, которые на многое уже нагляделись, изучая микромир. На одну и ту же порцию энергии, но поданную, так сказать, под другим «соусом», ядро и реагировало по-другому. При электромагнитном взаимодействии с гамма-квантами или электронами ядро на время, равное 10–20 секунды, попадало в особое возбужденное состояние, при котором все протоны колебались относительно нейтронов.
Гамма-кванты и электроны, неизмеримо более осторожно повышающие тонус ядра, чем сильно взаимодействующие частицы, долгое время считались единственными инструментами, пригодными для столь тонкой операции. Но существует и еще более деликатный способ введения энергии в ядро — через слабое взаимодействие. Поглощая мю-мезон с мезоатомной орбиты, ядро, оказывается, почти незаметно для себя приобретает около 20 миллионов электрон-вольт.
Долгое время ученые отводили ядру только пассивную роль поставщика протонов для хорошо известной реакции этих частиц с мю-мезонами, происходящей по законам слабого взаимодействия. Число теоретических и экспериментальных работ, посвященных реакции ядерного мю-захвата, перевалило за сотню, когда появились первые сомнения в правильности такого подхода. Повысив точность расчетов, физики обнаружили, что полученное из опытов значение вероятности реакции мю-захвата почти вдвое отличается от величины, предсказанной теоретиками. Это противоречие требовало радикального изменения взгляда на саму суть процесса.
И вот осенью 1963 года на межвузовской конференции в Ужгороде группа теоретиков МГУ и Лаборатории теоретической физики ОИЯИ, возглавляемая профессором В. Балашовым, представила свою принципиально новую версию тех событий, которые происходят в ядре при захвате мю-мезона. Эта группа ученых смело утверждала, что ядру принадлежит решающая роль в дележе энергии между всеми участниками реакции и в способе усвоения доставшейся ему доли.
Как и при электромагнитном взаимодействии в случае поглощения гамма-квантов из синхротрона, ядерная система нуклонов на 10–20 секунды переходила в квазисвязанное возбужденное состояние со сложными коллективными колебаниями одних комплексов частиц по отношению к другим. Быстрая раскачка нуклонов, выявляющая какие-то удивительные, упругие свойства ядерного вещества, по идее теоретиков, происходила при попеременном возбуждении всех нуклонов в ядре.
Частица, перескакивающая на более высокую оболочку, и оставленное ею пустое место в состоянии с меньшей энергией, так называемая «дырка», в определенной последовательности возникали в ядерном веществе. В результате непрерывного «дуэта» разных «дырок» и частиц все протоны и нейтроны оказывались вовлеченными в очень сложные согласованные передвижения. Протоны могли колебаться относительно нейтронов. Частицы с одним направлением момента количества движения имели возможность перемещаться относительно частиц с моментом противоположного направления. Теоретики предполагали, что возникают даже радиальные колебания всего ядерного вещества. Ядро как бы дышало, то увеличивая, то уменьшая свой размер. Физики так и назвали этот новый тип колебаний возбужденного ядра «дыханием».
Через 10–20 секунды разбушевавшаяся ядерная капля успокаивалась и переходила в нормальное состояние после испускания нейтронов со строго определенной энергией.
Такое освещение событий, происходящих при слабом взаимодействии мю-мезона с ядром, подкупало тем, что вычисленное на его основе значение вероятности реакции захвата мю-мезона впервые совпало с его экспериментальным значением.
Проверить новую гипотезу можно было только одним путем: обнаружить группы нейтронов, появление которых в этой реакции она предсказывала.
За поиски нейтронов, вылетающих из мишени, облучаемой мю-мезонами, взялись физики-экспериментаторы Лаборатории ядерных проблем ОИЯИ под руководством кандидата физико-математических наук В. Евсеева.
Интернациональная группа советских и польских физиков подготовила для работы на синхроциклотроне специальную установку для обнаружения нейтронов в реакции захвата мезонов атомными ядрами. В прозрачном кристалле стильбена, вещества, насыщенного водородом, пролетающий нейтрон передает свою энергию ядру атома водорода — протону. На движущийся заряженный протон прибор реагирует мгновенно. В стильбене возникает световая вспышка, которая, усиливаясь в особой лампе — фотоумножителе, превращается в электрический импульс.
Но световая вспышка может возникнуть в кристалле при попадании в него и любой посторонней заряженной частицы. Поэтому электрические импульсы от вспышек в приборе подвергались строжайшему контролю в уникальных электронных схемах, созданных специально для этого эксперимента. По форме импульса схемы надежно отсортировывали протоны от фоновых частиц. Затем электронный анализатор импульсов определял энергию этих протонов. А электронно-вычислительная машина по особой программе реконструировала спектр нейтронов по измеренному энергетическому спектру протонов.
Успешными оказались первые же опыты на ускорителе. Помещая мишени из серы, кальция или кислорода в пучок мю-мезонов, дубненские физики с волнением обнаружили долгожданные группы нейтронов. Эксперимент полностью оправдал надежды теоретиков.
Выступая на Международной конференции по физике высоких энергий и структуре ядра в Дубне, профессор В. Балашов сказал: «Теоретикам всегда свойственно фантазировать. Но я не думал, что эксперименты по захвату мю-мезонов ядрами будут поставлены со столь высокой точностью, что их можно будет сравнить с теорией».
Открытие, сделанное физиками Дубны, и экспериментальные результаты, полученные в других лабораториях, подтверждали очень важную для ядерной физики закономерность. И в электромагнитных, и в слабых, и даже, с небольшой вероятностью, в сильных взаимодействиях образуются атомные ядра, которые всю дополнительную энергию расходуют только на согласованные движения своих частиц.
Коллективные колебания нуклонов при высокой энергии возбуждения — это универсальное свойство ядерного вещества, связанное с особой природой ядерных сил.
— Сначала физики радовались тому, что научились добывать из ядер энергию, а теперь — непонятно почему — радуются, когда ядра ее поглощают.
— Изучение возбужденных ядер имеет большое фундаментальное значение для науки, так как обогащает представления ученых о ядерных силах. Но изомерные ядра, обладающие способностью довольно долго удерживать полученный избыток энергии, могут быть использованы в практических целях.
— Я что-то ничего не слышал об «аккумуляторе» на возбужденных изомерных ядрах.
— И не могли ничего слышать. В качестве длительно работающего аккумулятора ядерной энергии оказалось выгодней использовать радиоактивные изотопы. А изомеры чрезвычайно пригодились после того, как удалось наладить связь на гамма-квантах между одинаковыми ядрами.
До сих пор мы говорили и продолжаем говорить о проблемах, относящихся непосредственно к атомным ядрам, но сейчас крайне необходимо вспомнить о давно открытом в мире атомов избирательном, или, как называют его физики, резонансном, поглощении фотонов с определенной энергией. Свет, испущенный возбужденным атомом, с максимальной вероятностью захватывается другим атомом того же химического элемента. Это естественное поведение любых квантовых объектов.
Заручившись поддержкой закона сохранения энергии и представлениями о возбужденных состояниях атомных ядер, физики еще 45 лет назад попытались обнаружить резонансную связь на фотонах с большими энергиями (их называют еще гамма-квантами) между ядрами.
Но испущенные ядром, возвращающимся в нормальное состояние, уже апробированные, так сказать, гамма-кванты неожиданно оказались совершенно непригодными для возбуждения других ядер того же сорта.
Конечно, в то время экспериментальная техника была очень примитивна, но проста и сама идея эксперимента. Установка выглядела так: в источнике находились изомерные ядра, а в мишени — точно такие же ядра, но в основном состоянии. За мишенью располагали счетчик гамма-квантов. По скорости отсчетов в детекторе можно было понять, поглощают ядра мишени резонансные гамма-кванты или нет. Ни в первой, ни во второй, ни в десятой попытке обнаружить это явление не удалось. Гамма-кванты беспрепятственно проходили через мишень и попадали в счетчик.
Пятнадцать лет бились ученые над решением проблемы этой феноменальной, упорной неконтактабельности одинаковых атомных ядер. Бились до тех пор, пока не была вскрыта — именно вскрыта, а не устранена — причина этого непонятного поведения ядер.
И возбужденное ядро, и возбужденный атом — это, в сущности, одноволновые передатчики. Квант света фиксированной частоты, излучаемый атомом химического элемента, может быть принят только единственным квантовым приемником — атомом того же элемента. Ядерный гамма-квант, которому тоже соответствует длина волны определенной частоты, может возбудить такое же стабильное ядро-приемник.
У атомных и ядерных приемников и передатчиков нет ручек для изменения настройки. Для атомов она и не требовалась: фотонная связь между ними работала отлично. Ядерный же приемник ядерные гамма-кванты не принимал и молчал.
В обычной радиоаппаратуре настройка может испортиться из-за какой-нибудь перегоревшей детали. Но что может перегореть в ядре?
Законы квантовой механики, в частности принцип неопределенности В. Гейзенберга, устанавливают интервал энергий, в пределах которого должен наблюдаться резонанс и в атоме, и в ядре. Этот интервал, называемый шириной резонансной линии, обратно пропорционален времени жизни ядра в возбужденном состоянии. Например, для ядер железа-57, которые удерживают избыток энергии примерно 10–7 секунды, ширина линии равна 10–8 электрон-вольта.
У изомерных ядер время жизни и интервал энергии излучаемых фотонов, в котором мог наступить резонанс, были почти такими же, что и у атомов. А установить гамма-связь между ядрами так и не удавалось.
Наконец в 1945 году молодые советские ученые И. Барит и М. Подгорецкий впервые открыли всем глаза на обстоятельство, которое до тех пор упускалось из виду. Закон сохранения энергии мог гарантировать успех ядерной связи на гамма-квантах, но он мог также и жестоко карать физиков за оплошность, допущенную по отношению к нему. А оплошность была достаточно серьезной. В своих подсчетах ученые почему-то не учитывали ту небольшую энергию, которую получало ядро в момент отдачи при вылете из него гамма-кванта.
Эта сложнейшая система из элементарных частиц, связанных воедино уникальными ядерными силами, стреляя гамма-квантом, претендовала на свою долю энергии отдачи, как обычный макрообъект.
Энергия взрыва пороха делится между пулей и винтовкой в точном соответствии с их массами: большую часть получает легкая пуля, но кое-что достается и винтовке. Излишек ядерной энергии точно таким же образом распределяется между ядром и гамма-квантом: почти вся энергия достается фотону, а ядру перепадает ничтожнейшая ее доля.
Про отдачу ядра не то чтобы забыли, просто не придавали ей никакого значения. Всех успокаивал качественный вывод о том, что энергия гамма-кванта сохраняется практически нетронутой. Энергия отдачи никогда не фигурировала и в атомном резонансе, там ее величина, приблизительно равная 10–10 электрон-вольта, была намного меньше ширины резонансной линии и не могла расстроить фотонную связь.
Но между атомными и ядерными передатчиками была одна колоссальная разница: они работали в разных энергетических диапазонах. Атомы испускали энергию порядка нескольких электрон-вольт, а ядра — миллионы электрон-вольт. Ясно, что и при дележе энергии между каждым из этих микрообъектов и соответствующими квантами электромагнитного излучения ядру доставался неизмеримо больший пай, чем атому.
В ядерном гамма-резонансе одна десятимиллионная доля энергии, которую забирало себе, например, то же ядро железа-57, равна примерно 10–3 электрон-вольта. Порция сама по себе ничтожно малая, и все-таки она в 105 раз больше всего интервала резонансной энергии.
Отдача ядра, которую физики раньше сбрасывали со счетов, едва заметным образом меняя энергию гамма-квантов, в то же время полностью лишала их способности поддерживать резонансную гамма-связь с другими ядрами. Какая уж тут коммуникабельность! Искать в таких условиях ядерный гамма-резонанс — это все равно что пытаться принять, например, в Москве радиостанцию Сиднея при сильнейшем фединге.
Но в особых условиях ученым все-таки удалось наладить гамма-связь между ядрами. Ядро, испытывающее отдачу, и вылетающий из него гамма-квант с меньшей энергией, или, что то же самое, с меньшей частотой, движутся в противоположные стороны. Перед нами давно известный физикам эффект Допплера.
Со звуковым вариантом этого эффекта, наверное, знаком каждый. Свисток тепловоза, удаляющегося от перрона вокзала, слышится нам более низкой частоты, чем тот же свисток прибывающего. Частота колебаний волн, распространяющихся в сторону, противоположную движению источника звука, уменьшается.
К счастью, с допплер-эффектом можно бороться. Если источник, содержащий возбужденные изомерные ядра, двигать в сторону мишени, то можно скомпенсировать изменение частоты попадающих в нее гамма-квантов.
Правда, подсчитав, с какой скоростью надо двигать излучатель, физики махнули было рукой на все свои надежды по использованию ядерного гамма-резонанса. Оказалось, отдачу можно было компенсировать, двигая ядра… со скоростью звука.
Несмотря на столь жесткие условия, экспериментаторам удалось зарегистрировать резонанс в тот момент, когда мимо покоящейся ртутной мишени и счетчика на плече ультрацентрифуги проносились возбужденные ядра ртути. Нельзя сказать, что это был очень удобный метод исследования гамма-резонанса.
Впрочем, тот, кто не выносил воя центрифуги, мог выбрать другой вариант: например, нагревать ядра-излучатели до температуры в несколько тысяч градусов. В этом адском пекле ядра тоже приобретали скорость, необходимую для компенсации отдачи. Но далеко не каждая лаборатория могла воздвигнуть собственную домну для подобного эксперимента.
И вдруг все переменилось к лучшему. Выброшены были центрифуги и потушен был наконец почти солнечный огонь, который бушевал в лабораториях.
Немецкий физик Р. Мессбауэр в 1958 году показал, как легко и просто наблюдать гамма-резонанс, если предварительно принять некоторые меры по ликвидации отдачи ядра. Молодой ученый стал единственным человеком в мире, который употреблял длинное название «ядерный гамма-резонанс без отдачи» вместо принятого всеми короткого термина, обозначающего это явление, — «эффект Мессбауэра».
Научный сотрудник Гейдельбергского института имени М. Планка Р. Мессбауэр для работы над диссертацией получил от своего шефа тему, которая называлась «Исследование резонансного поглощения гамма-квантов». Планировалось традиционное изучение свойств этого явления с помощью сильного нагревания ядер передатчиков и приемников. Но диссертант пошел своим, оригинальным путем к решению поставленной перед ним задачи. Он сообразил, как, обойдясь без нагревания, можно почти полностью избавиться от отдачи ядра. Р. Мессбауэр проверил свою идею на опыте и описал ее в диссертации на соискание ученой степени доктора философии. К моменту опубликования диссертации автору было 29 лет, а через три года ом получил в Стокгольме Нобелевскую премию по физике.
Р. Мессбауэр не был ни магом, ни волшебником и не мог отменить законы природы. Ученый понял, как повлиять на распределение энергии между гамма-квантом и ядром в пользу гамма-кванта.
Все знают, что если винтовку опереть о стенку, то отдача при выстреле будет незначительной. Масса винтовки за счет массы стены увеличится настолько, что пуле достанется почти вся энергия, выделяющаяся при взрыве пороха.
«Конечно, — сказал Р. Мессбауэр в лекции, прочитанной несколько лет назад в Москве, — приковать ядра к стене не так-то просто. Однако можно попытаться сделать это, взяв вместо одного атома в газообразной фазе набор атомов в виде кристаллов».
Химические силы надежно приковали атомы, содержащие возбужденные ядра-изомеры, к кристаллической решетке, которая играла роль стены и практически сводила на нет отдачу ядра при испускании гамма-квантов.
Эффект Мессбауэра очень скоро нашел широкое применение. С его помощью можно было измерять невероятно малые изменения энергии гамма-квантов. Чувствительность этого метода намного превосходила все достигнутое к настоящему времени в любых областях физики.
— Все это очень интересно, но какое отношение имеет эффект Мессбауэра к вопросу об использовании ядер-изомеров?
— Самое прямое. Без открытия этого эффекта нельзя было и мечтать о создании ядерного лазера.
— Лазера? Неужели можно управлять возбужденными ядрами?
— Физики надеются получить пучок ядерных фотонов с помощью гамма-резонанса без отдачи.
Французский ученый А. Пуанкаре писал, что «всякой истине суждено одно мгновение торжества между бесконечностью, когда ее считают неверной, и бесконечностью, когда ее считают тривиальной». Но теории, созданные одним из крупнейших ученых XX века А. Эйнштейном, как-то выпадают из того длинного ряда гипотез, довольно быстро переживших свое мгновение торжества.
Интересный результат, полученный А. Эйнштейном в то время, когда он занимался проблемой излучения и поглощения фотонов, лишь 60 лет спустя был реализован в одном из самых замечательных приборов наших дней — в лазере.
Возбужденные атомы обычно испускают кванты света столь же несогласованно, как несогласованно звучат инструменты, настраиваемые музыкантами перед концертом. Но когда маэстро взмахивает палочкой, рождается мелодия, возникающая в результате упорядоченного звучания всего оркестра.
Оркестром возбужденных атомов, как предсказывала теория, можно управлять с помощью электромагнитного излучения той же частоты, что и свет, который испускают возвращающиеся в нормальное состояние атомы. Множество заранее подготовленных возбужденных атомов, подчиняясь приказу о немедленном возвращении в основное состояние, все разом отдают свой избыток энергии.
Замечательный английский физик М. Фарадей, размышляя о драгоценных камнях — рубинах и бриллиантах, писал: «Ни один из этих драгоценных камней не может соперничать по своей яркости и красоте с очарованием пламени». Луч красного цвета из рубинового лазера не уступает по красоте и очарованию пламени, а по «качеству» света оставляет его далеко позади. Все атомы лазера работают самосогласованно, как один.
Если б можно было наблюдать за каждым из лазерных атомов, мы бы увидели, что их колебания синхронизованы по фазе. Поэтому излучение всех атомов сливается как бы в единую волну. Такой свет называется когерентным.
В самом начале нашего века о ядрах еще ничего не было известно, и А. Эйнштейн в своих рассуждениях имел в виду только атомы. Но выводы его теории целиком и полностью применимы к излучению и поглощению ядерных гамма-квантов. То есть фотонов с энергией, в миллионы раз большей.
В гамма-лазере, или газере, как сокращенно называют его физики, должны работать возбужденные заранее атомные ядра, выдавая управляемое электромагнитное излучение точно такого же высшего качества, как и в оптическом лазере.
Чудесный лазерный свет произвел переворот уже во многих отраслях науки и техники. Еще большую революцию, например в биологии, произведет когерентное электромагнитное излучение газера с длиной волны, меньшей размера атома. Чтобы проникнуть в тайны живого, ученым необходимо иметь возможность рассмотреть детали строения молекул белков, генов. С помощью лазерных гамма-квантов можно будет изучать в живых тканях даже движение отдельных макромолекул.
Синхронное излучение возбужденных ядер позволит получить не только объемную картину молекулы ДНК в клетке, но и снять объемный кинофильм о процессе удвоения ДНК, о синтезе белков в рибосомах. Газер может дать очень короткий импульс излучения до 10–15 секунды. Поэтому при освещении газерным светом в каждом кадре этого уникального фильма можно будет увидеть «замороженные» во времени тепловые колебания молекул. Почему же до сих пор не создан ядерный гамма-лазер?
Создание газера — дело необычайной сложности. Оно потребует участия в нем многих лабораторий и институтов, предельных усилий ума и использования новейших достижений техники.
Говорят, что прибор, эксперимент и физическая проблема, которую он решает, — хлеб, любовь и фантазия физика-экспериментатора. И если фантазируют чаще всего теоретики, а их претензии к любви все возрастают, то хлеб навсегда и безвозмездно принадлежит экспериментаторам. Сейчас ученые широко обсуждают главную проблему, которую необходимо решить, прежде чем приступать непосредственно к сборке сложнейшей установки. Пока нет четкого мнения о том, как собрать в рабочем веществе газера достаточно большое количество возбужденных атомных ядер.
В рубиновом лазере атомы хрома легко возбуждаются светом от мощной разрядной электронной лампы, но атомные ядра светом не возбудить. Для этого необходимы ядерные реакции.
Советский физик Л. Ривлин в 1961 году впервые предложил схему создания ядерного лазера на мессбауэровском излучении без отдачи. Кристалл более чем наполовину обогащается долгоживущими возбужденными ядрами — изомерами. И достаточно хоть одному «разрядиться», как его гамма-квант послужит сигналом для всех остальных ядер, и газерный оркестр заработает. Но увы… Вместо чарующей мелодии мы бы услышали какофонию звуков, какую мог бы издавать небезызвестный квартет из басни И. Крылова.
На возбуждение ядер нейтронами, на выделение их из мишени и кристаллизацию требуется минимум несколько дней. Изомеры с таким временем жизни существуют, но ширина резонансной линии у них настолько мала, что становятся заметными ее искажения, связанные с дефектами кристаллической решетки. Эти искажения, неодинаковые у разных ядер, грубо нарушают ядерный гамма-резонанс.
Не лучше ли будет, если сделать газер на короткоживущих изомерах, как это предлагают советские ученые В. Гольданский и Ю. Каган? Сразу отпала бы забота о дефектах кристаллической решетки и слабых магнитных взаимодействиях между ядрами, тоже меняющих энергию резонансных гамма-квантов. Их влияние оказалось бы просто незаметным при той ширине линии, которая соответствует времени жизни возбужденных ядер порядка 10–2–10–6 секунды.
Но как за столь короткое время успеть проделать все необходимые предварительные процедуры?
Кажется, что ни за что не успеть обеспечить ядрам реакцию захвата нейтронов, выделить возбужденные изомеры и создать из них кристаллическое тело газера. Чтобы не попасть в цейтнот, физики предлагают обойтись без двух последних операций и сосредоточить все внимание на одной, заключающейся в следующем.
Сначала приготавливается кристалл, содержащий ядра, которые предстоит превратить в изомеры. Затем мощнейший поток нейтронов, приблизительно такой, что образуется при ядерном взрыве, за миллионные доли секунды возбуждает атомные ядра. Как будто газер готов?
Нет. Беда в том, что облучение нейтронами губительно для кристалла, он слишком перегревается и может разрушиться. Поэтому совершенно необходимо вынести из зоны облучения нейтронами рабочее вещество газера, где будут излучаться гамма-кванты.
Так ко всем предыдущим операциям добавляется еще одна, которую необходимо выполнить за те же миллионные доли секунды. Надо либо перенести в другой кристалл созданные изомерные ядра, либо перекачать в этот второй кристалл всю драгоценную энергию, накопленную в момент облучения нейтронами.
Конечно, энергия не вода, которую перекачивают по трубам, но в данном случае не нужны и провода, по которым обычно подается электроэнергия. Изомеры с помощью резонансных гамма-квантов могут передать свою энергию таким же стабильным ядрам второго кристалла и превратить его в готовый для работы гамма-лазер. Пока идет обсуждение и проблемы в целом, и отдельных операций. Работать с долгоживущими изомерами намного удобнее, и сейчас детально обдумывается любая возможность уменьшения искажения ширины резонансной линии.
Дилемма, стоящая перед теми, кто занимается проблемой гамма-лазера: или большое время жизни изомерных ядер, или очень малая ширина резонансной линии — сегодня уже не кажется неразрешимой. Специалисты по кристаллографии достигли значительных успехов в выращивании так называемых бездефектных кристаллов. А физики предлагают защищаться от искажений, связанных со слабым магнитным взаимодействием между ядрами в кристаллической решетке, с помощью внешнего радиочастотного поля.
Но, может быть, первым заработает гамма-лазер, параметры которого подобраны по принципу золотой середины. Такой вариант газера с применением эффекта Мессбауэра предложил советский ученый В. Летохов. По его мнению, в будущем приборе гамма-кванты должны испускать изомеры с не очень длинным, но и с не очень коротким временем жизни: от 0,1 секунды до 10 секунд. Для возбуждения этих изомерных ядер не требуются и слишком мощные потоки нейтронов. Необходимое для работы газера количество изомеров можно получить с помощью действующих ядерных реакторов. Однако в отличие от предыдущих вариантов здесь рабочее вещество газера должно пройти через такие сложные процедуры, каким не подвергается ни один материал даже в самом сложном производстве.
Прежде всего предстоит извлечь возбужденные ядра из вещества мишени, которая побывала в нейтронном потоке. И самым быстрым из них представляется почти фантастический способ, опирающийся на последние достижения науки и техники, который натурфилософы XVII века попросту назвали бы «дематериализацией».
Короткий мощный лазерный луч разбивает мишень на отдельные атомы. Еще два лазера, лучи которых направлены на газовую струю из смеси продуктов испарения, избирательно ионизируют атомы, содержащие возбужденные ядра-изомеры. Электромагнитная фокусирующая система легко собирает эти ионы, и возбужденные ядра оседают, «материализуются», на заряженной нити или пленке. Мгновенной кристаллизацией и заканчивается весь сложный процесс изготовления рабочего вещества гамма-лазера.
В. Летохов полагает, что современное состояние ядерной и лазерной техники позволяет приступить к практическому решению вопросов, связанных с разработкой такого газера.
И экспериментальные и теоретические исследования «запасных» ядерных уровней, которые, как раньше казалось, имели чисто научно-теоретическое значение, оказались чрезвычайно необходимыми. Без знаний, добываемых спектроскопистами, не построить уникальный прибор будущего — ядерный гамма-лазер.
Сейчас предлагается широкая программа изучения проблем в разных областях науки и техники, имеющих непосредственное отношение к получению когерентного гамма-излучения. Возможно, в самое ближайшее время появятся новые, кардинальные идеи, осуществление которых ускорит разработку конкретного проекта ядерного гамма-лазера.
Появление газеров в лабораториях откроет новые горизонты перед исследователями атомных ядер. Обычные лазеры стимулировали развитие новой области науки, так называемой нелинейной оптики. Были открыты новые явления при взаимодействии лазерного света со средой. Мощные лазерные пучки, проходя через вещество, преобразовывают его и тем самым изменяют условия взаимодействия фотонов с атомами и молекулами.
По-видимому, газеры приведут к созданию аналогичного научного направления — нелинейной ядерной физики, которая будет изучать ядерные процессы, происходящие под действием мощного потока совершенно одинаковых гамма-квантов.
Не раз и не два случалось так, что физики находили в естественных условиях — в космосе — то, чего поначалу не могли создать или найти на Земле. Например, химический элемент гелий впервые был обнаружен в спектре Солнца (греческое слово «гелиос» означает «солнечный»). Многие элементарные частицы, в том числе и первые вестники антимира позитроны, были открыты сначала в космических лучах.
Доказано, что в космосе «работают» мазеры — усилители радиоволн в сантиметровом и миллиметровом диапазонах. А может быть, Галактика посылает нам и удивительное синхронное гамма-излучение, которое еще никто не наблюдал на Земле?
Не так давно ученые зарегистрировали грандиозные по мощности вспышки гамма-лучей в некоторых участках космического пространства с длительностью от долей секунды до одной минуты. Внеземные гамма-кванты имели энергию от 0,05 до 1,5 миллиона электрон-вольт. Механизм возникновения таких вспышек пока неясен, но, может быть, это работает естественный гамма-лазер: газер!