Кто есть кто?

Картина строения материи, добротно нарисованная тремя чистыми «красками»: электронной, протонной и нейтронной, — была так же проста, как детский рисунок.

Ее композиция, определенная строением атома и атомного ядра, без труда толковалась на основе квантовой механики. Казалось, что достаточно прорисовать еще несколько деталей, относящихся к ядру и составляющим его нуклонам, и картина будет завершена.

Однако открытие огромного мира элементарных частиц разрушило эту надежду. Вчерашний шедевр на самом деле оказался лишь предварительным этюдом к будущей картине строения материи.

Если просто нанести на него сотни найденных частиц материи, то, кроме ощущения чего-то непонятного, крайне запутанного и сложного, новая картина ничего не даст. Ясность возникнет лишь в том случае, если каждая частица займет в общей картине предназначенное ей место, когда видна будет взаимная связь между всеми отдельными элементами целого.

Но чем руководствоваться ученым в своих поисках, если нет даже самого примитивного «ранжира» среди элементарных частиц? Может быть, удастся разобраться в общественном положении граждан микромира, если найти принцип «элементарности» частиц?

Но современная теория по-прежнему говорит о точечной частице и в этом смысле не «видит» разницы между легким электроном и тяжелым резонансом. А разница эта прямо-таки бросалась в глаза.

Лептоны: электрон, мю-мезон и нейтрино — не участвуют в сильных взаимодействиях, у них не обнаружена внутренняя структура.

В огромной армии сильно взаимодействующих частиц: нуклонов, тяжелых мезонов, гиперонов, резонансов — иные законы и порядки. Большинство из них распадается на более легкие частицы. А найденная сложная электромагнитная структура у нуклонов и пи-мезонов еще более укрепила подозрения ученых в «неэлементарности» этих частиц. Но, не имея пока возможности доказать это, физики просто лишили их права называться элементарными и стали пользоваться термином «фундаментальные».

Если сравнить даты открытия разных частиц, то легко заметить, что число лептонов за последнее время почти не изменилось, а группа фундаментальных частиц сильно выросла, подобно непрерывно растущему действующему вулкану. Она увеличивается в основном за счет резонансов. Извергающийся поток обширной научной информации о все новых и новых частицах грозил затопить всю физику высоких энергий и лишить ориентировки в мире элементарных частиц.

Релятивистская квантовая теория, пытавшаяся описать мир элементарных частиц на основе нескольких аксиом и принципов, не в состоянии была ввести этот поток в определенное русло.

И тогда возникло новое теоретическое направление, следуя которому ученые нашли порядок в мире элементарных частиц, нашли скрытые в нем закономерности, опираясь только на известные из опыта свойства частиц, такие, как заряд, масса и т. д.

Странные экспонаты

Составленный физиками список двух сотен элементарных кирпичиков материи напоминал гербарий человека, незнакомого с систематикой растений. Этот горе-ботаник, придавая абсолютное значение любым различиям между растениями, отвел бы отдельное место каждому из собранных им экспонатов.

Заслуга Карла Линнея, создателя систематики растений, состояла не только в выборе главных признаков принадлежности растений к определенному виду, но и в указании тех различий, которыми можно пренебречь при объединении видов в семейства, а семейств в отряды.

Но можно ли создать систематику элементарных частиц? Какой именно разницей между частицами можно пренебречь для объединения их в группы?

Физики, правда, уже знали, что в сильных взаимодействиях между протоном и нейтроном, протона с протоном и нейтрона с нейтроном нет никакой разницы. Между этими парами частиц действуют одинаковые силы.

Все эти экспериментальные факты и подсказали Гейзенбергу плодотворную идею. Он первый догадался, что если не обращать внимания на положительный электрический заряд протона и на отсутствие заряда у нейтрона, то их можно принять за одну и ту же частицу — ведь в ядерных взаимодействиях они совершенно идентичны.

Так же, как в сумерках все предметы кажутся одинаково серыми, так несколько тускнеет пестрота элементарных частиц, если не обращать внимания на электромагнитные отношения между ними. Для протона и нейтрона будет вполне достаточно одной «нуклонной» краски, а для трех пи-мезонов с разными электрическими зарядами — одной «пи-мезонной».

Рассчитавшаяся на «первый-второй» и на «первый-второй-третий» неупорядоченная «толпа» элементарных частиц приобрела уже некоторую структуру. И даже этот не такой уж большой шаг к систематике помог теоретикам. Они сразу же установили некоторые соотношения между вероятностями процессов, происходящих с участием частиц одной и той же группы.

Но в то время еще не были открыты «странные» частицы и резонансы. С их появлением «гербарий» элементарных частиц чудовищно распух. И вот тогда-то в 1960 году ученики Сакаты впервые доложили делегатам Международной конференции о гораздо более общей закономерности, существующей среди элементарных частиц. Анализируя модель своего учителя, они обнаружили нечто вроде периодического закона для фундаментальных кирпичиков материи. А год спустя, опираясь на это достижение, два физика — М. Гелл-Манн и Ю. Нееман — независимо друг от друга предложили систематику элементарных частиц, включив в нее и резонансы. На основе этой систематики удалось все сильно взаимодействующие частицы собрать в несколько больших групп.

М. Гелл-Манн дал своей систематике поэтичное название «восьмеричный путь». Почему восьмеричный? Да потому, что в нем производились действия над восемью квантовыми числами. А также потому, шутя говорил М. Гелл-Манн, что «она напоминает афоризм, приписываемый Будде: „Да, братья, существует святая истина, помогающая укротить страдания: это благородные восемь путей, именно: верные взгляды, верные намерения, верные речи, верные действия, верный образ жизни, верные попытки, верные заботы, верное сосредоточение“».

Предложенная М. Гелл-Манном и Ю. Нееманом классификация, без всякого сомнения, «укротила страдания» физиков. Хаос был ликвидирован. Однако вопрос, насколько «верна» эта попытка, продиктованная самыми «верными» намерениями, оставался открытым.

После работ М. Гелл-Манна и Ю. Неемана появились и другие варианты ликвидации хаоса, казавшиеся своим авторам не менее «благоразумными».

Сложилась странная ситуация. С одной стороны, многие в то время считали создание систематики фундаментальных частиц неперспективным направлением в физике. Сторонники строгой теории считали это занятие недостойным настоящего ученого.

С другой стороны, усилившийся поток теоретических работ на эту тему вызвал даже «испуг и настороженность» в ряде научных журналов. Создалось впечатление, что «при свете дня теоретики склонны отзываться об этом направлении иронически, а в тиши ночей пишут о нем работы, число которых растет экспоненциально».

Как бы то ни было, но все больше физиков вовлекалось в «конкурс» на лучший «гербарий» элементарных частиц. Научная атмосфера в физике высоких энергий становилась все напряженнее. Какой вариант будет признан лучшим? Что скажет самое объективное и справедливое «жюри» — эксперимент?

А он пока молчал. Молчал, как мудрец, задумавшийся над сложной задачей. Воспользовавшись этим обстоятельством, поговорим пока о том, чего же ждали от эксперимента авторы «восьмеричного пути».

Пропустив свою идею через «математические операции», разработанные еще в XIX веке норвежским математиком Софусом Ли и поэтому названные алгеброй Ли, они получили четкий план «построения» фундаментальных частиц. Частицам предписывалось выстроиться в группы из трех, из восьми и из десяти членов. Причем в одну и ту же группу попадали частицы с определенными квантовыми числами.

Когда нуклоны, мезоны и резонансы разбросали по этим группам, оказалось, что, кроме целиком пустой группы из трех, в группе из десяти тяжелых частиц одно место также пустует. Кого же не хватает?

Кто интересовался историей составления Д. Менделеевым своей периодической таблицы элементов, тот знает, что она включала и пустые места для еще не открытых веществ. Причем свойства этих элементов были уже предсказаны Дмитрием Ивановичем.

С помощью правил, которым подчиняются разделенные на группы частицы, нетрудно было установить, что недоставало самой тяжелой частицы из десятка сограждан микромира. Незнакомку назвали омега-минус-гиперон и написали ее «портрет» — массу и квантовые числа, — который оказался впоследствии очень близким к оригиналу.

Найденная упорядоченность помогла связать друг с другом явления, в которых теория не находила ничего общего, и вычислить вероятности ядерных реакций с участием частиц одной и той же группы. Впервые удалось с большой точностью теоретически вычислить очень важное для понимания свойств частиц отношение магнитных моментов нейтрона и протона.

И все-таки, несмотря на эти успехи, «дырка», зияющая в десятке тяжеловесов, создавала неуверенность в правильности самой классификации. Экспериментаторы буквально с «портретом» в руках усиленно искали омегу-минус-гиперон. «Если она будет найдена, — писал в то время М. Гелл-Манн, — то правильность восьмеричного пути будет в сильнейшей степени подтверждена».

Однако главный недостаток новой систематики, как казалось всем, заключался в другом. Если на открытие омега-минус-гиперона еще можно было надеяться, то заполнить еще целую пустую группу из трех частиц не представлялось возможным.

И дело было вовсе не в том, что не хватало еще трех частиц. История физики высоких энергий свидетельствовала, что этот недостаток восполним, надо только подождать. Ситуация была значительно сложнее. Математическая логика восьмеричного пути зарезервировала эти места для совершенно необычных граждан микромира.

Все частицы, с которыми физикам приходилось иметь дело, были или нейтральны, или имели заряд, равный заряду электрона. И вдруг открылась вакансия для частиц с дробным зарядом!

Претендентами на эти места могли быть частицы с зарядом, равным 1/3 и 2/3 электронного. Почти никто не сомневался в абсурдности такого предсказания. Отсутствие омега-минус-гиперона и явная нелепость предсказания группы из трех частиц с дробными электрическими зарядами значительно снижали шансы восьмеричного пути.

В этих сложных условиях М. Гелл-Манн (и независимо от него Цвейг) сделал ход, аналогичный тому, который сделал Тур Хейердал для доказательства своей теории заселения островов Полинезии. Изучив остатки древней культуры Полинезии, Тур Хейердал пришел к выводу, что острова были заселены не из Азии, как утверждалось ранее, а выходцами из Южной Америки. Противники теории Тура Хейердала утверждали, что без навигационных приборов, без предназначенных для дальнего плавания судов невозможно преодолеть огромную водную пустыню Тихого океана. И тогда Тур Хейердал, веря в свою гипотезу, построил плот из бальсовых деревьев и доказал, что на нем можно преодолеть это расстояние. Тем самым он обратил себе на пользу главный аргумент своих противников.

Глубоко веря в свою систематику, М. Гелл-Манн предположил, что необычные частицы с дробным зарядом не только существуют в природе, но именно из них «сделаны» все остальные, включая и недостающую.

Так соединил он несходившиеся «концы» своей теории. А, вероятно, ту долю сомнений и неуверенности, которая еще оставалась в его душе, он вложил в название этих частиц, взятое из научно-фантастического романа.

Слово жюри

«Кварки, кварки, кварки» — такое непонятное слово вдруг замелькало в начале 1964 года на страницах научных и научно-популярных журналов.

Когда в научную среду впервые просочились слухи о кварках, никто не мог понять, что это такое. И словари не могли помочь, потому что перевод этого загадочного слова ни с английского, ни с немецкого языков не имел ровно никакого физического смысла.

Все разъяснилось после выхода очередного американского журнала «Physical Review Letters». В небольшой статье М. Гелл-Манн написал, что необычное имя «кварк» получили три «золушки» восьмеричного пути — те самые три гипотетические частицы с дробными зарядами. Силой воображения теоретика они превратились в самых главных лиц многочисленного общества сильно взаимодействующих частиц.

Протоны, нейтроны и гипероны, а также резонансы прекрасно складывались из разных сочетаний трех кварковых кирпичиков и соответствующих им антикварков, а мезоны — из кварка и антикварка. С их помощью легко объяснились все достижения систематики, в том числе и упаковка по восемь и десять частиц.

«Можно просто и ясно, — говорит академик Я. Зельдович, — объяснить даже ребенку, что есть 10 частиц, потому что каждая частица состоит из трех кирпичиков; есть 3 сорта кирпичиков, и легко проверить, что есть 10 и только 10 разных комбинаций».

И одна из таких десяти комбинаций в точности соответствовала «облику» предсказываемого восьмеричным путем омега-минус-гиперона. Так в теории М. Гелл-Манна кварки оказались необходимы не только для заполнения пустующей группы, но и для объяснения всей систематики элементарных частиц.

В истории физики уже были аналогичные ситуации, когда теоретики «придумывали» новые частицы. В 1932 году Паули придумал маленькую нейтральную частицу нейтрино для спасения закона сохранения энергии. А годом раньше Дирак на «кончике пера» открыл позитрон. И надо сказать, что ни та, ни другая гипотезы не вызвали поначалу восторга у большинства физиков.

Теория кварков претендовала на большее. Признав существование кварков, следовало тут же признать новый тип материи, атомизм нового типа с еще более «элементарными сущностями».

Гипотеза, предлагавшая продолжать приевшуюся игру в матрешки, была встречена более чем прохладно. Значительно позже академик В. Гинзбург писал, что «не все обязаны верить в существование „бесконечной матрешки“: открыл одну куклу, а в ней лежит другая — и так без конца». Возня с кварковым «конструктором» казалась теоретикам простой забавой. И они были по-своему правы.

Ведь все предыдущие попытки «строить» (теоретически, конечно) фундаментальные частицы из других реальных частиц не приводили к успеху. Можно было каждую частицу считать составленной из любых других с подходящими квантовыми числами. Но нельзя объяснить ее свойства с помощью этих частиц, из которых она якобы сделана. Они, образовав новую частицу, как бы теряют при этом свое «лицо».

Кварковая же модель настаивала как раз на таком примитивном построении частиц, но из трех сортов кварков, не теряющих свою индивидуальность. Вот почему упоминание об этой теории часто вызывало улыбку большинства ученых.

В этот-то критический момент и заговорил наконец великий «судья и мудрец» — эксперимент. Мгновенно разнеслась сенсационная новость: обнаружен омега-минус-гиперон! Заполнена десятка тяжелых частиц! Оригинал в точности соответствует заочно нарисованному портрету!

На Брукхейвенском ускорителе в США протонами больших энергий облучали двухметровую водородную пузырьковую камеру. Обработав сто тысяч полученных фотографий, на одной из них ученые обнаружили эту частицу.

Долго разыскиваемая жительница микромира была торжественно «водворена» на место. Замкнулась десятка тяжелых частиц. Так подтвердилась правильность восьмеричного пути. Эксперимент выбрал наилучший вариант «гербария» фундаментальных частиц.

Значения найденного среди частиц порядка не умаляет и то обстоятельство, что пока неизвестно, какие глубокие законы природы лежат в ее основе. Ведь не знал же Д. Менделеев о соответствии порядкового номера элемента своей периодической таблицы заряду ядра.

Новый способ классификации частиц, за который М. Гелл-Манну была присуждена Нобелевская премия, — фундаментальнейшее открытие физики элементарных частиц.

Ну а как же кварки; значит, и они существуют?

Мудрецы никогда не разжевывают свой ответ, часто превращая его в новую загадку. И нужно быть не меньшим мудрецом, чтобы понять его смысл.

Открытие недостававшей в систематике частицы не решало кварковой загадки. Оно не отрицало их наличия, но и не подтверждало кварковую модель строения частиц.

Как понять этот ответ, напоминающий предсказания дельфийского оракула? Может быть, с помощью новых теоретических построений?

В одной из научных дискуссий по этой проблеме член-корреспондент АН СССР Л. Окунь дал четкий ответ: «Вопрос о том, существуют ли в природе новые стабильные частицы, в частности кварки, может быть решен только экспериментально, а не с помощью теоретических моделей».

Охота на кварки

Тяжело далось Туру Хейердалу получение одного из доказательств своей теории. Но М. Гелл-Манну не было дано и такой возможности. Для доказательства правильности теории кварков надо было обнаружить эти гипотетические частицы.

После сенсационного открытия омега-минус-гиперона акции кварков поднялись. Кварки сразу превратились в лакомый кусочек для экспериментаторов. Началась охота на кварки. Ажиотаж охватил многие лаборатории. Кварки искали в странах восточного и в странах западного полушарий. Их искали на синхрофазотроне Дубны, на ускорителе ЦЕРНа и в Серпухове. Их ищут на самом большом ускорителе мира в Батавии.

Но знали ли экспериментаторы, что искали, как «выглядят» эти кварки? И да, и нет. Твердо известно было только одно у них дробный электрический заряд. А вот относительно массы — полная неопределенность. По теории кварки могли быть втрое легче протона, но могли весить целую тонну!

Если бы кварки были легче протонов или хотя бы менее массивны, чем самая тяжелая из известных на сегодня частиц-резонансов, их бы давно обнаружили на ускорителях. Даже дробный заряд не помог бы им скрыться от опытного взгляда экспериментаторов. Просто их след в фотоэмульсии был бы тоньше и бледнее, чем у обычных частиц с такой же энергией.

Повседневный опыт нас убедил, что чем крупнее вещь, тем она заметнее и тем легче ее обнаружить. Ведь разыскать в комнате пропавшую книгу несравненно легче, чем маленькую иголку. Казалось бы, так же должны обстоять дела и с поиском тяжелых частиц.

Но в опытах на ускорителях кварки не ищут, а пытаются «создать». И энергия столкновения, необходимая для того, чтобы вызвать к жизни этот фантастический призрак микромира, должна быть прямо пропорциональна массе кварка.

Все опыты, проведенные на ускорителях до сих пор, закончились отрицательным результатом: свободные кварки не были найдены. По-видимому, ускоренным протонам пока еще не хватает энергии для рождения тяжелого кварка.

Если отбросить крайне завышенную и крайне заниженную оценки массы кварка, как это делается при оценке выступлений фигуристов, то наиболее приемлемой кажется величина в несколько протонных масс.

Но как можно из трех кварков, каждый из которых в несколько раз тяжелее протона, сложить протон? Задача эта не столь уж неразрешима, как кажется. Ядро дейтерия — тяжелого изотопа водорода — состоит из протона и нейтрона, а масса его чуть меньше суммы масс протона и нейтрона. И масса любого ядра всегда меньше суммы масс всех его нейтронов и протонов. Разница идет на энергию взаимодействия, удерживающего нуклоны в ядре.

Посмотрите, как двухлетний малыш легко укладывает в коробку вынутые из нее кубики. Здесь все просто. Общий объем кубиков в точности соответствует объему самой коробки. Но предложите ему уложить в маленькую коробку три огромных надутых резиновых шара. Такую просьбу он воспримет просто как шутку или издевательство. Она покажется ему совершенно невыполнимой.

А между тем задача эта совершенна аналогична той, о которой только что шла речь: как представить себе протон, состоящий из трех тяжелых кварков? Коробка с тремя шариками подскажет ее решение.

Давайте выпустим из каждого шарика столько воздуха, чтобы все они поместились в эту маленькую коробочку. И вот перед вами наглядная модель протона из трех кварков. Не беда, что кварки теряют чуть не 90 процентов своей массы, которая, подобно воздуху из шариков, выделяется при соединении в одну элементарную частицу.

Возможно, кварки неуловимы из-за того, что у существующих ускорителей не хватает энергии, чтобы «надуть» кварковые «шарики»?

Обратимся тогда к космическим лучам. Может быть, у них хватит на это энергии?

В атмосферу Земли посланцы далеких миров попадают с необыкновенно большой энергией. Энергия космических лучей в сто и тысячу миллионов раз больше той, которую могут сообщить протонам ускорители. И что, если там, в заоблачных высях, в ядерных катастрофах рождаются необыкновенные кварки?

Ученые тщательно пересмотрели множество облученных в космических лучах фотоэмульсий, но все безрезультатно.

И вдруг осенью 1969 года научный мир всколыхнуло известие, полученное с Международной конференции в Будапеште. Руководитель центра по изучению космических лучей в Австралии профессор Маккаскер сообщил об открытии кварков!

Он помещал камеру Вильсона в центр широких атмосферных ливней — плотных потоков частиц, — которые создавались протонами чудовищной энергии в 1019-1020 электрон-вольт, приходящих из глубины космоса. И именно здесь Маккаскер и нашел, как ему показалось, эти гипотетические частицы. Среди 60 000 следов частиц, сфотографированных в камере Вильсона, пять оказались вдвое бледнее. Это как будто соответствовало вдвое меньшей ионизации. Именно такой след и должны были оставить кварки с зарядом, равным 2/3 заряда электрона.

Опыт Маккаскера стал сенсацией в научно-популярной прессе. Но ученые, непосредственно заинтересованные в открытии кварков, были гораздо сдержаннее.

Несомненно, что следы на фотографиях Маккаскера были похожи на кварковые, но существует множество посторонних причин, по которым следы эти могли возникнуть. В сообщении австралийского ученого не было главного — контрольного анализа, и это сразу поставило под сомнение результат эксперимента.

В то время как одни искали кварки на ускорителях, а другие в космических лучах, третьи пытались обнаружить их в тончайших экспериментах на… лабораторном столе.

«Не мытьем так катаньем», — говорит народная поговорка. «Не можем создать, так будем искать», — решили ученые.

По теории один из трех кварков должен быть стабильным. И если кварки хоть изредка, да образуются в атмосфере, то, постепенно тормозясь, они будут накапливаться в обычной материи. В почве, в морской воде, в воздухе, во всем, что нас окружает, могут находиться свободные остановившиеся кварки либо же ядра, присоединившие к себе такой кварк.

Но чем отличается, например, капля воды, заряженная кварками, от капли, заряженной электронами? Первая имеет дробный электрический заряд, а вторая — кратный заряду электрона.

И проблема поисков кварков превратилась в проблему поисков дробного электрического заряда в частичках угля, в метеоритах, в капельках воды и в воздухе. Методы, традиционные для физики элементарных частиц, уступили место традиционным методам макрофизики.

Таким образом, стремление обнаружить еще более элементарные частицы материи привело ученых к опытам с макрообъектами. Группа физиков Московского университета с большой точностью измерила заряды угольных пылинок, капелек воды, но дробного заряда не обнаружила. Не обнаружили его и американские и итальянские исследователи.

Общий вывод, к которому пришли ученые, такой: если кварки и существуют в природе, то их в 1017-1018 раз меньше, чем нуклонов. Да, малость этой цифры производит удручающее впечатление. Но не на самих ученых.

Поиски кварков продолжаются до сих пор.

И вот что интересно. Советские физики-теоретики Я. Зельдович, Л. Окунь и С. Пикельнер сделали попытку теоретически подсчитать сколько же замедлившихся кварков может быть на Земле? Оценка дала мизерную величину: кварков в 1010-1013 раз меньше, чем нуклонов.

По признанию члена-корреспондента АН СССР Е. Фейнберга: «Это уже снимает некоторую тяжесть с души: понятно, почему их до сих пор не замечали, даже если кварки — реальность».

Весной 1971 года в журналах появилось новое сообщение о наблюдении дробного заряда. Ниобиевый шарик, охлажденный до температуры жидкого гелия, «подвешивался» на магнитных силовых линиях между обкладками конденсатора в вакууме. Шарик попеременно обстреливали положительными и отрицательными электронами из радиоактивных источников, автоматически подводившимися к нему.

После такой операции заряд шарика, кратный электронному, должен был полностью компенсироваться. Но когда к обкладкам конденсатора подвели высокочастотное поле, шарик повел себя так, будто у него дробный заряд, равный 1/3 заряда электрона. Значит, кварки найдены?

Трудно сказать. Этому опыту, как и результатам Маккаскера, не хватает доказательности.

«По-видимому, можно утверждать, что нет таких частиц с массой меньше 6–8 Гэв (то есть в 6–8 раз тяжелее нуклонов)», — пишет академик Я. Зельдович. «Либо они не столь уж тяжелы (скажем, масса кварка приблизительно равна 2,5 массы протона), но сильно взаимодействуют с пи-мезонами и потому… в ходе конкуренции разных процессов уступают место, пионам», — такого мнения придерживается член-корреспондент АН СССР Е. Фейнберг.

«Сомнительно, что кварки существуют в свободном состоянии. Так же как звук не существует в пустоте, так и кварки не могут существовать в свободном состоянии, хотя возможно, что они играют важную роль в структуре элементарных частиц», — сказал член-корреспондент АН СССР Д. Блохинцев.

Спустя полгода после создания кварковой модели ее автор, американский ученый М. Гелл-Манн, приехал в Дубну на Международную конференцию по физике высоких энергий. На заданный ему вопрос: «Существуют ли кварки?» — он ответил совсем коротко: «Кто знает?» («Who knows?»)

«Боюсь, что нужно было бы другое перо — перо писателя, чтобы передать все, что он вложил в эти два коротких слова. Здесь звучало огромное уважение к эксперименту, который в последнем счете решает и ведет науку вперед; здесь была и присущая М. Гелл-Манну интеллектуальная смелость и чувство нового, и готовность принять все, что дает природа, и создать из этого новую теорию, вызвать к жизни новые эксперименты», — так оценил ответ М. Гелл-Манна академик Я. Зельдович.

Кварковый «хор»

Оптимисты все-таки надеются на открытие кварков, аргументируя свое убеждение примерно так: «Поиски нейтрино и антипротона растянулись на четверть века, а вся история кварков не насчитывает и десяти лет. Еще посмотрим, что покажет будущее».

Ну что же, эти слова не лишены доли истины. Некоторые ученые думают, что, если не удалось обнаружить кварки в Серпухове, надо будет искать их на ускорителе в Батавии, где протоны разгоняются до энергии в 400 Гэв. А в случае неудачи отложить поиски до создания другой, более мощной машины…

Не стоит упрекать этих ученых в излишней настойчивости. Настойчивость их имеет под собой веские причины. Открытие кварков заставило бы нас по-иному взглянуть на природу материи. Да и классификация фундаментальных частиц, так естественно получающаяся из кварковой модели, получила бы хорошие подпорки.

Кое-какие факты в запасе у оптимистов уже есть. Обнаружено, что столкновения частиц высокой энергии во многих случаях происходят так, будто попарно сталкиваются кварки, из которых состоят эти частицы.

А иному пессимисту интуиция подсказывает: «Кварков нет, поэтому их и не нашли».

Конечно, каждый имеет свое собственное мнение. Тем более что свободные кварки действительно не найдены. И может так случиться, что они и не будут никогда открыты. Именно такой точки зрения придерживается большая группа ученых. Но в оценке «смысла» самой кварковой модели и всего восьмеричного пути мнения оптимистов и пессимистов совпадают.

Известный теоретик В. Вайскопф, сам скептически настроенный по отношению к кваркам и сомневающийся в их существовании, в беседе с журналистами рассказал такую историю о Н. Боре. Посетив дом своего товарища, Н. Бор заметил прибитую над дверью подкову и спросил хозяина, что это значит.

— Она приносит счастье, — услышал он в ответ.

— Вы действительно верите в это? — спросил Н. Бор.

— О, я не верю, но должен вам сказать, что это действует даже в том случае, если вы не верите.

И кварки независимо от того, верим мы в них или не верим, тоже «работают». Восемь лет назад М. Гелл-Манн «вывел» их в «большой свет». С тех пор кварки пережили равнодушие и недоверие, вспышки жгучего интереса и разочарование экспериментаторов. Наконец, они обрели спокойную, ровную привязанность теоретиков.

В прошлом году в книжном магазине быстро раскупалась книга под названием «Теория кварков». Полистав ее, мы сразу нашли бы то, что искали.

«За истекшие шесть лет модель кварков прочно вошла в физику, хотя сами кварки открыть не удалось. Теория кварков закрепила свои позиции, и наряду со специальными статьями, посвященными кваркам, модель кварков используется буквально во всех книгах, посвященных элементарным частицам, фигурирует в докладах и обзорах на всех конференциях по физике высоких энергий».

Трудно сказать более убедительно о «работоспособности» кварков, чем это сделал профессор Д. Иваненко во вступлении к книге. Теперь вопрос сводится к одному: являются ли кварки только наглядным выражением свойств, присущих элементарным частицам, или же кварки — реальные частицы?

И совершенно независимо от того, как решится этот вопрос, уже сейчас ясно, что кварковая модель оказалась плодотворной почвой для возникновения новых теоретических идей. Здесь и попытки объяснения свойств легких частиц, и развитие астрофизических и космологических теорий.

«Модель кварков, — пишет профессор Д. Иваненко, — прочно удержалась в виде „хора“, без поддержки которого „солисты“ не могли бы разумно оперировать в первых рядах».

Моментальная фотография

Пока теоретики обсуждали проблему кварков, экспериментаторы подготовили для них великолепный сюрприз. В Стэнфордском университете был запущен новый ускоритель электронов на энергию в 17 миллиардов электрон-вольт.

С помощью ускоренных до такой степени электронов уже можно было попытаться «заглянуть» в глубь нуклонов. И профессор Панофский поставил специальный эксперимент, надеясь, что ему удастся обнаружить составные части протона. Если они, конечно, существуют. Идея этого опыта была подсказана моделью кварков.

Предоставив теоретикам право оттачивать свое теоретическое оружие в словесных поединках на международных конференциях и совещаниях, экспериментаторы решили наконец взять «быка за рога». Если кварки нельзя пока ни создать, ни обнаружить в макрообъектах, то нельзя ли попытаться узнать, если ли они в нуклонах. Но как это лучше сделать?

В старых опытах Р. Хофштадтера по определению размеров нуклонов длина волны электронных разведчиков была так велика, что невозможно было различить детали, и воспринимались лишь общие контуры нуклонов. Ну так же, как дальнозоркие люди воспринимают детали предмета, расположенного вблизи глаз. Поэтому для решения новой задачи годились только электроны очень большой энергии с малой длиной волны. Теперь необходимо было выяснить, как рассеиваются электроны, отдав протону значительную часть энергии. Задача не из простых. Нужно не только зарегистрировать электрон, летящий под определенным углом, но и измерить его энергию.

И вот когда все технические трудности остались позади, в руках ученых оказались длинные вереницы цифр, удручающе действующие на неспециалиста. А это был прекрасный итог сложного эксперимента. Но было бы ошибкой думать, что физику достаточно бросить на эти цифры беглый взгляд, чтобы воскликнуть: «Эврика!» Всем не терпелось узнать: что нашли в нуклонах быстрые электроны? Как они отдали свою энергию: целиком одному протону или каким-то его частям?

А пока надо было как можно точнее учесть все возможные ошибки, какие могли внести сами условия эксперимента, и провести заключительный этап — математическую обработку результатов. Вот тут-то и заговорили цифры, да еще как!

«Протон похож на шарик не из желе, а из малинового джема с семечками», — так передал свое впечатление один из теоретиков, интерпретировавших результаты Панофского. Рассеяние электронов происходило так, будто протон состоял из точечных частиц.

Известный американский физик-теоретик Фейнман окрестил их именем «партоны». Это слово образовано от английского «part», что означает «составная часть». Такое простое понятие содержит в себе не менее глубокую бездну неизведанного, чем загадочный «кварк».

В 1969 году на Международной Рочестерской конференции в Киеве физики впервые услышали о партонах. Многие из них сразу задумались: можно ли отождествить партоны с кварками?

К сожалению, четкого ответа на этот вопрос не существует. Природа партонов не ясна. Одни предполагают, что партоны — пи- или ка-мезоны. Другие считают, что партоны подобны кваркам. Действительно, если им приписать дробный электрический заряд, то теоретические расчеты хорошо согласуются с экспериментом.

И все-таки нельзя считать доказанным существование кварков. Рассеяние быстрых электронов на нуклонах дает нам, как говорит Фейнман, лишь «моментальный снимок» составных точечных частиц в нуклоне. А по нему невозможно судить о том, как они должны выглядеть в свободном состоянии и какими свойствами должны обладать.

Хорошо знакомый нам нейтрон имеет разные свойства в зависимости от того, где он находится: в свободном состоянии или же, например, в любом атомном ядре. Ядро это стабильно, а извлеченный из него нейтрон нестабилен. Не проходит четверти часа, как он распадается на протон, электрон и нейтрино.

Кварк с дробным зарядом и большой массой тоже должен подвергнуться метаморфозе, если когда-нибудь очутится в свободном состоянии. Разве сморщенный комочек резины похож на красивый надутый шарик?

Какими окажутся партоны, если их удастся рассмотреть подробно, — неизвестно. И здесь открывается безбрежный простор для теоретического воображения!