Охота за кварками

Чирков Юрий Георгиевич

9

Вселенная в электроне?

 

 

В ясную безоблачную ночь кто из нас, запрокинув вверх голову, не разглядывал усеянное звездами бездонное небо? Вот Большая Медведица. Полярная звезда, вон щедрая россыпь Млечного Пути… Созвездия, галактики, мир всевозрастающих расстояний. Где же конец этой веренице исполинов, когда за большим следует еще большее?

Что там, за космическим, галактическим горизонтом?

Бесконечна ли Вселенная или ограничена? Если размеры ее конечны, то как их измерить?..

Эти и подобные им волнующие вопросы задавал себе каждый.

Неожиданный, парадоксальный, ошеломляющий ответ дает академик-секретарь отделения ядерной физики АН СССР М. Марков. Бесконечно большое, казалось бы, неизмеримое он предлагает охватить… бесконечно малым!

 

«Там та же мировая спесь»

В каждой частице, какой бы малой она ни была, «есть города, населенные людьми, обработанные поля, и светит солнце, луна и другие звезды, как у нас». Анаксагор утверждал это еще в V веке до нашей эры.

Трудно согласиться с подобными утверждениями, весь наш чувственный, житейский опыт противится. В жизни наш удел — малые скорости, ничтожно малые по сравнению со скоростью света, и массы веществ, в неизмеримое число раз превышающие массу атомов и исчезающе малые по сравнению с массами звезд.

Меру огромного дает нам космос. Даже невооруженным глазом человек может различить на всем (оба полушария) небе 6 тысяч звезд. Но это число начинает бешено расти, если наше несовершенное зрение усилить астрономическими трубами, оптическими телескопами, радиотелескопами.

Тут уж в одном лишь Млечном Пути человеку удалось бы различить, как показывают оценки, примерно 200 миллиардов звезд. А надо бы еще учесть, что галактик, подобных нашей, в космосе, утверждают астрономы, можно насчитать до 10 миллиардов!..

Звездные бездны страшили французского ученого и философа Б. Паскаля (1623–1662). Он много размышлял о месте человека («мыслящего тростника», как он его называл) в этом беспредельном мире. Б. Паскаль говорил:

«Что такое человек в природе? Ничто в сравнении с бесконечностью и все в сравнении с ничем. Это середина между ничем и всем…»

Да, для нас малое — это атом, а большое — «толщи» Вселенной. И по старинке мы упрямо строим большое из малого.

Пока эту идею исповедует большинство. И только отдельные люди — ученые, поэты, философы, мечтатели — восстают против очевидности.

В XVII веке мысли Анаксагора о вложенных мирах повторил немецкий философ и математик Г. Лейбниц (он вместе с И. Ньютоном, независимо, заложил основы дифференциального и интегрального исчислений). Он также считал, что в каждой, даже «наименьшей части материи существует целый мир созданий, живых существ, животных…».

Эти взгляды Г. Лейбница и других мыслителей — вскоре пришла эпоха микроскопов, потрясенные натуралисты увидели за линзами сложные структуры, целые неведомые миры! — ядовито высмеял в стихах Д. Свифт.

Он писал:

Натуралистами открыты У паразитов паразиты, И произвел переполох Тот факт, что блохи ость у блох. И обнаружил микроскоп. Что на клопе бывает кяоп, Питающийся паразитом, На нем другой, ad infinitum…

Но вопреки всем этим насмешкам многие биологи упрямо полагали, что яблочное семечко заключает в себе крошечную яблоню — целое дерево с плодами, внутри которых опять-таки находятся еще более крохотные яблоньки. И так до бесконечности.

Подобной игре воображения предавались и некоторые физики. И даже в не очень отдаленные времена, когда Н. Бор предложил планетарную модель атома.

Ход мысли его был таков: электроны — планеты атомной системы — населены чрезвычайно малыми живыми существами, которые возводят свои домики, обрабатывают почву и изучают свою атомную физику. И на каком-то этапе они обнаруживают, что и их атомы также являются маленькими планетными системами…

А в начале нашего века В. Брюсов в стихотворении «Мир электрона» (этот маленький шедевр датирован 13 августа 1922 года) писал — смотри эпиграф к этой главе — про электроны, где скрыты целые вселенные и живут существа, подобные нам. Вот продолжение этого стихотворения:

Их меры малы, но все та же Их бесконечность, как и здесь; Там скорбь и страсть, как здесь, и даже Там та же мировая спесь. Их мудрецы, свой мир бескрайний Поставив центром бытия, Спешат проникнуть в искры тайны И умствуют как ныне я…

Как относиться к подобным представлениям? Объявить вздором, нелепицей? Давайте не будем торопиться с выводами. Ученые уже много раз показывали, как относительны понятия «большого» и «малого».

 

Эстафета великих открытий

В 1915 году была создана общая теория относительности.

Было показано, что геометрические свойства пространства реального мира существенным образом зависят от того, как распределена в нем материя. Другими словами, было установлено: окружающий нас мир, подобно изогнутому листу бумаги, обладает кривизной, и эта кривизна связана с гравитационным полем.

Простой пример. Мы привыкли, так учит в школе геометрия Эвклида, что сумма углов треугольника равна 180 градусам, или, если углы измерять в радианах, равна числу π. Но это верно лишь для Эвклидовой геометрии.

В неэвклидовых — сумма углов треугольника может быть и больше (пространства с положительной кривизной) и меньше (пространства с отрицательной кривизной) числа π.

По Эйнштейну, вид геометрии в конечном итоге определяет плотность вещества, распределение материи в пространстве. Если плотность достаточно велика, то, скажем, отношение длины окружности к диаметру перестает быть равным π. Это отношение может даже стать равным нолю, а изучаемая система при этом превратится… в крохотную точку.

В 1922 году ленинградский математик А. Фридман, анализируя уравнения общей теории относительности, сделал сенсационное открытие. (Широта интересов А. Фридмана поразительна: он имел звание летчика — в 1914 году добровольцем ушел на фронт и получил за храбрость «Георгия», — занимался теорией бомбометания, метеорологией — в 1925 году с научной целью поднялся в аэростате на рекордную для того времени высоту 7400 метров… А. Фридман любил повторять слова Данте: «Вод, в которые я вступаю, еще не пересекал никто». Жаль, что этот так много обещавший ученый скончался так рано: в Крыму, куда он приехал отдыхать, он заразился брюшным тифом и умер в возрасте 37 лет.)

А. Фридман обнаружил, что уравнение Эйнштейна имеет решения, которые описывают необычный мир — замкнутый. Под действием гравитации в отдельных участках Вселенной материя может «схлопнуться», образовав самозамкнувшееся пространство.

Как представить себе это необычное явление?

Возьмем шар и вообразим, что мы из землян превратились в «сферян», ползающих по поверхности шара и ничего не подозревающих о существовании третьего измерения.

Поверхность сферы образует особый двухмерный мир.

Он замкнут и в то же время безграничен — ведь по поверхности шара можно двигаться в любом направлении, не опасаясь наткнуться на какую-то неодолимую преграду.

Сферяне не догадываются о трехмерности их мира.

Но они могут ставить опыты и, допустим, решили опытным путем проверить, безгранична или же ограниченна их Вселенная. Они начинаю! чертить на поверхности сферы окружности. И вот, к их великому удивлению, длина окружности, все возрастая по мере удаления от того места, где находятся сферяне-экспериментаторы, достигает максимума (на экваторе), а затем (поразительно!) начинает неуклонно уменьшаться, вплоть до ноля.

Это бы и означало для сферян, что их мир замкнут.

Самосхлопывающийся мир Фридмана устроен подобным же образом. Только мы, люди, возможно, «ползаем» по поверхности уже не трех-(сферяне), а некого четырехмерного шара.

Радиус замкнутого мира зависит от его массы. Чем масса больше, тем больше и радиус, вмещающий эту массу «вселенной».

Замкнутый мир с массой, равной массе Солнца, имел бы радиус всего около 300 метров. А вот размер замкнутого мира с массой, близкой к массе известной нам части нашей Вселенной, составляет уже что-то около 1023 -1024 километров. Чтобы пересечь такой мир, световому лучу потребовалось бы более 10 миллиардов лет!

Свойства очень больших замкнутых миров практически не отличаются от свойств «плоского» (с Эвклидовой геометрией), не обладающего кривизной мира. И его жителям трудно догадаться о замкнутости их Вселенной и о том, что есть еще и другие, неведомые им миры.

Различные замкнутые миры полностью отделены друг от друга. Никакой связи между ними быть не может. По отношению ко всем остальным каждый из замкнутых миров является «абсолютным ничто», точкой, лишенной размеров, массы и всех других мыслимых физических свойств. Но для живущих в этом замкнутом мире существ их собственный мир — это бескрайняя Вселенная.

Вот так и возникает близкое соседство между нолем и бесконечностью!

В этой эстафете великих научных откровений следующий шаг, уже в наши дни, сделал академик М. Марков. Он высказал идею о том, что если замкнутую систему «подпортить» внесением электрического заряда, то она «откажется» быть полностью замкнутой. Возникнут (они, видимо, более часты в природе) «полузамкнутые миры», которые отличаются от замкнутых тем, что связаны с «внешним» пространством тонкой «горловиной».

Внутри горловины поле тяготения настолько велико, что Даже свет не в состоянии вырваться наружу. Снаружи же полузамкнутый мир должен казаться точечных размеров элементарной частицей.

Вот так и родилась мысль о том, что для «внешнего» наблюдателя, возможно, вся наша Вселенная с недоступными галактиками, с миллиардами звезд и планет, Вселенная с ее холодом беспредельности, так пугающей и принимающей человека, — все это, может быть, лишь крохотная частица размерами, допустим, с электрон!

Подобные частицы в честь Фридмана М. Марков назвал «фридмонами».

 

Проделки гравитации

Фридмоны — не порождение ли это фантазии ученых, подобной фантазии поэтов? Вовсе нет! Без всяких натяжек и дополнительных, гипотез система уравнений Максвелла — Эйнштейна содержит, оказывается, фридмонные решения.

Но как же это все-таки может быть? Как может Вселенная разместиться в электроне? Как быть с понятиями «большое» и «малое»?

Действительно, ситуация непростая. Какой критерий избрать для сопоставления размеров Вселенной и элементарной частицы? Ведь абсолютного эталона нет, все относительно. Мы, люди, все меряем по себе: то, что больше нас, — велико, что меньше — мало. Но правомерен ли такой подход? Да и наши-то истинные размеры, каковы они?

Может быть, более прав поэт Н. Заболоцкий, у которого есть такие строки:

Но для бездн, где летят метеоры, Ни большого, ни малого нет, И равно беспредельны просторы Для микробов, людей и планет.

Но оставим общие рассуждения. Обратимся к физике и математике, к тому, что получил М. Марков.

М. Марков родился в 1908 году в селе Малыщше на Тамбовщине. Его отец был первым председателем сельского Совета в селе. Образование Маркова началось в церковно-приходской школе, но среднюю школу он кончал в Москве, и в 1926 году уже был студентом физфака МГУ. А в 1933 году была опубликована его первая научная работа: тогда его интересовала квантовая химия.

Сейчас М. Марков — один из ведущих советских физиков-теоретиков, Герой Социалистического Труда, крупный специалист по теории элементарных частиц, автор известных трудов: «Гипероны и К-мезоны» (1958), «Нейтрино» (1964), «О природе материи» (1976). В последней работе он проявил себя не только крупным физиком с мировым именем, но и недюжинным, глубоким философом.

Диапазон исследований М. Маркова необычайно широк. Но среди его многочисленных работ наиболее интригующим является учение о фридмонах. Заслуги М. Маркова в том, что он обратил внимание ученого мира на возможность своеобразного космологического подхода к теории элементарных частиц.

Прежде гравитацию в микромире серьезно не принимали в расчет. В одной из работ М. Марков пишет:

«…давно сложилось интуитивное мнение, носящее характер предрассудка о том, что гравитационные взаимодействия не могут играть существенной роли в теории элементарных частиц…»

Истоки «предрассудка» понятны. Ведь силы тяготения в 1037 раз (!) меньше, чем, скажем, электрические силы. Естественно, что такую величину в пределах атома невозможно даже измерить, настолько она ничтожна.

Однако, оказывается, мыслимы такие ситуации, когда даже такое сверхслабое взаимодействие может проявить себя. Для этого надо массу системы резко увеличить (скажем, взять массу Вселенной!), а ее размеры резко сократить. И получится научное чудо, которое можно объяснить всякому, знающему хотя бы немного физику и математику.

Вспомним: энергия и масса эквивалентны. Раз так, значит, в инертной массе Вселенной заключена громадная энергия положительного знака. Но, как и у всякого массивного тела, у Вселенной есть еще и гравитационная энергия (энергия сжатия), имеющая отрицательный знак. И вот расчеты показывают, что при некотором критическом значении средней плотности вещества во Вселенной наступает равенство инертной и гравитационной энергий. А так как знаки у них различные, то суммарная энергия может упасть до сколь угодно малой величины и даже до ноля… Так огромная Вселенная окажется заключенной в почти замкнутом (по Фридману) мире, и ее внешние размеры могут быть микроскопическими и даже нолем.

Те же конечные результаты можно получить на языке физических символов. Пусть М — масса Вселенной, а К — ее радиус. Тогда энергия этой инертной массы положительна и равна Мс2, где с — скорость света. Гравитационная же энергия той же массы будет отрицательна и равна — (xM2)/2R, где x — гравитационная постоянная.

Приравнивая эти энергии, найдем связь между массой и радиусом Вселенной. Ну а критическое значение плотности р*= M/V, где V — объем Вселенной, получим, если будем считать, что Вселенная — шар и V = 4/3 ×πR3, тогда p*=(6 × c6)/(π × x3 × M2)

Теперь уже мы в состоянии «опытным путем» проверить гипотезу Маркова. Для этого необходимо лишь оценить величину плотности Вселенной. Константы с и X нам известны, остается только как-то определить М — массу Вселенной.

Взвесить Вселенную? Английский астроном А. Эддингтон (1882–1944) считал, что тут достаточно математических соображений. Так, он утверждал, что во Вселенной существует ровно 136-2256, или 15 747 724 136 275 002 577 605 653 961 181 555 468 044 717 914 527 116 709 366 231 425 076 185 631 031 296 протонов и столько же электронов. Ни больше ни меньше!

Современные теоретики не столь категоричны. Но все же и они утверждают, что для того, чтобы наша Вселенная стала микрочастицей — фридмоном, необходимо, чтобы средняя плотность вещества р в ней была 10-29 грамма в кубическом сантиметре (примерно 10 атомов водорода в одном кубическом метре космического пространства, имеется, конечно, в виду, что материя равномерно «размазана» по пространству).

Это теория. А что практика? Эксперимент дает более низкую цифру 10-30.

Однако в настоящее время стало ясно, что во Вселенной должна существовать так называемая скрытая электрически нейтральная масса. В принципе эту массу могли бы составить «нейтринные звезды», указанные М. Марковым еще в 1964 году. Эта возможность сейчас широко обсуждается в научной литературе. Возможно также, «скрытая» масса (она же энергия!) образуется «черными дырами». Таким образом, средняя плотность вещества может быть равной 10-29 грамма в кубическом сантиметре, необходимая для признания возможных микроскопических размеров нашего мира как целого.

 

Путешествие с демоном

В апреле — мае 1966 года в Крыму, вблизи Ялты, состоялась Международная школа по теоретической физике, организованная АН Украины и Объединенным институтом ядерных исследований (Дубна). В ее работе приняли участие теоретики из многих стран мира.

В своем докладе «Элементарные частицы предельно больших масс (кварки, Максимовы)» академик М. Марков, обращаясь к присутствующим, в частности, сказал:

«Я не хотел бы утверждать, что внутри того или другого электрона в настоящее время также происходит семинар по симметриям теории элементарных частиц. Не хочется подчеркнуть, что наши представления об элементарных частицах на самом деле могут быть очень далекими от действительного содержания этих объектов и что между «большим», космическим, и «микромалым» может и не быть такой пропасти, как это кажется с первого взгляда…»

Какое раздолье для фантазии и фантастических проектов представляет современная наука! Вот мы, земляне, уже которое десятилетие упорно ищем наших собратьев по разуму. Некоторые ученые пришли к пессимистическим выводам: дескать, жизнь на Земле — явление совершенно уникальное, неповторимое. Но если Вселенная способна уместиться в элементарной частице, то мыслящих иномирян мы, возможно, буквально держим в руках, топчем ногами, касаемся головой!

Чтобы хоть как-то представить себе необычный мир фридмонов, давайте совершим мысленное путешествие.

Когда-то Д. Максвелл ввел в обиход умозрительных физико-теоретических построений воображаемое существо (потом его назвали «демон Максвелла»). Ему доступно все: наблюдать отдельные атомы, сортировать их, летать со сверхсветовыми скоростями…

Представим теперь, что этот демон (и мы мысленно вместе с ним), отправившись из центра нашей Вселенной — а она фридмон, — начинает свое путешествие.

Демон встретит на своем долгом пути звезды, галактийи и другие немыслимо протяженные космические образования… Но вот он приближается к «горловине». Это та «пуповина», которая соединяет почти замкнутый (изнутри!) мир Фридмана с миром внешним.

Вылетая через горловину наружу, максвелловский демон с удивлением обнаружил бы, что та Вселенная, откуда он «родом», представляет собой теперь всего только микроскопический объект. Убедился бы, что все бесчисленные галактики, мимо которых он пролетал, трудновообразимым образом разместились в области крошечных размеров. И он должен был бы почувствовать себя, как автомобилист, вырвавшийся наконец из тесного темного туннеля на залитый светом необъятный простор…

Путешествие демона можно было бы и продолжить.

Допустим, что, вылетев из горловины, он оказался бы вновь в пространстве с критической плотностью вещества. Тогда бы ситуация могла повториться. Из фридмона № 2 он попал бы в мир № 3, который, в свою очередь, мог бы опять оказаться полузамкнутой Вселенной. И так далее, и так далее.

Миры в мирах, их бесконечная череда… А возможна ли связь между соседями во фридмонной цепочке? Между нашей цивилизацией и цивилизацией, существующей где-то внутри электрона или в какой-то другой элементарной частице?

Эта уже совсем фантастическая идея обсуждалась на страницах журнала «Химия и жизнь» в статье «Есть ли разум в микромире». Конечно, обсуждение велось в полушутливых тонах.

Если в микромире есть разум, говорилось в статье, то обращаемся мы с ним очень грубо, «с позиции силы».

В экспериментах на ускорителях одни частицы, несущиеся со световыми скоростями, мы сталкиваем с другими.

Варварский метод для установления каких-то контактов!

Как послать весточку в микромир? Как дать знать о себе? Обменяться информацией?

Пока неясно. Мы на Земле общаемся между собой на частотах от 101 до 106 герц. В микромире же, если учесть колоссальную разницу пространственных масштабов, общение возможно на гораздо более высоких частотах: 1020-1027 герц. Что же делать?

В статье упоминается такое предложение. Если толпу людей пропустить по ветвящемуся коридору, в левых ветвлениях которого слышен нечленораздельный гул, а в правых — человеческая речь, то в конце концов постепенно все люди повернут направо. Примерно той же процедуре предлагается подвергнуть и пучок элементарных частиц, двигающийся через особым образом организованную систему, делящую пучок поэтапно на правую и левую равные части. И еще предлагается квантовомеханическими средствами (они указаны в статье) создать слева — Хаос, справа — Порядок.

Если частицы «разумны», они смогут сориентироваться: выберут Порядок. И это послужит нам сигналом…

 

Огромное — мало, малое — огромно

Настала пора сделать важные оговорки. Во-первых, фридмоны — это пока лишь гипотеза, лишь предвидение теоретика. Наука сейчас не может ответить окончательно, тождественны ли фридмоны каким-то уже известным частицам, например, электронам, или же это что-то совершенно новое: тип частиц, которые еще только предстоит открыть опытным путем.

Во-вторых, совершенно неясно, можно ли говорить о каком-то подобии нашего мира, нашей Вселенной и того «космоса», который, возможно, спрятан в микромире.

Еще Д. Менделеев предостерегал от упрощенчества взглядов. «Есть своя захватывающая прелесть, — писал великий химик, — что малейшее в природе так же построено, как величайшее, но отсюда далеко до уверенности в том, что это так и есть на самом деле».

В-третьих, для общей теории относительности, если она уже вторглась в микромир, нужны квантовомеханические обобщения, но они только начинают разрабатываться современной наукой.

Квантовая теория гравитации, которая могла бы точно описать сильные гравитационные поля в микроскопических областях пространства, еще не создана. Физики могут лишь очень приближенно «сшивать» решения уравнений Эйнштейна с квантовой теорией. И поневоле многое в расчетах, начало которым положил М. Марков, остается еще неясным. И эти расчеты еще далеко не доведены до конца. (Кстати, кроме М. Маркова, подобными вопросами занимались и другие исследователи: известный теоретик С. Хокинг из Англии, советский профессор К. Станюкович — он предпочитает слову «фридмоны» слово «планкеоны», это название дано им в честь М. Планка, тем самым подчеркивается квантовая природа этих объектов, — занимаются подобными проблемами и другие исследователи.)

Квантовая гравитация обещает много чудес. Оценки (пока, увы, довольно грубые) показывают, что «горловина» фридмона — ее радиус чрезвычайно мал имеет размеры всего 10-33 сантиметра.

Предсказывает теория и очень сложную структуру материи, окружающей фридмон. Вокруг «голого» фридмона нарастают слои («шуба») из виртуальных спонтанно рождающихся и быстро исчезающих — частиц. Эти фантомы должны, в свою очередь, иметь слоистую структуру.

На дальней периферии (ближе к людям!) — это полупрозрачные, рыхлые мезонные «облака». А в областях, расположенных ближе к фридмону, находится более плотный «керн», слои из более тяжелых виртуальных частиц. И внутри всего этого «многоэтажия» прослоек (мы очень грубо, приближенно охарактеризовали его) глубоко и надежно запрятан фридмон. И он, быть может, и является как бы затравочным ядром для образования являющихся нам в опыте элементарных частиц. Но в этом ядре-фридмоне открывается… Вселенная!

Много еще научных вопросов предстоит решить.

Но как бы там ни было, концепция фридмонов очень обогатила современную науку.

А какой переворот в мировоззренческих, философских взглядах несет учение о фридмонах! Вспомним о матрешках. Размышляя о бесконечности материального мира, о структуре этой бесконечности, мы скорее всего слишком прямолинейны.

Бесконечную череду размеров (матрешка в матрешке) мы представляем себе чем-то вроде прямой, уходящей в область исчезающе малых (микромир) размеров, с одной стороны, и в область неограниченно больших масштабов, (мегамир, сами мы обретаем в макромире) — с другой.

Но, быть может, стремясь в космические дали, мы на самом деле лишь спускаемся в глубины микромира?

По Маркову, оказывается, бесконечность мира скорее похожа на круг, где сколь угодно малые величины «замыкаются» на бескрайне большие и соотношение ультрабольшого и микроскопически малого приобретает относительный смысл. Понятия переходят в свои противоположности. И бесконечное! ь мира похожа не на прямую с уходящими вверх и вниз стрелами, а на круг, где сколь угодно малые величины «замыкаются» на бесконечно большие.

* * *

…Холодное звездное небо над головой. Головокружительные дали, пытливо вглядываясь в которые человек узнает все новые научные откровения…

И главный, пожалуй, урок, преподанный фридмонами:

действительность может порой оказаться фантастичнее наших самых архибезумных фантазий.