Конфликт или взаимное понимание?

«Я думаю, что открытие, подобное ньютоновской динамике или квантовой механике, вряд ли будет сделано раньше, чем через сто лет, — писал в 1958 году известный физик-теоретик Ф. Дайсон. — Мой взгляд состоит в том, что мы так же далеки от понимания природы элементарных частиц, как последователи Ньютона были далеки от квантовой механики. Вполне может случиться, что все опыты, которые могут быть сделаны на ускорителях путем взаимных столкновений различных частиц, какие только можно придумать, будут сделаны; все результаты будут тщательно запротоколированы и собраны, а мы все еще не будем иметь никакого понятия о том, что же происходит».

А вот более оптимистическое мнение лауреата Нобелевской премии академика И. Тамма, высказанное им в 1966 году: «Я не согласен с американским теоретиком Ф. Дайсоном. Трудности построения новой теории, которая должна включить в себя как частный случай все, что нам известно до сих пор, очевидны. Тем не менее Ф. Дайсон не учитывает экспоненциального роста науки в наше время, не учитывает, что все большее количество людей занимается физикой. Эйнштейн — редкая флюктуация, но на фоне чрезвычайно возросшего сейчас числа специалистов появление нового гения становится гораздо более вероятным».

А вот какого взгляда придерживается академик В. Гинзбург. В начале 1971 года на семинаре в Физическом институте АН СССР он сказал: «В области теории, как мне кажется, говорить о каком-то подлинном успехе не приходится. Так дело обстоит уже десятилетия, и никто не может предсказать, когда же, наконец, „лед тронется“. Но когда-то это произойдет, и, несмотря на все разочарования, этого исторического события продолжают ждать с неослабевающим и напряженным вниманием».

Эти откровенные высказывания крупнейших ученых-физиков познакомили нас с главной и самой трудной проблемой — проблемой построения теории элементарных частиц.

К сожалению, сегодня, как и несколько лет назад, остаются справедливыми слова Р. Оппенгеймера, что «пока мы не понимаем природы материи, законов, которые управляют ею, и языка, на котором следует ее описывать».

Ни для кого не секрет, что с тех пор, как были открыты первые частицы, наука сделала огромный скачок вперед. Вооруженные гигантскими ускорителями, исследователи вторгаются ныне в самые глубокие, заповедные области явлений. Уже пишутся популярные книги о свойствах элементарных частиц, о том, как удалось создать единую классификацию для многих «граждан» микромира. Открыты новые законы природы, например, закон сохранения барионного числа — тот самый, благодаря которому мы существуем, ибо именно он запрещает протонам и нейтронам распадаться на более легкие частицы. Уже нашли практическое применение в химии и физике твердого тела мю- и пи-мезоны.

Наконец, с помощью элементарных частиц анализируются великие принципы природы — симметрия пространства и времени. О каком же непонимании законов и языка природы идет речь?

Квантовая теория не содержит даже намека на существование огромного и пестрого мира элементарных частиц. Физики были настолько не подготовлены к встрече с этим миром, что поначалу отчаянно сопротивлялись признанию каждой очередной частицы.

«Припоминаю, — сказал недавно П. Дирак, — как в те давние времена я беседовал с людьми, работавшими в лаборатории Кавендиша, и наблюдал путь частиц в магнитном поле. Они говорили, что иногда наблюдают, как электрон возвращается в источник. У экспериментаторов было перед глазами доказательство существования этих новых частиц (позитронов), но они не были в состоянии оценить то, что видели».

А история открытия нейтрона? Боте и Бекер в Германии, Ирен и Фредерик Жолио-Кюри во Франции уже держали в руках нейтроны, но правильно оценить новое явление сумел лишь ученик Э. Резерфорда Д. Чедвик, знакомый с идеей своего учителя о существовании тяжелой нейтральной частицы.

Наконец, психологический барьер был преодолен, последствия первоначального шока ликвидированы, но к чему это привело, мы уже знаем: ученые из огня попали в полымя.

«С тех давних времен обстановка совершенно изменилась, — говорил П. Дирак, — теперь непрерывно в огромном количестве предполагаются и предлагаются новые частицы. Люди с великой готовностью публикуют доказательства существования новой частицы — независимо от того, добыта ли она путем эксперимента или же благодаря какой-нибудь плохо обоснованной теоретической идее».

Но почему возможно подобное положение вещей? Да потому, что современная теория не может подсказать, когда нужно подводить черту под списком элементарных частиц. Несколько сотен разновидностей! Это плохо звучит; и физики давно допытываются, какие же из них действительно элементарные, а какие — только представляются ими.

И нет никакой помощи от теории. Да и как этой помощи быть, если сама теория не знает самого значения слова «элементарный» для микромира!

Физики ощущают, что когда-нибудь все недоразумения микромира приведут к фундаментальной революции в теории, к серьезному пересмотру представлений и понятий. Будет создана новая теория, которая, исходя из нескольких общих принципов, объяснит все многообразие частиц с подробным описанием этикета взаимодействия между ними. Заглянув в эту теорию, мы сможем тогда предсказать, что произойдет при столкновении любых элементарных частиц.

Вот та программа-максимум, которая стоит сегодня перед теоретической физикой.

Простак или гений?

Можно долго говорить о том, какой представляется ученым новая теория элементарных частиц. Некоторые предполагают, что ее уравнения в сжатом виде будут содержать всю физическую картину природы и включать все известные свойства материи.

Выдающийся советский ученый и историк науки С. Вавилов еще в 1944 году писал, что «физика есть наука о простейших формах материи. Ей, по существу дела, свойственна некоторая тенденция к упрощенному подходу к явлениям». С. Вавилов предостерегал физиков от слишком пылких мечтаний о том, что «учение об элементарных частицах вещества должно объяснить не только элементарные формы явлений, но в конце концов и вселенную в целом».

Какой в действительности окажется новая теория — покажет будущее, а нам пора вернуться к сегодняшним заботам теоретиков.

Почему вдруг «подкосились» ноги у квантовой механики и она не взяла добавочный вес — физику элементарных частиц? Надо сказать, что упрек этот относится не совсем к квантовой механике. С самого начала она предназначалась для описания атомных явлений и прекрасно справляется с этим и по сей день. Упрек этот относится к выросшей из квантовой механики теории элементарных частиц.

Основы квантовой теории поля создавались крупнейшими учеными мира, такими, как В. Гейзенберг, В. Паули, П. Дирак, В. Фок. П. Дирак на основе квантовой механики и теории относительности впервые получил уравнение для электрона, движущегося почти со скоростью света. Это то самое уравнение, из которого физики узнали о существовании позитрона.

Для описания удивительных свойств элементарных частиц, их взаимопревращаемости, возникновения в ядерных реакциях, их исчезновения теоретики создали специальный математический аппарат — метод вторичного квантования. Но метод — это еще не теория. Теория должна описывать взаимодействия между частицами.

Постепенно возникла квантовая электродинамика — та часть квантовой теории поля, которая имела дело только с электромагнитными взаимодействиями элементарных частиц. Ее часто называют прообразом теории элементарных частиц. Квантовая электродинамика превосходно справляется со своей задачей и сегодня, когда исследуются электромагнитные взаимодействия между частицами огромных энергий.

Но столь же хорошей теории для сильных взаимодействий создать пока не удалось. Сначала казалось, что построить ее можно аналогично квантовой электродинамике. Только там частицы обмениваются фотонами, а здесь пи-мезонами — вот и вся разница.

Внешне все так и выглядит. Однако сильные взаимодействия между частицами на малых расстояниях в тысячи раз интенсивнее электромагнитных, и заканчиваются они нередко рождением вороха новых частиц. А в теории появляются бесконечные цепочки уравнений. С математической точки зрения теория становится кошмарно трудной, и, если допустить, что она верна, никто не знает, как найти точные решения получаемых уравнений.

На вопрос, что же мешает созданию новой теории элементарных частиц, Д. Блохинцев ответил: «Нам трудно сейчас решить, в чем дело: не хватает глубины понимания явлений, идеи, которая могла бы пролить свет на весь огромный комплекс фактов, или не хватает самих фактов? Если бы были обнаружены какие-то глубокие противоречия с теорией относительности или с квантовой механикой, это событие дало бы толчок колоссальной силы для новых идей».

Нельзя отбрасывать и другой возможности. Пока что «горы» экспериментальных материалов действительно не дают никаких серьезных указаний на то, в каких направлениях вести поиски будущей теории. Более того, они сами еще ждут теоретической интерпретации.

«Но, говоря между нами, физиками-теоретиками, как мы используем результаты этих исследований? Никак. А может быть, результаты экспериментов принесут нам несколько идиотских сюрпризов, а какой-нибудь простак сумеет получить их теоретически из какого-то элементарного правила?»

Конечно, простак, о котором говорит физик-теоретик Р. Фейнман, был бы сродни гению, сумевшему понять особенность мира элементарных частиц по имеющимся сведениям. И в истории физики, и в истории других наук можно найти немало примеров, когда великие открытия делались только в результате нового подхода к известным фактам.

Сто лет назад немецкий коммерсант Г. Шлиман по-новому прочел известную всем с незапамятных времен «Илиаду» Гомера. Вопреки бытовавшим тогда мнениям он отнесся ко всем описываемым там событиям как к реально существовавшим. Скрупулезно следуя описаниям Гомера, Г. Шлиман откопал Трою и нашел сокровища царя Приама.

А выдающаяся археологическая находка, сделанная Г. Картером и лордом Карнарвоном в 1922 году! Они нашли гробницу Тутанхамона, буквально до отказа заполненную бесценными изделиями мастеров Древнего Египта, в Долине царей, давно перекопанной вдоль и поперек. Известные археологи того времени считали, что в долине невозможны никакие новые находки, потому что там не осталось ни одной песчинки, которую бы по меньшей мере трижды не переместили с одного места на другое. Однако по ранее найденным другими исследователями предметам с именем Тутанхамона и сосудов со свертками полотна Г. Картер и Карнарвон после ряда неудачных попыток наконец правильно установили предполагаемое место гробницы Тутанхамона, а затем и нашли ее.

Нечто аналогичное вполне может произойти и в физике высоких энергий. Когда?

Этого никто не знает.

Говорит Серпухов

За окном машины неожиданно возник и так же быстро пропал старинный русский город Серпухов. Еще десять минут езды — и перед нами город физиков Протвино, где в ночь на 14 октября 1967 года впервые заработал самый мощный в то время ускоритель элементарных частиц. Семьдесят миллиардов электрон-вольт энергии набирают протоны, мчащиеся в его кольцевой вакуумной камере длиной около полутора километров!

В кольцевом зале, скрытом от человеческих глаз и засыпанном землей для защиты от радиации, собран магнит ускорителя. С его помощью физики удерживают внутри ускорителя сотни миллиардов ядерных снарядов колоссальной энергии, скорость которых почти достигает скорости света.

Сто двадцать блоков, каждый длиной 11 метров, с общим весом около 30 тысяч тонн — вот главный «диспетчер», следящий за правильным движением протонов. Для сравнения скажем, что магнит Дубненского ускорителя на энергию в 10 миллиардов электрон-вольт (10 Гэв) вдвое тяжелее. Это объясняется тем, что «диспетчер» Серпуховского ускорителя более высокой «квалификации», так как использует принцип жесткой фокусировки частиц. Как хоккеист ведет шайбу, ударяя по ней клюшкой то справа, то слева и не давая шайбе уклониться от намеченного направления, так и магнит Серпуховской машины ведет ускоряемые им протоны по узенькой кольцевой дорожке шириной всего 16 сантиметров. Отсюда и происходит выигрыш в массе самого магнита.

Но такое отличное владение протоном возможно лишь при одном непременном условии: относительные отклонения значений магнитного поля от блока к блоку не должны превышать величины 10–4 (одной десятитысячной).

Мы до сих пор восхищаемся искусством строителей пирамид Древнего Египта. Нас поражает мастерство древних каменотесов. Огромные блоки так тщательно пригнаны друг к другу, что между ними не вставить и листка бумаги. И все это уживалось с небрежностью отделки внутренних стен, сборки саркофагов — тех мест, которые никто не видит.

Здесь же, в ускорителе, не сделаешь небрежно то, что не видно: машина в противном случае просто не заработает. А ускоритель заработал сразу, с первого включения. Значит, строители добились отклонения значений магнитного поля у разных блоков меньше одной десятитысячной. Хотя известно, что даже сталь из разных плавок имеет несколько большее отличие в магнитных свойствах.

Каждый из 120 магнитных блоков собирался из тщательно перемешанных стальных листов толщиной 2 миллиметра, полученных из разных плавок. В результате магнитных измерений выбрали оптимальный вариант расстановки магнитных блоков по кольцу ускорителя. Для устойчивой работы все магнитные блоки весом по 240 тонн надо было установить с точностью до 100 микрон. Это проблема, которую даже представить себе трудно. Но и она была решена с помощью специальных геодезических методов.

В конце концов все трудности остались позади, и физики получили новый сверхмощный «микроскоп» для изучения микромира. На что же они должны были его направить?

Не надо забывать, что теория элементарных частиц, как дом на фундамент, опирается на несколько основных аксиом и постулатов, представляющих собой естественное обобщение квантовой механики и теории относительности. Поэтому и решено было с помощью нового «микроскопа» прежде всего проверить самые основы теории.

Еще в 1956 году академик Н. Боголюбов, ныне директор ОИЯИ, доказал, что так называемые дисперсионные соотношения — связывающие величины, непосредственно измеряемые на опыте, — вытекают из общих принципов современной теории.

Какая уникальная возможность! При измерении полной вероятности взаимодействия частицы с веществом и вероятности рассеяния ее на малые углы одновременно проверялись основные постулаты теории. Протягивалась тем самым ниточка связи между фундаментом современной физики и экспериментами в мире элементарных частиц.

Спустя два года член-корреспондент АН СССР И. Померанчук получил еще одно из фундаментальных соотношений. Теорема Померанчука тоже связывала исходные аксиомы с экспериментом.

На Дубненском синхрофазотроне дисперсионные соотношения были проверены до энергии 10 Гэв. Никаких противоречий там не обнаружилось, но кое-что было пока неясно. Теорему Померанчука опыт не подтверждал, но это никого не удивляло. В теореме говорилось, что при больших энергиях частицы и античастицы должны с одинаковой вероятностью взаимодействовать с одной и той же мишенью. Но какую область энергий надо считать достаточно высокой, было неизвестно. Оставалась надежда, что теорема подтвердится в будущих экспериментах.

Понятно, с каким нетерпением ждали и теоретики и экспериментаторы вступления в строй нового, более мощного ускорителя. Серпуховской гигант предоставлял в их распоряжение не только протоны с рекордной энергией. Это была настоящая фабрика для производства уникальной продукции вторичных частиц: пи- и ка-мезонов, антипротонов, нейтрино.

Основы теории можно было проверить сразу на разных сортах частиц. И одним из самых удобных объектов для этой цели оказались уже известные нам удивительные нейтральные ка-мезоны. Они рождались при столкновении мчащихся со скоростью света протонов с мишенью, находящейся прямо в вакуумной камере ускорителя. А мгновение спустя на выходе 50-метрового канала появлялись наши старые знакомые, долгоживущие нейтральные ка-мезоны.

Эти частицы, как говорят физики, — идеальный «подарок» природы для проверки теоремы Померанчука. Каждая из них — определенный тип смеси частицы и античастицы, ка-ноль-мезона и анти-ка-ноль-мезона. Теперь достаточно было поставить на их пути вещество, и в одном эксперименте физики могли сравнить, как ведут себя представители мира и антимира.

В конце августа 1970 года в Киев на конференцию по физике высоких энергий съехались ученые из сорока стран. В живописном центральном районе города, в зале Октябрьского Дворца культуры собрались те, кого волнует дальнейшее развитие физики элементарных частиц.

Пятьсот докладов предстояло прослушать участникам этого крупнейшего форума ученых. Но самыми притягательными, самыми интересными были доклады, сообщавшие результаты экспериментов, выполненных в Серпухове по проверке дисперсионных соотношений и теоремы Померанчука.

Физик-экспериментатор член-корреспондент АН СССР Ю. Прокошкин рассказал о результатах опытов по взаимодействию с нуклонами протонов и антипротонов, пи-плюс-мезонов и пи-минус-мезонов, ка-плюс-мезонов и ка-минус-мезонов с энергией до 70 миллиардов электрон-вольт.

Большой интерес вызвали экспериментальные результаты, полученные в работе с нейтральными ка-мезонами группой доктора физико-математических наук И. Савина из лаборатории высоких энергий ОИЯИ. Высокую оценку дал им крупнейший американский физик-теоретик Янг, выступавший в дискуссии по докладу.

Участники конференции аплодисментами встретили появление на трибуне доктора физико-математических наук В. Никитина. Под его руководством ученые Дубны на серпуховской установке провели один из первых опытов по проверке фундаментальных основ теории.

Нетрудно понять, почему серпуховские эксперименты вызвали такой интерес ученых всего мира. Председатель оргкомитета конференции академик Н. Боголюбов сказал: «Многие важные выводы теоретиков делались до сих пор на основе экспериментальных фактов, добытых с помощью ускорителей с энергией протонов до 30 миллиардов электрон-вольт. Какие закономерности проявляются при гораздо больших энергиях, куда пошли экспериментальные кривые? Не опрокинут ли они устои теории?»

Однако на этот раз сюрпризов не было. Обсуждение результатов, полученных в Серпухове, убедило физиков, что аксиомы, лежащие в основе квантовой теории и теории относительности, подходят и для описания элементарных частиц.

Затишье перед бурей

Бывает в природе удивительный момент, который мы называем затишьем перед бурей. Все замирает, все кажется неподвижным и полным ожидания. Но посмотрите наверх — там с большой скоростью перемещаются низкие, наполненные влагой облака. Вот они собрались в большую черную тучу, которая, тяжелея, опускается все ниже и ниже.

Таким затишьем кажется современный период в теории элементарных частиц. Но достаточно полистать научные журналы, поговорить с теоретиками, как начинаешь ощущать, какую напряженную работу они ведут, как досконально изучаются экспериментальные результаты, как много попыток делается для их объяснения. Ведь как раз из них, из этих еще не отшлифованных теоретической мыслью опытных данных, и предстоит возвести следующий этаж науки.

Ученые пока не знают, как это сделать, но уже видят отдельные детали новой теории.

Несомненно, что за порогом этой нарождающейся теории останется устаревшее понятие о точечной частице. Точка — это то, что не делится на части. Элементарные частицы будто бы подходят под это определение — никто еще не наблюдал пол-электрона или треть нейтрона. Но при столкновении частиц высокой энергии рождается целый набор новых частиц. Так что же такое элементарная частица? Простейший, точечный кирпичик или сложная система?

Вспомните, какие вести принесли электронные снаряды, впервые приблизившиеся «вплотную» к нуклонам? Какую сенсацию вызвало открытие электронной структуры протона, нейтрона, определение их пространственных размеров! А обнаружение партонов?!

Но в теории все частицы продолжают фигурировать как точечные. Частично вследствие этого и получаются бесконечные величины при вычислении массы частиц. Как ввести в теорию новое понятие «элементарная частица», наполненное всем тем, что известно о ней из опыта?

Не лучше обстоит дело с координатой частицы. Принцип неопределенности В. Гейзенберга показывает, что в микромире нельзя одновременно измерить координату и импульс частицы. Но точность значений каждой из этих величин в отдельности не лимитируется.

Допустим, нам надо измерить координату протона. Что делать? Любой экспериментатор подскажет, что местонахождение протона можно установить по рассеянию падающих на него гамма-квантов. Воспользуемся его советом. Ясно, что чем ближе подойдут гамма-кванты к частице, тем с большей точностью мы определим ее координату. Но это под силу только квантам с большой энергией. Ну что ж, предположим, что мы раздобыли и такие и радуемся в предвкушении точнейшего эксперимента. Но что такое? Из водородной мишени, которую мы поместили в пучок гамма-квантов самой большой энергии, во все стороны разлетаются новые протоны и антипротоны. Возникают такие же частицы, координаты которых мы измеряем. Теперь и не разберешься, где старый протон, а где новый.

«В основе новой теории, по моему мнению, — писал И. Тамм, — будет лежать принципиальное ограничение точности значения координаты, взятой самой по себе, вне зависимости от импульса».

Значит, и старое понятие координаты частицы не выдерживает испытания в физике элементарных частиц.

Некоторые ученые предполагают, что в ультрамалых масштабах пространство окажется не непрерывным, а дискретным. На основе гипотезы о существовании элементарной длины пространства делаются попытки построения новой теории. Но реальный успех этих идей пока невелик.

Вот в этом и драматизм построения новой теории! Где-то впереди прекрасным видением с неясными, расплывчатыми контурами светится великолепный дворец физики элементарных частиц. А в реальных обстоятельствах перед физиками лежит неразобранная груда экспериментальных результатов. И что делать с этим строительным материалом, ученые пока еще не знают.

Не будем детективами

В кинофильме «Бриллиантовая рука» один из его героев, небезызвестный Семен Семенович, так рассказывал о случившейся с ним беде: «Поскользнулся, упал, потерял сознание, очнулся — на руке гипс».

Приблизительно то же самое расскажет вам о ядерной реакции экспериментатор: «Бросил протоны большой энергии на вещество, столкнулись две частицы, что там при этом происходило — не знаю, смотрю — счетчики регистрируют новые частицы».

Принципиальная разница между тем и другим рассказами только в том, что Семен Семенович на самом-то деле видел, что делали с его рукой, а физика обвинить в лукавстве нельзя.

Конечно, ученые не занимаются пересказыванием подобных историй. Они пишут научные статьи и делают доклады, облеченные в строгую математическую форму теории S-матрицы.

Но ни строгая форма, ни внушающее уважение название не могут, да и не пытаются, скрыть главное: полное отсутствие сведений о самом процессе столкновения.

Физик, помещая водородную мишень в пучок протонов, точно знает, что сейчас произойдет столкновение ускоренного протона с протоном, находящимся в мишени. Вот начальные условия реакции. Помните: «Поскользнулся, упал…» Стоп! Все выходят из зала. Включается ускоритель. Электрическое поле все быстрее и быстрее подгоняет частицы. Наконец, гигантская праща выпускает их на свободу. Столкновение!

Но разве это слово содержит в себе иную информацию, кроме той, что на огромной скорости встретились два основных «гражданина» микромира? А как они встретились? Какие промежуточные частицы возникли? Какие снова поглотились?

Современная квантовая теория не в состоянии ответить ни на один из этих вопросов. При таких огромных энергиях столкновения математический аппарат теории совершенно отказывает. Помните: «Потерял сознание…»

А в это время приборы уже регистрируют результаты ядерной реакции. В измерительном центре электронные устройства — анализаторы — подвергают первичной обработке информацию. Наконец, исследователь получает значение вероятности интересующего его процесса.

А эту величину согласно общим принципам квантовой механики как раз и можно выразить с помощью набора математических функций S-матрицы. Ну чем непохоже на знаменитое: «очнулся — на руке гипс»?

S-матрица — это величина, связывающая начальное состояние процесса с конечным, величина, которую измеряют на опыте и вычисляют теоретически. Теперь она — центральное звено, связывающее теорию и эксперимент, «узловой пункт», где происходит встреча теоретиков и экспериментаторов. S-матрица — это язык, на котором они общаются друг с другом.

Ну хорошо, встретились, разобрались, поняли результат опыта. Значит, можно и теорию создать, чтоб его (этот опыт) и объяснить! Можно, но как?

Один путь привычный, на который толкает квантовая механика. Досконально, шаг за шагом изучается поведение частиц, участвующих в реакции, подобно тому, как детектив выслеживает преступника, не выпуская его из поля зрения ни днем ни ночью.

Но если детектив еще может надеяться на успех, то попытка теоретика с самого начала обречена. Никто пока не умеет решить бесконечную цепь уравнений. А ведь только она с помощью волновой функции может описать события, происшедшие в момент столкновения.

Вот почему еще в 1941 году один из основателей квантовой механики, В. Гейзенберг, высказал идею о том, что S-матрица должна быть основой рабочего аппарата современной квантовой теории.

Не будем детективами — так можно понять смысл этой идеи. Не будем заниматься расследованием того, что пока недоступно анализу. Надо создать теорию, уравнения которой можно было бы решить. Такая теория, не пытающаяся конкретно установить, что произошло в момент «потери сознания» — столкновения, — удовлетворила бы всех.

Археолог может обойтись без знания того, кто именно, с помощью какого конкретного инструмента и в какой точно день сделал ценную историческую находку. Археологу важно лишь знать, в каком месте и в каком культурном слое обнаружен древний предмет. Это вполне соответствует начальным условиям ядерной реакции, хорошо известным экспериментатору.

Затем археолог должен иметь возможность непосредственно исследовать обнаруженный экспонат. Описание находки, как и экспериментальный результат, получаемый в физике элементарных частиц, приобретает цену только после теоретической обработки.

Археолог обязательно постарается хотя бы приблизительно датировать найденный предмет и тем определить его значимость. Но когда физики пытаются сделать то же самое — получить элементы S-матрицы из уравнений, — на их пути встают непреодолимые трудности. «Столбовая дорога» и в матричном подходе к созданию новой теории пока закрыта. И тогда возникает множество обходных путей. Теоретики приспособились обрабатывать экспериментальную информацию, просто постулируя некоторые определенные свойства элементов матрицы, высказывая конкретные гипотезы без их связи с фундаментальными аксиомами.

Каждая из обходных дорог обязана не столько железной логике первопроходца, сколько его интуиции, особому чутью в подходе к экспериментальным данным.

Неизвестно, можно ли, двигаясь по этим дорогам, прийти к конечной цели — построить здание из груды кирпичей. Пока дороги ведут недалеко и резко обрываются. На основе этих частных гипотез можно иногда установить неожиданные связи между различными процессами. Но каждый раз удается сложить в нечто целое лишь очень маленькое количество кирпичей.

«Существующая теория носит мозаичный характер, — говорит директор лаборатории теоретической физики ОИЯИ Д. Блохинцев. — Можно понять и даже рассчитать отдельные явления. Но часто точка зрения, справедливая для одной группы явлений, плохо согласуется с точкой зрения, хорошо объясняющей другую группу явлений. Нет общей картины, намечены только отдельные ее кусочки».

Из груды экспериментальных фактов теоретики пока извлекают лишь отдельные детали будущего здания современной физики.

Но, может быть, кто-нибудь, однажды взглянув на эту мозаику издали, сможет расставить по местам все найденные детали, а частные гипотезы слить в единый архитектурный план здания физики — теорию элементарных частиц.

«Макровзгляд» на микромир

Иногда крайне необходимо иметь возможность увидеть всю картину процесса в целом.

Одного взгляда с самолета достаточно, чтобы в валах, мешающих археологическим раскопкам, угадать погребенные остатки домов. Непонятные полосы, выбитые на камнях мексиканского плоскогорья, с большой высоты слагаются в гигантское изображение птицы.

Работа физиков-теоретиков, перебирающих и ощупывающих каждый экспериментальный факт, очень напоминает начало раскопок чрезвычайно интересного, но непонятного сооружения. Физики уверены, что когда-нибудь и как-нибудь завал будет расчищен. «Правда, — говорит Ф. Дайсон, — мы можем проталкивать только по одному бревнышку за раз, и очень мало какие из них шевелятся, когда мы их толкаем».

Не охваченный теоретической мыслью, непознанный мир элементарных частиц производит «странное» впечатление. Английский философ Ф. Бэкон писал: «Не существует истинно прекрасного без некоторой доли странности». Одна из наших лучших научно-популярных книг — книга Д. Данина — так и называется «Неизбежность странного мира».

А так ли уж неизбежна эта странность?

Давайте оторвемся от детального разглядывания частиц и их поведения и попробуем посмотреть «сверху» на всю груду экспериментальных результатов, охватив единым взглядом этот новый удивительный мир.

«Разве слишком большие нарушения пропорций, странные отклонения от порядка не губят красоты? — спрашивает М. Гелл-Манн. И отвечает: — В течение многих лет одна из главнейших областей физической науки — учение о строении вещества — страдала болезнью странности. Когда физики исследовали вещество на самых малых расстояниях, оно представлялось им как произвольная смесь отдельных элементарных частиц, среди которых нельзя было заметить никакого строгого порядка. Теперь, наконец, картина начинает немного проясняться. Само слово „странность“ вошло в словарь физиков, а ее доля уменьшилась настолько, что уже проступает красота упорядоченности».

Такие разные при близком рассмотрении частицы, как протон и нейтрон, становятся совершенно одинаковыми с точки зрения сильных взаимодействий. Введя новое квантовое число «странность», М. Гелл-Манн и А. Нишиджима сумели уложить и странные ка-мезоны в общую схему классификации частиц.

И чем больше деталей удается охватить взглядом, тем все упорядоченней становится казавшийся раньше бесформенным завал экспериментальных результатов.

В начале 1960 года в американском научном журнале появилась статья молодого физика-теоретика Дж. Сакураи. Ее появлению в печати предшествовал период мучительных раздумий автора: печатать или не печатать? Пожалуй, главную роль в положительном ответе на этот вопрос сыграла молодость. Ей было легче преодолеть страхи, испытываемые каждым исследователем, надеющимся достигнуть важных результатов.

«Вы можете подумать, — говорит П. Дирак, — что хороший исследователь оценивает полученный результат совершенно спокойно, без малейшего волнения, рассуждая вполне логично и развивая дальше свою мысль вполне рациональным путем. Это далеко не так. Исследователь — только человек, и если он питает великие надежды, то он испытывает и великие страхи».

Еще до публикации статьи Дж. Сакураи знал об отрицательном отношении к ней коллег по работе. «Не существует частиц, которые ты предсказываешь!» — слышал он от всех. Какой же внутренней уверенности, может быть, даже неосознанной самим автором смелости и решительности потребовал от Дж. Сакураи завершающий шаг! Спорная статья была сдана в печать.

Теоретики встретили ее появление прохладно, многие вообще не обратили на нее внимания. Но совершенно иной была реакция экспериментаторов. Не так уж часто от теоретиков поступали определенные указания. В основном они занимались «раскопками» и обработкой уже полученных результатов.

На крупнейших ускорителях мира были поставлены опыты. И вскоре обнаружились все три типа частиц, описанных Дж. Сакураи. Это были далеко не обыкновенные частицы. Ведь без открытия векторных мезонов, как их назвали, не смогла бы возникнуть идея кварков.

М. Гелл-Манн сказал как-то, что природа проста, если знать, как к ней подойти. Исторически так получилось, что сначала была создана квантовая теория электромагнитных взаимодействий, а затем уже по аналогии с ней возникла теория сильного ядерного взаимодействия. Общение между нуклонами мыслилось по образу и подобию отношений, существующих между заряженными частицами. Электроны обменивались квантами электромагнитного поля — фотонами, а нейтроны или протоны — пи-мезонами. Но кто поручится, что это единственно возможный и правильный подход?

«Наша теория, — говорил Дж. Сакураи, — по-своему напоминает о замечании Р. Фейнмана, что новые идеи надо создавать, задавая вопрос: что было бы, если бы история пошла другим путем».

Путь, предложенный Дж. Сакураи, начинался от той же «печки», что и предыдущий, — от аналогии с электромагнитным взаимодействием.

Любой старшеклассник знает, что электрический заряд — это источник электромагнитного поля, что этот заряд определяет силу взаимодействия между заряженными телами. Но, кроме того, мы знаем, что электрический заряд с огромной точностью сохраняется при любых превращениях материи. И в ядерных реакциях, и при столкновениях элементарных частиц общий электрический заряд частиц до реакции всегда равен заряду всех частиц после реакции. Здесь нет ничего нового. Закон сохранения электрического заряда открыт был давно, и экспериментаторы убеждены в его непоколебимости.

Известный физик-теоретик Е. Вигнер еще в 30-х годах обратил внимание на эту двойственную роль электрического заряда: на то, что такое внутреннее свойство заряда, как его сохранение, проявляется динамически (определяет силу взаимодействия). Ну так же, как характер человека, основа которого — тип темперамента, — заложенная глубоко в генетическом коде, проявляется в повседневном его поведении, в его поступках.

Суть идеи Вигнера, Швингера, Янга, Миллса, Утияма заключалась в том, что сила любого взаимодействия должна быть связана с сохраняющейся при этом взаимодействии величиной заряда.

В сильных взаимодействиях тоже есть три сохраняющиеся величины: изотопический спин, гиперзаряд и барионный заряд. А что, если и они проявляются динамически в сильных взаимодействиях? Ведь тогда откроется путь к созданию новой теории!

Дж. Сакураи и поставил перед собой задачу посмотреть — не соответствуют ли этим трем сохраняющимся величинам три типа взаимодействий? В результате его исследования выяснилось, что, подобно переносчикам электромагнитного поля — фотонам, в природе должно существовать три типа векторных мезонов — переносчиков сильного взаимодействия, — которые и были вскоре обнаружены экспериментаторами.

«Если предлагаемая теория окажется верной, — пишет Дж. Сакураи, — то возникнет, естественно, вопрос: не основываются ли все фундаментальные взаимодействия, существующие в природе (электромагнитное, ядерное, слабое, гравитационное), на законах сохранения внутренних свойств?»

Смотрите, какой широкий вырисовывается охват одновременно всех типов взаимодействий! Какая увлекательная возможность дать единый «алфавит» — единую теоретическую основу «многоязычным» взаимоотношениям элементарных частиц! И, что самое главное, возможность эта возникла не в результате применения логически стройных аналитических методов, как это делается при построении квантовой теории поля, а в результате поисков проявления симметрии во взаимодействии между частицами.

«На фоне сотен попыток построить удовлетворительную теорию явлений микромира, — пишет профессор Я. Смородинский, — возник новый метод, новая форма рассуждений, лишенная на первый взгляд четких основ. Этот метод симметрий, оказавшийся очень эффективным в применении именно к тем процессам, для которых старая теория бессильна».

К тому времени М. Гелл-Манн уже несколько лет занимался систематикой элементарных частиц, поиском подходящей точки зрения, с которой можно было охватить взглядом все фундаментальные частицы. Когда появилась статья Дж. Сакураи, он, может быть, более других был внутренне готов к восприятию содержащихся в ней идей. И, несмотря на недоброжелательность основной массы теоретиков, он сразу применил содержащуюся в ней идею к классификации элементарных частиц (восьмеричный путь).

В своих воспоминаниях космонавт В. Севастьянов пишет, что, пролетая над Варшавой, он решил выяснить, что вберет в себя «макровзгляд» из космоса над центром Европейского материка. Он увидел сразу Скандинавский полуостров, Балтику, Ленинград, Адриатику, Черное море, а впереди по курсу — Москву.

Идеи Янга — Миллса — Сакураи позволили бросить «макровзгляд» на мир элементарных частиц и при этом обнаружить его упорядоченность. Все частицы разделились на несколько больших семейств по восемь или десять членов. И в каждом из этих семейств частицы выглядели математически эквивалентными, симметричными друг другу.

А это дает не только эстетическое наслаждение. Найденная «гармония природы» честно служит практическим задачам физики микромира. Благодаря ей впервые удалось вычислить вероятности процессов с участием частиц — членов одного и того же семейства. Проявилась зависимость между такими явлениями, в которых раньше не находили ничего общего.

Закрывая 12-ю Международную конференцию по физике высоких энергий в Дубне (ту самую, на которой ученые впервые услышали об опытах с ка-мезонами), Д. Блохинцев сказал, что мы уже не так далеки от нашей общей цели — открытия новых принципов теории, управляющей миром элементарных частиц. Однако, продолжал он, «скептики могут заметить: да, вы, вероятно, правы, и мы совсем близки к цели, если только едем в правильном направлении…»

Какое из современных направлений, существующих в теории, правильно — сказать пока невозможно. По-видимому, правы те ученые, которые считают, что каждая из конкурирующих теорий содержит долю истины и в известной мере дополняет одна другую.

Частица-призрак

Серпуховской ускоритель… Вернемся еще раз к этому уникальному инструменту физики элементарных частиц. Он позволяет проникать в такие заповедные глубины материи, где каждый шаг вперед — открытие, хотя делать эти шаги все тяжелее и тяжелее.

Трудно оторвать глаза от четкой линии кольцевого магнита. Но что это? Почти идеальная симметрия серпуховского магнита нарушена. Между двумя его прямолинейными секциями вокруг вакуумной камеры ускорителя появилось большое, около 5 метров в диаметре, шарообразное сооружение. «Установка для регистрации монополя Дирака» — так официально называют его физики. А попросту говоря, это новейшая конструкция ловушки для одной из самых призрачных частиц, о встрече с которой давно мечтают ученые.

Электромагнитные взаимодействия — это, пожалуй, единственная область современной физики, где, как говорит профессор Я. Смородинский, «теория и опыт согласуются уже сейчас до тысячных долей процента, оставляя физиков в почтительном изумлении перед всеобъемлющей силой электродинамики, честно описывающей процессы в галактиках и в атомных ядрах».

Но даже в ней, в квантовой электродинамике, в которой многие видят прообраз будущей теории элементарных частиц, есть еще «белые пятна». Одно из них — это то, что необыкновенно разные по массе, по времени жизни и по другим свойствам элементарные частицы имеют совершенно одинаковый электрический заряд, в точности равный заряду электрона.

Единственное объяснение этому удивительному экспериментальному факту дал в 1931 году П. Дирак. Его замечательное уравнение для электрона, лежащего в основе электродинамики, впервые распахнуло двери в антимир. И оно же позволило ему сделать еще один важный вывод о возможности существования частицы с магнитным зарядом — так называемого монополя.

Если монополь — реальность, то согласно теории сразу получается, что электрические заряды всегда должны быть кратны кванту электричества, равному заряду электрона. После открытия позитрона ученые уже гораздо серьезнее отнеслись и ко второму предсказанию.

Сорок с лишним лет прошло с тех пор, как была высказана эта идея. Но и сегодня нет иных конкурирующих с ней гипотез. И конечно, экспериментаторы давно прилагают усилия для поисков монополя. Подобно миражу в пустыне, дразнит он воображение и заставляет ученых предпринимать все более и более изощренные попытки обнаружить его.

Известно ли что-нибудь физикам об этой частице-призраке? Не напоминают ли поиски ее ситуацию, так хорошо описанную в русских народных сказках: «Пойди туда, не знаю куда, найди то, не знаю что»?

Герой одной детективной пьесы говорит, что «он не обучен поиску преступника-призрака, что он должен знать о нем хоть что-нибудь конкретное».

Теория не балует ни охотников за кварками, ни охотников за монополем. И те и другие имеют в руках только одну твердо установленную примету: дробный электрический заряд у кварков и большой, в семьдесят раз больший электронного, магнитный заряд у частицы, предсказанной П. Дираком.

Сведений, как видите, не так уж много; скорее даже очень мало. Но если опытный следователь даже по анализу пыли на костюме обвиняемого может воссоздать картину преступления, то физик, исходя из величины магнитного заряда частицы, может в какой-то мере представить ее поведение в веществе.

Заряд — важнейшая улика, скрыть которую невозможно. Очень сильное электромагнитное взаимодействие — вот чем монополь отличается от всех других элементарных частиц. Попади он в фотоэмульсию, в ней после проявления был бы такой же густой и толстый след, какой оставляет тяжелое ядро.

Монополь со столь большим зарядом должен легко подчиняться влиянию магнитного поля. Даже слабое поле Земли будет действовать на него так же, как действует на электрон электрическое поле величиной 100 000 вольт/см!

Нельзя ли как-то использовать такое необычное обстоятельство для его обнаружения?

Задолго до появления мощных ускорителей родилась идея поискать в природе свободные монополи, которые могли попасть на Землю в составе космических лучей или возникнуть в земной атмосфере. Но где их искать? Ведь никому не известно, куда именно попали они, прилетев к нам на Землю.

И тут всплывает главная примета монополя: магнитный заряд делает его особенно чувствительным к магнитным веществам. Эта частица должна будет дрейфовать по силовым линиям магнитного поля нашей планеты до тех пор, пока не встретит на своем пути железо или железные руды. Взаимодействуя с ними, частицы будут накапливаться в этих породах.

Попавшую в глаз металлическую соринку извлекают с помощью магнита, подведенного к глазу. Точно так же, с помощью сильного магнитного поля, пытались вытягивать монополи возможно, застрявшие в магнитных породах.

В США в горах Адирондака, где есть выходы на поверхность магнетитовых пород, прямо на скалах установили мощный импульсный соленоид. Магнитное поле в центре соленоида и на поверхности скалы составляло 60 килогаусс. В верхней части соленоида располагались слои фотоэмульсии, на которых обязательно должен был «расписаться» каждый монополь, вытянутый из породы и ускоренный в соленоиде. Но когда эмульсия была проявлена, оказалось, что она не содержит ни одного желанного «автографа».

Пробовали «отсасывать» монополи из железных метеоритов, которые в течение сотен миллионов лет блуждали в просторах космоса. Искали в образцах магнитных минералов, добытых со дна океана: быстрые монополи, рождающиеся при столкновении космических частиц с энергией до 1020 электрон-вольт с веществом атмосферы, могли накапливаться здесь в течение миллионов лет. Но поиски были безуспешны.

Пытались ученые найти следы быстрых космических монополей в слюде и в вулканическом стекле. Но следов таких частиц обнаружить не удалось.

Несколько лет назад, когда участники экспедиции «Аполлон-11» впервые доставили на Землю лунный грунт, профессор Альварец из Калифорнийского университета поставил оригинальный опыт. Он решил поискать монополи в образцах лунной породы. Возраст Луны достаточно солидный (3–4 миллиарда лет), поверхность ее изменялась незначительно, и там могло накопиться достаточно много космических монополей.

Драгоценную породу на медленно движущейся ленте много раз протаскивали через электрический контур из сверхпроводящего материала. Монополи — это заряды — источники мощного магнитного поля. А раз так, то в замкнутом проводнике должен возникать электрический ток.

Исследованию подверглись почти все девять килограммов грунта, привезенного американскими космонавтами. Но наведенного тока обнаружить не удалось.

Казалось бы, можно сделать окончательный вывод, что монополей в природе не существует. Но физики такого вывода не сделали. Ведь в точности никому не известно, как ведут себя монополи в веществе. В опытах по вытягиванию их из разных веществ предполагалось, что за время накопления с монополями ничего не происходило. Но откуда взялась такая уверенность?

А вот и еще одна неопределенность. По некоторым расчетам получалось, что энергия связи монополя в веществе равна химической — всего нескольким электрон-вольтам. Но по другим расчетам энергия эта может достигать сотен мега-электрон-вольт! Но тогда извлекать монополи из породы с помощью магнитного поля попросту невозможно…

Первые опыты в Беркли на протонах с энергией всего 7 Гэв не изменили сложившейся ситуации. Не изменили ее и опыты с протонами с энергией 30 Гэв. Физики предполагают, что пары монополей, как и другие элементарные частицы, могут рождаться при столкновении частиц высокой энергии с веществом. Но какой энергии? Теория П. Дирака не отвечает на этот вопрос. Необходимая для рождения монополя энергия зависит от его массы, а о ней нам ничего не известно.

Итак, ни одного утешительного результата за двадцать лет непрерывных поисков этой частицы-призрака. За столь длительный срок ученые могли и охладеть к проблеме монополя.

Но вот что сказал несколько лет назад сам автор теории монополя П. Дирак: «После того как я установил существование позитрона, я пришел к мысли о существовании новой частицы — магнитного монополя. Это обосновывается замечательными по красоте математическими вычислениями, и мы будем счастливы, если окажется, что монополи действительно существуют в природе и великолепные математические расчеты будут иметь применение».

Нет, П. Дирак не отказался от своего предсказания. И появление шарообразного, похожего на спутник устройства на камере Серпуховского ускорителя — лучшее свидетельство тому, что поиски этой частицы продолжаются с неослабевающим интересом. Серпухов открыл новую страницу в летописи поисков монополей П. Дирака. Энергия, которую частицы приобретают в ускорителе, достаточна для создания монополей в пять раз тяжелее протонов.

В первых экспериментах в Серпухове группа физиков Института атомной энергии имени И. В. Курчатова помещала в поток протонов огромной энергии мишень, в которой, как предполагалось, и должны были рождаться монополи с разными знаками магнитных зарядов. Магнитное поле ускорителя должно было отклонять их в противоположные стороны, где находились накопительные пленки из ферромагнитного вещества. Через полтора года, в течение которых в них могли накапливаться монополи, пленки поместили в магнитное поле величиной более 2 · 105 эрстед. И опять неудача! Не было обнаружено ни одной частицы.

Эти эксперименты не были похожи на прежние поиски монополей в природе, напоминавшие розыски неизвестно где зарытого клада. Теперь ученые точно знали, где могли возникнуть таинственные частицы, но обнаружить их пытались, к сожалению, методом накопления, имеющим определенные недостатки.

Избавиться от них можно было только в том случае, если регистрировать монополи сразу, в момент их рождения. Вот такая установка и появилась на Серпуховском ускорителе. На этот раз в поисках частицы Дирака приняла участие интернациональная группа сотрудников Объединенного института ядерных исследований.

Любую заряженную частицу, движущуюся в веществе быстрее света, можно обнаружить по электромагнитному черенковскому излучению, названному так в честь автора открытия, лауреата Нобелевской премии академика П. Черенкова. Сейчас метод регистрации сверхбыстрых частиц по черенковскому излучению — один из основных в физике высоких энергий.

На этой идее и строился новый опыт. Был использован тот факт, что на Серпуховском ускорителе могли рождаться частицы со скоростью, близкой к скорости света в вакууме. Попадая же в вещество, такая частица испускает черенковское излучение. Из специального шлюза с помощью автоматики выдвигался и закреплялся в центре вакуумной камеры небольшой, тщательно отполированный конус из оптического кварца.

Пролетая сквозь кусок кварца — сердце черенковского счетчика, частицы, рожденные столкновением пучка протонов с кварцем, сразу должны высвечиваться в нем. А спрятанная под кожухом сложная оптическая система из линз и фотоумножителей — собирать и регистрировать этот свет.

Экспериментаторы наблюдали по телевизору за положением мишени, видели, как изумительно полыхала и переливалась она при встрече с протонным пучком. И казалось невероятным, что среди этого сияния фотоумножители могут уловить лучи, принадлежащие именно монополю.

Но физики не сомневались в этом. Их прибор со стопроцентной вероятностью мог обнаружить каждый монополь, возникающий в установке, ведь по теории, за которую академики И. Тамм и И. Франк получили Нобелевскую премию, магнитный заряд излучает в 104 раз больше света, чем любая другая заряженная частица.

Более того, монополь Дирака будет зарегистрирован, если он окажется нестабильным и возникнет лишь на короткий миг. «Я просто убежден, — говорил руководитель этого эксперимента кандидат физико-математических наук В. Зрелов, — что магнитные заряды существуют. Пока нет абсолютного теоретического запрета, а придумать такой запрет ничуть не проще, чем открыть монополь. Вы уже знаете, как рухнул ряд основных положений физики, может быть, догматических, в области слабых взаимодействий. Мне кажется, что в настоящее время положение таково, что чем жестче запрещающий теоретический принцип, тем яростней его атакуют физики-экспериментаторы. Я думаю, что кому-то все-таки повезет открыть монополь».

* * *

В 1972 году вступил в строй самый большой ускоритель протонов в Батавии близ Чикаго на энергию 400 Гэв. Новая машина — новые задачи?

Нет, задачи остались прежними, поскольку они все еще не решены. Уникальная установка В. Никитина со струйной водородной мишенью перекочевала вместе со своими создателями за океан для измерений в новой области энергий протонов. Более половины всех проектов экспериментов, предложенных для осуществления в Батавии, относится к поискам кварков и монополя Дирака. Продолжаются настойчивые поиски промежуточного бозона — переносчика слабых взаимодействий. Очень важны опыты с нейтрино недоступных ранее энергий, представляющие большой интерес для проверки новой теории слабых взаимодействий С. Вайнберга. Эту теорию один из ведущих теоретиков назвал самым крупным достижением за последние 15 лет. Усилия, как мы видим, сосредоточены на немногих узловых проблемах.

В 1969 году физик-теоретик Ю. Швингер еще более сузил круг экспериментальных задач, предложив гипотезу, по которой составной частью всех элементарных частиц является дайон. А как же кварковая модель материи?

И монополи и кварки в несколько раз тяжелее протонов и связаны с представлением о существовании новых видов материи. Ю. Швингер соединил «судьбы» этих двух частиц: проблему электромагнитных взаимодействий — монополь Дирака — он объединил с проблемой классификации элементарных частиц — кварками. Если монополь будет найден, сразу же прояснится, почему все электрические заряды кратны. Но в тот же миг исчезнет идея кварков, частиц с зарядом 1/3 и 2/3 заряда электрона.

Дайон, предлагаемый Ю. Швингером, спасает положение. Только дайон, частица с магнитным зарядом, может иметь, по теории, дробный электрический заряд.

Дробный электрический заряд этого гибрида совместим с целочисленным зарядом, кратным заряду электрона, элементарных частиц, не имеющих магнитного заряда. Если бы дайоны нашлись, то это помогло бы объяснить даже нарушение CP-симметрии в слабых взаимодействиях.

Смогут ли экспериментаторы дать четкие ответы на поставленные теоретиками вопросы? Достаточно ли их будет для построения новой теории элементарных частиц? Пока это неизвестно. Может быть, все решится в течение ближайших нескольких лет, а может быть, полученные ответы приведут к появлению нового круга вопросов. Ручаться можно лишь за «беспредельность непознанного и бесконечность радостного пути познания».

Недаром в финале копенгагенского «Фауста», написанного учениками Н. Бора и исполненного на «капустнике», завершившем конференцию теоретиков в 1932 году, Мефистофель говорил:

Эксперимент — как откровенье: Пусть в нем теорий ни крупицы, Зовет нас к новым размышленьям Природы новая страница.