Раньше и теперь

В чем тайна «ремесла» современных физиков-экспериментаторов?

Раньше далекий от науки человек мог, стоя за спиной Резерфорда, легко представить себя участником открытия атомного ядра, наблюдая за редкими вспышками-звездочками на сцинтилляционном экране. Ну так же, как, следя за работой чеканщика, мы можем вообразить себя его соучастниками, потому что видим все его последовательные операции.

Чедвик в решающем эксперименте открытия нейтрона использовал один-единственный прибор — ионизационную камеру. Появление электрического импульса на ее выходе соответствовало попаданию в камеру заряженного протона. Наглядность опыта здесь меньше, чем при работе со сцинтилляционным экраном, но все же достаточно большая. Стоило отнести в сторону источник альфа-частиц или убрать расположенный перед камерой кусок парафина, из которого вылетали протоны, выбитые нейтронами, и механический счетчик замолкал.

Э. Резерфорд делал великие открытия с помощью примитивного оборудования, которое зачастую сам же и изготовлял чуть ли не из консервных банок. Физики тогда работали не с ускорителями — их еще не было, — а с радиоактивными источниками, имея дело максимум с двумя сортами частиц. И какие это были «удобные» частицы! Стабильные, как электроны и протоны, или долгоживущие, как нейтроны. Их регистрация не доставляла никаких затруднений: они отличались друг от друга по степени производимой ионизации. Даже новичок без труда отличил бы альфа-частицу от электрона по величине импульса из ионизационной камеры.

Но простота экспериментов начала века была кажущейся. При всей примитивности оборудования опыты по открытию атомного ядра и элементарных частиц были невероятно трудны тем, что связывались с самыми первыми шагами в исследовании микромира. Материя неожиданно представала перед учеными в совершенно новом качестве. Трудно было ориентироваться без компаса-теории в этом безбрежном океане непознанного. Квантовая механика только нарождалась, а о теории элементарных частиц еще не было и речи. Проложить правильный курс в этих сложнейших условиях было под силу лишь крупнейшим физикам нашего столетия.

Теперь центр тяжести в экспериментальной физике высоких энергий переместился скорее в воплощение уже известного по идее эксперимента. Исследуемые объекты так сложны, что «простых» методов для их изучения просто не существует. Сейчас любой эксперимент в физике высоких энергий настолько же сложнее первоначальных, насколько атомные часы сложнее солнечных. И работа физиков-экспериментаторов давно уже утратила привлекательность первоначальной простоты.

Только в памяти ветеранов науки остались те, не такие уж далекие времена, когда «судьбу физического эксперимента решал один хороший стеклодув, а наличие в лаборатории токарного станка считалось основанием для оптимистических прогнозов».

Создание уникальной установки — а именно такой и является современная «рядовая» установка — требует огромных материальных ресурсов. Ее стоимость достигает нескольких миллионов рублей. Поэтому каждая работа, которую проводят, например, на Серпуховском ускорителе, прежде всего обсуждается на ученом совете Института физики высоких энергий. И только после полученного «добро» экспериментаторы непосредственно приступают к созданию необходимой установки.

А это, прямо скажем, задача чрезвычайной трудности. И решить ее могут только те, кто владеет главной тайной своего ремесла, кто сочетает большие знания о свойствах и поведении элементарных частиц с высоким экспериментальным мастерством.

Купание в жидком водороде

Проверка теоремы Померанчука с помощью ка-ноль-мезонов (цель эксперимента) не гениальное открытие, а, как сказал руководитель группы И. Савин, «совершенно прозрачная вещь. Больше пятнадцати лет назад, как только была понята природа этих частиц, стало ясно, как с их помощью можно проверить основы теории. Но предполагаемый эксперимент был столь сложен, что лишь современный уровень развития экспериментальной техники сделал эту идею практически выполнимой».

Установка для проверки этой фундаментальной теоремы создана в Серпухове. Более десяти секунд понадобилось бы даже мастеру спорта, чтобы добежать от места рождения тяжелых нейтральных частиц в вакуумной камере ускорителя до конца всего экспериментального комплекса, растянувшегося почти на 100 метров в длину. Мы же давайте пройдем это расстояние спокойно, не торопясь, останавливаясь у самых главных узлов установки.

На первых пятидесяти метрах с нейтральными каонами ничего особенного не случается. Они проскакивают через несколько отклоняющих электромагнитов и магнитных линз, убирающих посторонние частицы, и ныряют в коллиматоры, формирующие их в пучок.

Мезонный канал, вдоль которого мы проходим дальше, «бережно» доводит максимально возможное количество частиц до мишени из жидкого водорода. Что происходит с долгоживущими ка-ноль-мезонами после купания в жидком водороде?

Относительно частиц с малой энергией было известно, что они обязаны превратиться в короткоживущие ка-ноль-мезоны. А теперь предстояло узнать, как поведут себя те же долгоживущие ка-ноль-мезоны, но уже с огромной энергией вламывающиеся в мишень. Если справедлива теорема Померанчука и частицы и античастицы, из которых состоят ка-ноль-мезоны, при больших энергиях практически одинаково взаимодействуют с протонами мишени, то короткоживущих мезонов должно появиться значительно меньше.

Физики предъявили массу требований к состоянию водорода в мишени. Он должен был иметь и постоянную температуру, и постоянную плотность, но самое главное — ни в коем случае не кипеть! Пузырьки, пронизывающие всю толщу мишени, — страшный враг, потому что исподволь меняют ее толщину, а учесть это изменение пока что невозможно. Не так-то просто удовлетворить всем этим требованиям даже в том случае, если объем жидководородной мишени невелик. Но в этом опыте для увеличения вероятности столкновения каонов с протонами необходимо было работать с мишенью длиною в три метра!

Трехметровую трубу из нержавеющей стали, наполненную жидким водородом, поместили в другую, диаметром около полуметра, и для предотвращения кипения откачали воздух из зазора между ними.

Но тогда возникла новая трудность. По условиям опыта нельзя чинить дополнительных препятствий ка-мезонам перед входом и выходом из мишени. А эти препятствия были в виде плотных торцевых стенок. Окна мишени пришлось закрыть лавсановыми пленками толщиной 120 микрон. Но тоненькая пленка прогибалась под давлением жидкого водорода в сторону вакуума. А допустить этого никак было нельзя — ведь из мезонного канала выходил пучок частиц, диаметр которого достигал нескольких сантиметров. Значит, для разных частиц длина водородной мишени была бы неодинаковой, а результаты эксперимента — неоднозначными.

Решение, как всегда, пришло неожиданно и оказалось совсем простым. Окна мишени сделали из двух слоев лавсана. Во внутренней пленке прокололи маленькую дырочку так, чтобы давление по обе стороны этого окна выравнивалось, а жидкий водород в просвет между окнами не проникал. Оригинальная конструкция окон и специально созданный для этой мишени стабилизатор давления позволили продолжительное время поддерживать количество водорода на пути частиц постоянным с точностью до 0,05 процента.

Молния в коробке

Миновав мишень с ее сложным криогенным хозяйством и двумя пультами управления, мы добираемся до места, где у физиков как будто остается одна-единственная задача. Здесь, в трех метрах от конца мезонного канала, надо просто подсчитать количество короткоживущих нейтральных мезонов, появляющихся из мишени. Их число прямо соответствует разности вероятностей взаимодействия ка-ноль- и анти-ка-ноль-мезонов с водородом. Не правда ли, кажется, ничего сложного здесь нет?

Но тяжелые короткоживущие ка-ноль-мезоны лишь на мгновение появляются из мишени и тотчас же распадаются на более легкие пи-плюс- и пи-минус-мезоны. И в этом главная трудность эксперимента. Теперь надо не просто зарегистрировать две новые частицы, но и доказать, что они ведут свое происхождение от первичного каона — короткоживущего ка-ноль-мезона. А решать эту задачу приходится в присутствии бесчисленного множества посторонних фоновых частиц, летящих как от ускорителя, так и от мишени.

По углу между пи-мезонами и по их энергии можно найти массу частицы-родительницы. Если она совпадает с массой ка-ноль-мезона, значит, вполне вероятно, что эти заряженные частицы те самые, на которые распался каон, то есть пи-мезоны. Для полной уверенности сравнивают направление движения частицы, подозреваемой в идентичности с ка-ноль-мезоном с направлением мезонного пучка, падающего на мишень. Оба эти направления должны совпадать.

Для всех этих измерений нужна такая экспериментальная установка, которая в миллиардные доли секунды среди миллионов частиц «узнала бы» нужные физикам и зафиксировала бы их координаты в пространстве с точностью до долей миллиметра! Хорошо бы еще видеть пролетающие частицы! Конечно, элементарные частицы увидеть нельзя. Но их следы — треки — ученые уже давно научились делать «видимыми» в фотографических эмульсиях. (Эмульсиями с успехом пользовались еще на заре развития физики микромира. С успехом пользуются ими и сейчас. Блок, или, как говорят физики, «ведро эмульсии», будет участвовать в опыте по обнаружению монополя Дирака на ускорителе в ЦЕРНе.)

Но, увы, для проверки теоремы Померанчука такой прибор не подходит, ибо его работой невозможно управлять. В последние годы в физике элементарных частиц появился новый прибор — искровая камера. Многие физические задачи, в том числе и задача с ка-ноль-мезонами, не могли быть решены без применения этого прибора.

Устройство искровой камеры несложно. В герметической коробке, заполненной инертным газом, размещены на некотором расстоянии друг от друга металлические пластинки или проволочки. Заряженная частица, пролетая между пластинками, оставляет за собой сорванные с атомов электроны и заряженные ионы. Высокое напряжение, приложенное к пластинкам, сообщает этим атомным осколкам дополнительную энергию, и они приобретают способность, в свою очередь, выбивать электроны из атомов. Новые электроны и ионы делают то же самое, и в результате образуется лавина — канал из ионизированного газа. Теперь путь разряду открыт, и в тех газовых промежутках, где пролетела частица, происходит пробой: возникают яркие искры, которые и делают путь частицы видимым или доступным для автоматических измерений.

Крупный вклад в развитие этой новейшей методики внесли советские ученые. Им удалось вмешаться в процесс развития разряда. Укоротив высоковольтный импульс напряжения, подаваемого на пластины камеры, они сумели остановить его в стримерной стадии, когда электрическое поле успевает создать только зародыши зарядовых лавин — стримеры. Это дало возможность очень точно измерять координаты трека при прохождении частицы под любым углом к направлению пластин.

За создание стримерной искровой камеры в 1970 году группа ученых Института физики АН Грузинской ССР под руководством Г. Чиковани и совместная группа ученых Физического института АН СССР и Московского инженерно-физического института под руководством доктора физико-математических наук Б. Долгошеина была удостоена Ленинской премии.

Несмотря на все достоинства искровой камеры, искры в ней отмечали путь не только «наших» пи-мезонов, но и любых других заряженных частиц. Как же заставить искровую камеру не реагировать на посторонние частицы?

Единственная возможность состояла в том, чтобы включить ее именно для тех частиц, которые «происходят» от нейтральных ка-ноль мезонов. Почти сорок метров установки для проверки теоремы Померанчука заставлены сложными приборами. Они понадобились для того, чтобы воплотить эту возможность в действительность. Экспериментаторы хорошо представляют себе геометрию траекторий пи-мезонов от распада короткоживущего ка-ноль-мезона до конца всей огромной установки.

Девять искровых камер до магнита и столько же после него необходимы для достаточно точного фиксирования координат частиц в пространстве. Говоря языком чисел, эта система в состоянии обнаружить изменение в координатах, равное 1 миллиметру, на расстоянии пяти метров!

Но если не управлять работой искровых камер, то они постоянно будут забиты треками фоновых частиц, и найти среди них интересующие нас просто невозможно. С другой стороны, заранее нельзя угадать, какую из частиц, попадающих в установку, надо регистрировать, а какую нет. Необходим хоть какой-нибудь запас времени, чтобы разобраться во всех этих частицах.

Здесь-то и приходит на помощь самое главное качество искровой камеры. Если через нее пролетела заряженная частица, то между ее металлическими пластинами образуется дорожка из ионов и электронов. Но она остается невидимой до тех пор, пока не включено высокое напряжение. В течение миллионной доли секунды пролета частицы расположение атомных обломков в пространстве не успевает измениться. Поэтому камера, включенная даже с такой задержкой, еще способна сделать видимым ее путь.

Итак, у физиков выкроилась целая микросекунда. За это время они должны ухитриться не только опознать «свои» частицы, но и дать приказ о включении искровых камер.

От монолога к диалогу

Насколько же теперь условия работы экспериментаторов отличаются от тех, что были лет тридцать назад!

Тогда между исследователем и прибором шел неторопливый разговор, состоящий из длинных монологов. Помните, как Э. Резерфорд, заполняя камеру поочередно воздухом, азотом, водородом, спокойно подсчитывал количество вспышек от вылетающих из камеры ядер водорода. Д. Чедвик сначала измерял число протонов, выбиваемых нейтронами из парафина, потом убирал парафин и не торопясь убеждался, что теперь протонов нет.

Такие темпы «разговора» в современном эксперименте физики высоких энергий просто немыслимы. Теперь необходим оживленный диалог, и по возможности без пауз.

В арсенале экспериментаторов давно находится прибор — сцинтилляционный счетчик. Заряженные частицы, попадая в него, возбуждают световую вспышку, которую чувствительная лампа-фотоумножитель тотчас превращает в электрический импульс. С помощью этого счетчика по амплитуде импульса можно легко отличить протоны от электронов и мезонов, если энергии их невелики. Правда, у релятивистских частиц, движущихся почти со скоростью света, все импульсы одинаковы, и по ним невозможно определить «сорта» частицы. Но экспериментаторы, работающие в физике высоких энергий, увидели в этом приборе одно ценное качество: сигнал от каждой пролетевшей частицы поступает от сцинтилляционного счетчика очень быстро, за 10–9 секунды, как раз то, что нужно.

Итак, на протяжении всей установки расположили около 50 сцинтилляционных счетчиков. Их поместили перед искровыми камерами, перед магнитом и за ним. Счетчики установили так, что частицы, которые необходимо зарегистрировать, обязательно должны были пролететь через них. Теперь по порядку поступления импульсов, который соответствует геометрии полета частицы через установку, можно найти пи-мезоны, образовавшиеся от распада нейтральных каонов, и дать команду искровым камерам, чтобы они включились для регистрации.

Но легко сказать — найти пи-мезон! Человеку, даже самому расторопному, не под силу сделать все это за доли секунды. Поэтому вместо него работают специальные электронные «логические» схемы. В течение миллиардной доли секунды они успевают проанализировать импульсы всех сцинтилляционных счетчиков, и если две частицы одновременно «чиркнули» по всем счетчикам в заданном порядке, электронная схема «считает» их искомыми частицами и «разрешает» запуск камер. И тогда в тех местах каждой камеры, где пролетела частица, возникает искровой разряд. В виде электрических импульсов с многочисленных проволочек каждой из 18 камер начинает поступать информация о координатах (x и y) траектории частицы в данной точке пространства.

Ну вот мы и прошли все метры, на которые протянулись мезонный канал и сама экспериментальная установка для регистрации короткоживущих ка-ноль-мезонов, возникающих в жидководородной мишени.

Но увиденное нами еще не исчерпывает списка всех важнейших узлов установки. В стороне от нее в «экспериментальном домике», где исследователи могут находиться во время работы ускорителя, стоят стойки с несколькими сотнями блоков электронной аппаратуры, начиненные десятками тысяч транзисторов, куда приходят все импульсы от установки. А еще в одном помещении расположено устройство, куда стекается вся информация. Здесь происходит контроль за работой одновременно всех приборов и каждого из них в отдельности. Без этого контроля установка, соединяющая в себе все самое передовое в экспериментальной науке и технике, превратилась бы просто в выставку современной аппаратуры. Конечно же, это электронно-вычислительная машина.

«Раньше, до разработки методики проведения экспериментов на линии с ЭВМ, — сказал И. Савин, — ставить такие опыты было бессмысленно». Объем информации опыта так велик, что даже вычислительная машина, напрягая до предела свою «память» и выжимая максимальную скорость, едва успевает принять и записать на магнитную пленку сведения о траекториях нужных частиц.

Окончен очередной сеанс работы на ускорителе. Физики возвращаются с ценнейшим грузом экспериментальных результатов, зашифрованных в магнитных пленках. Наступает новый этап работы, когда ученым нужен не ускоритель, а другая ЭВМ для обработки «полуфабриката» информации.

В главном вычислительном центре Дубны стоит мощная и быстрая вычислительная машина. По специальной математической программе «реконструкции» она восстанавливает из отрезков траекторий всю картину распада короткоживущих нейтральных ка-ноль-мезонов. Машина сама находит точку распада, угол между пи-мезонами, энергию этих частиц по отклонению в магнитном поле.

И когда все события, связанные с каонами, возникающими в жидководородной мишени, будут восстановлены и их характеристики в удобном виде записаны на новые магнитные пленки, пленки пойдут на дальнейшую обработку.

Несмотря на то, что логические схемы добросовестно выполняли свои обязанности, некоторые из зафиксированных событий, только внешне похожих на ту ядерную реакцию, для поисков которой и создана эта сложная экспериментальная установка, могут оказаться случайными. Поэтому последнее слово опять предоставляется физикам.

Пленки с результатами, полученными интернациональной группой физиков под руководством И. Савина, были продублированы и окончательно обработаны в Дубне, Праге и Будапеште.

Несколько лет напряженной работы большого коллектива ученых потребовалось для проверки теоремы Померанчука на протонах, нейтронах и ядрах изотопа водорода — дейтерия. Важнейшая теорема современной физики подтвердилась: чем больше энергия частиц, тем меньше разница в поведении между этими частицами и их античастицами.

Мишень — струя водорода

«Говорят, что идеи дорого стоят. Это верно. И все же в нашей практике чаще всего „драма идей“ разыгрывается не в высокой сфере духа, а в плоскости их реализации», — считают экспериментаторы.

Если для эксперимента с каонами потребовалась уникальная по своим размерам и качеству мишень, вмещающая довольно большое количество водорода, то для опытов по рассеянию протонов на протонах, выполненных в Серпухове под руководством В. Никитина, понадобилась сверхтонкая мишень с плотностью в миллионную долю грамма на один кубический сантиметр.

Любая оболочка, в которую заключили бы такую мишень из газообразного водорода, безнадежно испортила бы все результаты. А изюминка эксперимента как раз и заключалась в том, чтобы посмотреть, как ведут себя быстрые протоны при столкновении с мишенью из чистого водорода. И в лаборатории высоких энергий ОИЯИ впервые в мире была создана уникальная струйная водородная мишень, работающая внутри камеры ускорителя.

Сейчас даже самим создателям этого оригинального устройства трудно сказать, кого было больше вначале — сторонников или противников этой идеи. В ее реализации сомневались даже крупные ученые, и не без оснований.

Протоны в Серпуховском ускорителе набирали энергию в 70 миллиардов электрон-вольт. Они двигались по замкнутому кольцу вакуумной камеры, тщательно откачанной до давления в 10–7 миллиметра ртутного столба. И стоило вакууму хоть немного испортиться, как количество ускоряемых протонов резко уменьшалось: сталкиваясь с частицами воздуха, они попадали на стенки камеры и выбывали из процесса ускорения. Их движение напоминало беспорядочные движения шайбы под ударами клюшки начинающего хоккеиста.

И при таких жестких условиях по вакууму нужно было регулярно впрыскивать в камеру такое количество водорода, что его хватило бы на увеличение давления во всем объеме ускорителя. А резкое нарушение вакуума в камере ускорителя во время эксперимента привело бы к электрическим пробоям в высокочастотных устройствах, и уникальный ускоритель на длительное время был бы выведен из строя.

Задача, которую поставили перед собой конструкторы, напоминала ту, что возникла перед героем восточной сказки, когда он неосторожно распечатал бутылку с заключенным в ней джинном. Но чтобы не попасть в ситуацию, аналогичную сказочной, они решили впустить джинна — струю газообразного водорода — в вакуумную камеру, заготовив с противоположной стороны другую «бутылку» — вакуум-насос.

Раз за разом ставили сотрудники криогенного отдела лаборатории высоких энергий ОИЯИ опыты на моделях, прежде чем высокий вакуум и плотный поток газа перестали противоречить друг другу и начала вырисовываться конструкция будущего устройства.

Струя газообразного водорода, выпущенная из специального устройства со сверхзвуковой скоростью, пересекала пучок быстрых протонов внутри камеры ускорителя — и в этот момент она играла роль мишени. А затем попадала в «горлышко» гелиевого конденсационного насоса, действительно похожего на широкую бутылку. В доли секунды он укрощал впущенного в камеру джинна, превращая готовый распространиться во все стороны газ в неподвижный и совершенно неопасный водородный иней.

И вот в марте 1968 года наступил день, когда работники транспортного отдела ОИЯИ начали перевозку готовой установки в Серпухов. Одной из первых она появилась в огромном, еще пустом зале ускорителя. Началась напряженная многомесячная работа по подготовке аппаратуры к работе на новой машине. И наконец наступили дни круглосуточных измерений, непрерывных экспериментов.

Пока физики занимались обработкой полученных результатов, инженеры-конструкторы продолжали улучшать методику струйных мишеней. Надо было добиться меньшей ширины струи для того, чтобы ликвидировать ошибки в определении углов вылета вторичных частиц при взаимодействии ускоренных протонов с мишенью. Кроме того, струйная мишень оказалась для некоторых экспериментов все-таки недостаточно плотной, из-за чего увеличивалось время работы на ускорителе.

Выход был найден. Струю уплотнили, перейдя от сверхзвуковой струи газа к потоку более медленно движущихся капелек жидкого водорода и твердых его частичек. Ширина новой мишени из сконденсированного водорода стала в 4 раза меньше, плотность увеличилась в десять раз, а количество впускаемого в ускоритель газа сократилось в 2–3 раза.

Группа В. Никитина с несколькими сотрудниками криогенного отдела, принимавшими участие в создании струйной мишени, весной 1972 года выехала в Америку. Они провели эксперименты с новым уникальным устройством на только что запущенном в Батавии самом мощном ускорителе в мире при энергии 400 Гэв.

Результаты первых измерений, полученные на этой установке, уже докладывались летом 1972 года на конференции по физике высоких энергий в Батавии.

«Индустриальная» наука

Экспериментальный зал современного ускорителя. Стометровая установка, работающая совершенно автоматически под ровное гудение электромагнитов. Не похоже ли это на завод с автоматической поточной линией? С той лишь разницей, что к заводской линии можно подойти в любой момент и подрегулировать, если что-то разладилось. А для физиков эта проблема связана с выключением ускорителя. И, кроме того, они не видят своими глазами обрабатываемые их установкой «детали».

Обычно поточная линия обслуживается несколькими операторами. Точно такая же картина и здесь. Например, в опыте по проверке теоремы Померанчука за работой 50 сцинтилляционных счетчиков, 18 искровых камер и большого магнита круглосуточно присматривают четыре человека. Двое дежурят около электронных схем, которые принимают и передают экспериментальную информацию в вычислительную машину. А еще двое — непосредственно у ЭВМ, где можно проследить за подачей информации в машину и проверить работу отдельных счетчиков и всей установки.

ЭВМ — сердце современных экспериментальных устройств. Физики уже давно используют вычислительные машины. Но раньше они применялись лишь на стадии обработки результатов. Теперь на крупнейших ускорителях им поручается «дирижирование» самим экспериментом.

Любопытно признание руководителя одного из самых интересных и важных экспериментов, проведенных в Серпухове, В. Никитина: «Экспериментальную физику сейчас невозможно представить себе без ЭВМ. Поразительно, как быстро меняется психология человека. Всего десять лет назад многие из нас изредка заглядывали в зал „старушки“ М-20, присоединяясь к какой-нибудь экскурсии. Насмешливая улыбка кривила губы при виде бисера цифр восьмеричного машинного кода… А теперь без всего этого жить не можем, любовь — до гроба!»

В Серпухове группа В. Никитина недавно закончила 700-часовой эксперимент. Машина БЭСМ-3М беспрерывно сортировала и записывала информацию. Если бы не помощь машины, то только на запись результатов эксперимента ученым потребовалась бы стопка тетрадей высотой в километр!

«Работа на современной большой ЭВМ, — говорил В. Никитин, — наслаждение. Особенно это относится к моментам, когда читающее устройство не съедает карты, магнитная лента не реверсирует, магнитофон не затирает персональную библиотеку, параллельная задача не выбрасывает вашу программу из-за недостатка места на магнитном барабане, а девушки-операторы с улыбкой сообщают, что, хотя ваше время истекло, они готовы добавить вам 30 секунд (разумеется, в счет завтрашнего сеанса)».

Не так давно физик-экспериментатор Альварец в нобелевской речи сказал, что «прошло то время, когда в статьях, подписанных одним физиком, можно было прочесть в конце: „Я хотел бы поблагодарить такого-то за разработку аппаратуры и получение большей части результатов“».

Теперь научные сотрудники, инженеры, программисты, квалифицированные лаборанты с высшим образованием — равноправные соавторы совместно проводимой работы. Статья о проверке теоремы Померанчука на мишени из водорода подписана 28 авторами! И среди них — несколько физиков, инженеров-электронщиков, специалистов по искровым камерам и сотрудников вычислительного центра ОИЯИ.

Конечно, это вовсе не означает, что в физике элементарных частиц не работают также и небольшие группы ученых. В этих группах благодаря идеям, генерируемым их руководителями, удается иногда с помощью довольно скромных средств добиваться блестящих результатов. Особенно это относится к физикам, работающим на ускорителях с энергией до 1 Гэв — 1 миллиарда электрон-вольт. Но на машинах с энергией от нескольких десятков Гэв и выше экспериментаторы вынуждены соединяться в большие группы. А в таком коллективе, работающем с применением современной заводской техники и вычислительных машин, существует ярко выраженное разделение труда.

«Поскольку исследования становятся массовыми, — говорил академик Б. Кадомцев, — нередко получается, что на долю одного научного работника приходятся довольно мелкие задачи. Это и есть определенный недостаток современной науки: появляется масса людей, которые вынуждены решать такие задачи».

Несомненно, характер работы каждого члена большого научного коллектива изменился. Но крупным группам стало по плечу решение таких научных задач, о которых не могли и мечтать ученые, работавшие в эпоху «ремесленно-мануфактурного» труда в науке.

Сотрудники больших групп, как правило, с удовольствием работают на сложных установках. Их энтузиазм подогревать не надо. Гораздо труднее приходится иному выпускнику, пришедшему в научное учреждение. Воспитанный на классических примерах истории физики, он даже не подозревает о существовании современной «большой» науки, где многочисленные коллективы заняты сложнейшей работой, результат которой ожидается через несколько лет. А он сам желает сделать что-то такое, что быстро привело бы его к открытию. И когда он в конце концов видит, что это просто невозможно, его охватывает чувство разочарования.

Почему же так происходит?

«Наука сейчас очень сложна, — считает академик Б. Кадомцев, — и достичь выдающихся успехов удается лишь немногим. Ясно, что, если студент, оканчивающий университет, наперед поставит перед собой такую цель, то скорее всего его ждет неудача. Он может в конце концов возвратиться к „юношескому максимализму“, но уже на иной основе — достаточно развив свои способности и убедившись в соответствии своих сил выдвигаемым перед собой целям».

Да, характер науки за последние три-четыре десятилетия сильно изменился. Однако «научные исследования сохранили свой старомодный дух неутомимого творческого поиска».

«Волшебная палочка»

Творческий поиск… Это он не давал покоя уже далеко не молодому отцу атомной физики Э. Резерфорду. К 1924 году ему удалось расщепить все легкие ядра, в которые могли проникнуть альфа-частицы, испускаемые радием. А что же дальше?

Известный ученый Ф. Астон писал в те годы: «Теперь наступил неизбежный период покоя в ожидании открытия новых орудий исследования». И конечно, этот застой наиболее остро переживал сам автор открытия атомного ядра. Ему нечем было «обрабатывать» лежащую перед ним «ядерную целину». Если б в его распоряжении были частицы больших энергий…

Э. Резерфорд попросил своего лаборанта Кэя выяснить: можно ли собрать систему батарей или динамо-машин для получения больших электрических полей?

Когда Кэй показал Э. Резерфорду стоимость такой системы — совершенно ничтожной по современным масштабам, — Э. Резерфорд отбросил проект, «подобно раскаленному кирпичу».

Нам, живущим в эпоху создания великолепных ускорителей, таких, как Серпуховской или в Батавии, трудно представить, что во времена Э. Резерфорда непреодолимой казалась проблема создания источников постоянного высокого напряжения.

Группа итальянских физиков пыталась использовать для ускорения частиц грозовые разряды в горах. Однако вести эксперименты с таким непостоянным источником напряжения было по меньшей мере неудобно.

И вот настал 1932 год, когда сотрудники Э. Резерфорда — «его мальчики» — Д. Кокрофт и Е. Уолтон получили пучок протонов, ускоренных в разрядной трубке до энергии почти одного миллиона электрон-вольт. Тогда это была крупнейшая победа. Впервые в истории физики можно было наблюдать ядерные реакции, вызванные искусственно ускоренными частицами. Можно понять восторженность Н. Бора, который в письме к Э. Резерфорду назвал это примитивное устройство «мощным средством» науки.

Так началась эра ускорителей в физике элементарных частиц.

Следующим важным шагом было создание Э. Лоуренсом кольцевого ускорителя — циклотрона, форму которого унаследовали и современные гигантские машины. Однако принцип работы циклотрона не позволял получать частицы с энергией выше нескольких десятков миллионов электрон-вольт. Поэтому можно считать, что история ускорителей, сыгравших огромную роль в познании микромира, начинается в 1944 году. В этом году советский ученый В. Векслер сообщил об открытии принципа автофазировки. Путь к высоким энергиям был проложен.

Теперь ускорители с энергией в несколько миллиардов электрон-вольт и выше стали играть роль «волшебной палочки», с помощью которой можно в любой момент создать «красочную феерию» из множества элементарных частиц.

Вспомните, как все это происходит. Ускоренные до огромной энергии протоны сталкиваются с мишенью, расположенной либо внутри вакуумной камеры, либо на выходе протонного пучка из ускорителя. И во все стороны разлетаются нейтроны, протоны, мезоны, резонансы…

К сожалению, не вся энергия сталкивающихся частиц расходуется на рождение новых. Масса быстрых, ускоренных протонов значительно больше массы протонов, находящихся в неподвижной мишени. И при их соударении значительная доля энергии протона-«снаряда» уходит на движение обеих частиц. А на рождение новых остается совсем немного. Только при встречной одинаковой скорости они могут всю свою энергию превратить в энергию взаимодействия. Но нельзя же передвигать мишень с околосветовой скоростью навстречу ускоренным протонам.

А почему нельзя? — задумались ученые. Игра стоит свеч: если скорости встречных частиц будут близки к скорости света, то эффект их взаимодействия может увеличиться не в 4 раза, как предсказывает механика Ньютона, а, например, в 4 тысячи. При столкновении двух электронов с энергией в миллиард электрон-вольт эффект их взаимодействия будет эквивалентен энергии ускорителя на 4000 миллиардов электрон-вольт!

Как же себе это представить? Может быть, это ускоритель без обычной мишени? А может быть, это ускоритель с мишенью, «раскрученной» до скорости света? Но тогда она превратится в такой же пучок ускоренных протонов. Так возникла идея ускорителя на встречных пучках.

Только не подумайте, что он состоит из двух ускорителей, стоящих напротив друг друга со скрещенными, словно рапиры, пучками. На самом деле это один и тот же ускоритель, который «накачивает» два металлических кольца, как велосипедные шины, летящими в противоположные стороны протонами.

Два переплетающихся кольца диаметром 300 метров — такова установка для встречных пучков, запущенная недавно в ЦЕРНе. Протоны, впрыснутые в кольца из обычного ускорителя с энергией 23 миллиарда электрон-вольт, взаимодействовали друг с другом как частицы с энергией в 50 раз большей — одна тысяча сто миллиардов электрон-вольт!

Ученые впервые наблюдали рассеяние протонов на протоне при такой недостижимой ни на каком классическом ускорителе энергии. Сложная система магнитов весом в 5000 тонн удерживала частицы на магнитной дорожке в камере длиною около 1000 метров и десять сантиметров в диаметре. Остается добавить, что все это устройство создавалось в течение 5 лет коллективом физиков, состоящим из 300 человек.

Но у новых ускорителей был один серьезный недостаток, свое слабое место. Ахиллесова пята таких ускорителей на встречных пучках — малая плотность подвижной мишени: второго пучка. Она в сотни миллионов миллиардов раз меньше плотности обычной неподвижной мишени. Вот почему ускорители эти начали строить недавно, хотя идея их создания известна уже давно.

«Столкнуть две частицы, — говорил академик Г. Будкер, — задача по сложности примерно такая же, как „устроить“ встречу двух стрел, одну из которых выпустил бы Робин Гуд с Земли, а вторую Вильгельм Телль с планеты, вращающейся вокруг Сириуса».

Физикам приходится добиваться того, чтобы пути частиц пересекались как можно чаще. Церновские кольца имеют такую геометрию, что протоны встречаются в восьми специальных участках.

В Институте ядерной физики Новосибирска под руководством академика Г. Будкера ведутся исследования встречных протон-антипротонных пучков. Строится установка, где будут встречаться протоны и антипротоны с энергией по 25 Гэв, что эквивалентно обычному ускорителю на 1200 Гэв. Скрестятся пути частиц материи и антиматерии. Есть надежда, что если кварки существуют и их масса не больше 25 масс протона, то они будут обнаружены.

«Сверхвысокие энергии — область только встречных пучков», — считает академик Г. Будкер. Поэтому уже сегодня физики Новосибирска обсуждают проект новой установки со встречными пучками протонов и антипротонов, соответствующей ускорителю с энергией 2 миллиона миллиардов электрон-вольт. Классический ускоритель на такую энергию имел бы диаметр земного шара, а его стоимость приблизилась бы к национальному доходу всей планеты.

Однако и ускорители на встречных пучках довольно сложные и громоздкие устройства. Да к тому же они связаны с обычным, классическим методом ускорения.

В 1956 году академик В. Векслер предложил совершенно новый способ ускорения элементарных частиц. До сих пор все машины рассчитывались на ускорение каждой отдельно взятой частицы. Хотя мы и говорим о пучке протонов, обсуждаем его плотность, но все эти протоны, бок о бок мчащиеся в вакуумной камере по магнитной дорожке, по сути дела, независимы друг от друга.

В. Векслер первый понял, что не нужно ускорять частицы по одной, что «вся сила — в коллективе». И высказал идею, которая показалась совершенно фантастической. Ее не поняли поначалу даже такие специалисты в области ускорителей, как Э. Лоуренс и Мак-Миллан.

Действительно, трудно представить, что можно ускорить, например, протоны электрическим полем, которое создается не внешними источниками, а сгустком электронов. Электроны с энергией всего в 1 Мэв уже движутся со скоростью, близкой к скорости света. Если же большой сгусток таких электронов захватит и увлечет за собой протоны, то через некоторое время их скорости сравняются. Но протоны в 2000 раз тяжелее электронов. Во столько же раз больше будет их энергия. Она достигнет нескольких миллиардов электрон-вольт.

Не исключено, что эта идея воплотится в новом методе получения специфических пучков частиц для исследований в ядерной физике.

Физика на расстоянии

В конце апреля 1953 года на съезде американского физического общества во время ленча в саду гостиницы познакомились два будущих лауреата Нобелевской премии — уже известный физик-экспериментатор Л. Альварец и никому не известный Д. Глазер очень сожалел, что никто не услышит его десятиминутного сообщения, потому что оно будет самым последним докладом на съезде.

«В то время, время тихоходных самолетов, — вспоминал Л. Альварец, — последний доклад на съезде слушало еще меньшее число людей, чем сейчас (если это только возможно). Я допускал, что, быть может, тоже не буду присутствовать на этом докладе, и попросил его объяснить мне то, о чем он собирается рассказывать. Так я впервые услышал от Д. Глазера об изобретении им пузырьковой камеры. Его работа оказала на меня сильнейшее впечатление, и я сразу же почувствовал, что это, возможно, как раз та спасительная идея, в которой так нуждалась физика элементарных частиц».

Искровых камер в то время еще не было, и экспериментаторы не знали, как им приступить к изучению только что открытых и озадачивших всех странных частиц — каонов и гиперонов. Ясно: чтобы исследовать такую реакцию, где при взаимодействии отрицательных пи-мезонов с протонами рождаются две нейтральные странные частицы, физику просто необходимо все увидеть своими глазами с начала и до конца. То есть найти то место, где обрывается след пи-мезона и через некоторый промежуток появляются две «вилки» из следов о заряженных частиц, на которые распадаются странные нейтральные частицы.

А проблема нейтрального сигма-гиперона? Именно реакция его распада послужила предметом шутки В. Вайскопфа на одной из научных конференций. Известный теоретик вызвал в аудитории веселье, показав абсолютно чистую фотографию, сделанную в камере Вильсона, и сказав, что она является доказательством распада новой нейтральной частицы сигма-гиперона на две другие, тоже нейтральные. Эта шутка хорошо отражала беспомощность экспериментаторов перед такого рода реакциями до изобретения пузырьковой камеры.

Фотографические эмульсии для изучения реакций, в которых есть обрыв — пустой промежуток, соответствующий пролету нейтральных частиц, — не годятся. Не годился и первый удачный трековый детектор: уже знакомая нам камера Вильсона.

Ее роль в истории познания микромира огромна. Еще в начале нашего века некоторые физики сомневались в существовании не только элементарных частиц, но даже и атомов. Камера Вильсона, в которой можно было видеть следы отдельных заряженных частиц и ионизированных атомов, положила конец всяким сомнениям. Н. Бор в письме к Э. Резерфорду прекрасно передает впечатления физиков того времени, впервые своими глазами увидевших превращение атомного ядра: «Когда узнаешь, что протон и ядро лития просто соединяются в альфа-частицу, чувствуешь, что это не могло быть иначе, хотя никто не отваживался так думать».

Экспериментаторы и по сей день не расстаются с этим прибором, но используется камера Вильсона для ограниченного круга задач. Пар, который в ней находится, имеет небольшую плотность, поэтому вероятность взаимодействия, например, отрицательных мезонов с протонами в объеме камеры очень мала.

Вот такая ситуация царила в экспериментальной физике в момент создания Д. Глазером нового трекового прибора — пузырьковой камеры. Коротко о ее принципе. В перегретой жидкости, находящейся в камере, пузырьки пара очень быстро растут вдоль пути пролетающей заряженной частицы. Они высаживаются на «шлейфе» из электронов и ионов, который оставляла за собой эта частица.

Камеру можно было наполнять разными жидкостями, подбирая их так, чтобы происходили те реакции, которые изучаются. Для исследования взаимодействия разных частиц с протонами камера наполнялась жидким водородом, который имеет значительную плотность. И в жидком водороде камеры можно было наблюдать всю цепочку реакции — от рождения и до распада любой элементарной частицы.

Пузырьковые камеры стали популярнейшим прибором во всех лабораториях мира. И нетрудно догадаться почему. Когда ускорители были менее мощными, в ядерных реакциях одновременно рождались две или три частицы. За ними всегда можно было уследить с помощью нескольких сцинтилляционных счетчиков. Но теперь, при больших энергиях, появилась возможность исследовать процессы множественного образования частиц — от пяти до четырнадцати разных наименований. В этом случае пузырьковые камеры — наиболее подходящий инструмент.

Во время беседы с Л. Альварецом на съезде американского физического общества Д. Глазер показал ему свои первые фотографии пузырьковых треков, полученные в стеклянном баллоне диаметром около 1 сантиметра и длиной в 2 сантиметра, заполненном диэтиловым эфиром. А уже спустя четыре года заработала пузырьковая камера диаметром 180 сантиметров.

Резонансы, успевающие пройти до распада путь в несколько ядерных радиусов, редкие реакции с рождением странных частиц — все это оказалось доступным «зоркому оку» пузырьковой камеры, непрерывно всматривающемуся в жизнь микромира. В 1960 году открытие Д. Глазера было отмечено Нобелевской премией.

Именно в двухметровой пузырьковой камере Брукхейвенской лаборатории был обнаружен знаменитый омега-минус-гиперон, что так сильно подняло акции авторов восьмеричного пути. В 1970 году в Аргоннской лаборатории специально для экспериментов с нейтрино была запущена жидководородная камера 3,6 метра длиной. Год назад во французском ядерном центре в Сакле была создана пузырьковая камера диаметром в 4,7 метра.

Современная пузырьковая камера — это завод с обширным вакуумным, энергетическим, газовым и электронным хозяйством. Прибор для исследования мельчайших кирпичиков материи концентрирует в себе все новейшие достижения физики низких температур, криогенной техники, растровой оптики и многих других разделов науки и техники.

Каждое такое устройство создается в течение многих лет большими коллективами научных сотрудников, специалистов-криогенщиков, инженеров и техников.

Треки, возникающие в жидком водороде камеры, фотографируются через окна, сделанные из оптического стекла, весящего несколько сотен килограммов. Когда строились первые камеры, проблема большого окна порой казалась непреодолимой. Л. Альварец, один из создателей первых больших пузырьковых камер, вспоминал: «Как-то, просматривая перечень докладов, представленных на недавнюю конференцию по криогенной технике, я обнаружил среди них один, который гласил: „Большое стеклянное окно для наблюдения за жидким водородом“. Сжигаемый нетерпением, я бросился разыскивать сам доклад, но в нем описывался металлический сосуд Дьюара с окном диаметром… в один дюйм!»

В лаборатории высоких энергий ОИЯИ в Дубне создана двухметровая жидководородная пузырьковая камера. «Людмила» — так назвали эту установку физики — потребовала напряженной работы большей части сотрудников всей лаборатории. По финансовым и трудовым затратам «Людмила» в 5–10 раз превышает затраты на сложный экспериментальный комплекс для работы с нейтральными ка-мезонами.

Зажатая в большом магните, окруженная со всех сторон многочисленными трубами и трубками, вспомогательными конструкциями, камера, скажем прямо, не производит особенно приятного впечатления. Не мудрено, что один из присутствующих на ее открытии спросил: «Зачем поэтическим именем назвали такое чудовище? Может быть, здесь сыграли роль те же соображения, по которым самыми красивыми женскими именами называют ужасные тайфуны южных морей?»

Директор лаборатории высоких энергий профессор А. Балдин объяснил это имя так: «Название камеры „Людмила“ возникло более или менее случайно, но оно многим понравилось: „Людмила“ — „милая людям“. Мы хотим, чтобы „Людмила“ приносила людям много радости научного творчества и настоящих крупных научных результатов».

Первого января 1970 года «Людмилу» в первый раз начали заполнять жидким водородом. Редкий эксперимент в области физики высоких энергий не нуждался в большом участии специалистов-криогенщиков. А в создании жидководородной пузырьковой камеры их участие было решающим. Поэтому первый пуск «Людмилы» проходил под руководством сотрудников криогенного отдела. Его начальник, доктор технических наук А. Зельдович, с почти документальной точностью описал самый волнующий момент запуска камеры:

«Камера почти полна. Стоп! Опять закупорка. Меняем фильтр. При первом запуске всегда что-нибудь „летит“. Продолжаем заливку. Начинают путаться дни и ночи. Наконец появился уровень жидкого водорода и достиг верхнего стекла. Запираем камеру. Греем. Дальше опять закупорка, и еще одна. Потом пришлось срочно перепаивать в пульте управления. И, наконец, включаем камеру на цикл. Два сотрудника упорно высматривают треки глазом. Но вот кончается монтаж системы фотографирования, и начинается съемка. Первый пробный кусок пленки. В оперативном журнале появляется запись: „8 января, 14.20, Шафранов обнаружил на пленке треки!!!“ Все ходят счастливые. Выполнена программа-максимум. Устанавливаем еще один экспериментальный факт — пробка от шампанского до потолка не долетает, только до мостового крана».

В феврале 1971 года камеру начали демонтировать для перевозки в Серпухов, в Институт физики высоких энергий. В течение полугода продолжался до предела напряженный труд по демонтажу, перевозке и сборке «Людмилы». Иногда до семи грузовиков в день отправляли из Дубны и соответственно принимали в Серпухове сотрудники отдела водородных камер.

Начальник установки вздохнул облегченно, когда в окно камеры благополучно вставили 700-килограммовое оптическое стекло. В сентябре «Людмила» возродилась из отдельных деталей на новом месте. Начались водородные испытания. Ученым предстояло вторично вдохнуть в камеру жизнь.

«Первым впечатлением, — вспоминал А. Балдин, — оставшимся у большинства людей, ознакомившихся с системами камеры, было: „Не может быть, чтобы это бесконечное число узлов и соединений безотказно работало, — слишком оно велико“».

«Во всяком случае, не может быть, чтобы после сборки все сразу заработало, — так не бывает» — это уже мнение некоторых известных специалистов, высказанное в категорической форме.

Но сразу, «без дыма», как иногда случается, заработал электромагнит — одна из наиболее крупных и важных частей всей установки. Он создает магнитное поле до 30 000 гаусс в шахте объемом 6 кубических метров, куда в «дьюаре» (термосе) опускается водородная пузырьковая камера.

Строго по графику и без сбоев прошел первый пуск камеры. Все системы установки работали безотказно. В конце сентября — начале октября «Людмила» уже работала в пучке протонов с энергией 35 миллиардов электрон-вольт, и на ней были получены первые фотографии ядерных реакций.

Теперь у физиков появились новые заботы: чтобы начать рабочие облучения, надо было прежде всего ликвидировать крупные и мелкие недоделки. Как ни привлекательна для физиков-экспериментаторов большая личина магнитного поля, она становится еще интересней, если точно измерена. Причем измерена в объеме водородной камеры при рабочих условиях — при температуре минус 248 °C!

Ленинградские специалисты сконструировали механизм, автономно работающий в корпусе собранной камеры по командам системы телеуправления. Согласитесь, условия работы этого прибора ненамного легче, чем у знаменитого лунохода.

14 января 1972 года в Протвине состоялось официальное открытие жидководородной камеры «Людмила». Академик Н. Боголюбов сказал: «В мире существует всего лишь несколько подобных камер. Однако эта имеет существенное преимущество. Это будет первая крупная установка подобного рода, работающая на самом большом в мире советском ускорителе заряженных частиц в Серпухове. Дубненская жидководородная камера даст возможность институтам и университетам социалистических стран, в том числе и Советского Союза, включиться в исследования элементарных взаимодействий и элементарных частиц при самых высоких энергиях, полученных на гигантском ускорителе. Ученые разных стран смогут получать и исследовать сотни тысяч снимков следов уникальных ядерных „событий“».

Возник даже термин — «физика на расстоянии», означающий, что физикой высоких энергий могут заниматься не только те, кто непосредственно работает на крупнейших ускорителях и установках, подобных «Людмиле». В пузырьковой камере, напоминающей завод не только по технической сложности, но и по количеству «продукции», делаются миллионы снимков в год, на которых «бесстрастно» и «непредвзято» — без всякого отбора — зафиксированы все элементарные частицы, попавшие в камеру, и все, что с ними произошло в ее объеме.

После первичной обработки этих фотографий на специальном просмотровом автомате вся содержащаяся в них информация записывается на магнитную ленту. В таком удобном виде «полуфабрикаты» информации, поступающие из большой камеры или из такого эксперимента, как опыт по проверке теоремы Померанчука, можно уже рассылать в самые различные институты. В этом факте видно рождение нового способа исследований как бы на расстоянии. «Физика на расстоянии» — так иногда называют сейчас этот способ — сможет в недалеком будущем приблизить к передовому фронту науки гораздо больше людей, занимающихся изучением микромира.

Ученый, работающий за многие тысячи километров от Серпухова, сможет обнаружить новые частицы, ядерные реакции или неизвестный раньше тип взаимодействия между элементарными частицами.