Датский физик Н. Бор, создавший первую теорию атома, возглавлявший в первой четверти нашего века титанические усилия ученых по разработке основ квантовой механики, очень любил рассказывать такую историю.
Некий английский лорд как-то расхвастался своими необыкновенными подвигами, якобы совершенными им при охоте на львов. Одна из слушательниц, молодая девушка, не выдержав, спросила его напрямик, сколько же львов он убил.
— Ни одного, — спокойно ответствовал рассказчик.
— Разве это не слишком мало? — ехидно заметила девушка.
И это замечание нисколько не смутило лорда-охотника, он невозмутимо парировал:
— Только когда речь идет не о львах!..
Подобное можно было бы сказать и про результаты научной охоты за кварками: они оказались настоящим львом микромира!
Золотыми буквами
В декабре 1934 года маленькая охотничья экспедиция — американский писатель Э. Хемингуэй, его жена, друзья и следопыты-африканцы — выехала из Момбасы (Восточная Африка, порт в Кении на побережье Индийского океана) и двинулась на северо-запад через плато Серенгеттн, откуда повернула на юг, к озеру Маньяра.
Путешествуя по Африке, Э. Хемингуэй и его спутники охотились на самых разных зверей — львов, леопардов, антилоп, носорогов, газелей.
Позднее в книге «Зеленые холмы Африки» писатель очень ярко и точно описал все подробности этой охоты.
Этой книгой Э. Хемингуэй провел своеобразный писательский эксперимент: он попытался создать «абсолютно правдивую книгу», не используя при этом ни одного вымышленного образа или события. И преуспел в этом.
Жаль, что, когда — в середине 60-х годов — началась (продолжается она и поныне) экспериментальная охота за кварками, в ней не принял участия какой-нибудь писатель ранга Э. Хемингуэя, который поставил бы себе целью выяснить, может ли правдивое изображение научных событий — без прикрас и без разговоров о любви главных героев! — «соперничать с творческим вымыслом».
(Конечно, охота обычная и охота научная не одно и то же. Э. Хемингуэй прекрасно владел ружьем, бил птицу и зверя без промаха, поэтому он мог фиксировать и потом запечатлеть в книге даже самые мельчайшие детали охоты. Представить же писателя, который мог бы стать полноправным участником физических экспериментов, да при этом держал бы в голове все хитросплетения теоретических нитей, да еще бы виртуозно владел словом, представить себе такого писателя трудно.
Но это вовсе не означает, что в будущем не появятся научные Хемингуэи, способные осуществить экспедицию в любой, самый удаленный уголок микромира и убедительно, с полным знанием дела, красочно рассказать об этом, даже если охотиться им придется за «зверьми», не уступающими кваркам по изворотливости и неуловимости.)
…В те жаркие 60-е годы кварками интересовались не только физики геологи, биологи, химики тоже часто произносили это слово. Но, понятно, особенно волновались и суетились, принимая все это слишком близко к сердцу, научные журналисты. Они жадно прислушивались к свежим новостям, вникая, казалось бы, в неуместные подробности, судорожно перелистывали даже сверхспециальные статьи научной периодики в надежде, что наконец-то промелькнет сенсационное сообщение.
Тема кварков властно захватила тогда многих.
А ситуация оставалась противоречивой.
Нетерпеливые и скорые на мысль теоретики уверенно (и с каждым днем все более: их схемы работали все лучше и лучше) говорили «да»: кварки должны, просто обязаны были существовать в природе. Теоретикам возражали экспериментаторы. Более спокойные и не торопящиеся с окончательными выводами, они твердили «нет»: пока в экспериментах обнаружить кварки никак не удавалось.
«Рождение», «выживание» или «гибель» гипотез при их столкновении с данными опыта — дело в науке довольно обычное. И никто не станет пенять теоретику, если его научная версия не оправдалась. Гораздо сложнее положение экспериментатора: ошибаться ему не след, хоть такое и случается порой. С экспериментатора спрос больше, но зато ему больше и веры.
Вообще, заметим, что в неразлучной паре «теория — эксперимент», как бы результативна и плодовита ни была теоретическая мысль, все же считается, что решающее слово остается за экспериментатором — он ближе к природе!
На этот счет у физиков есть такая шутка. Они говорят, что различие между теоретиком и экспериментатором заключается в том, что результату теоретика обычно не верит никто, кроме него самого, а результату экспериментатора обычно доверяют все, кроме самого экспериментатора.
«Нет», — в вопросе о существовании кварков слово экспериментаторов было решающим. Какие тут могут быть разговоры! Для доказательства есть только один путь: кварки необходимо было представить научному миру, так сказать, живьем.
Кварки, какая бы это была ценная добыча! Пойманные кварки очень быстро перекочевали бы со страниц узкоспециализированных научных журналов в монографии. Потом в текст университетских и вузовских лекций. Затем и в школьные учебники. О кварках, об этом фундаменте материи, громогласно возвестило бы радио, их показывали бы (в рисунках, схемах) по телевидению, о них рассказывала бы многочисленная армия лекторов, их бы разобрали по винтикам и вывернули бы наизнанку популяризаторы науки.
А такой чести удостаивается не каждое научное достижение. Открытий в наш век сделано слишком много, о всех не расскажешь. Но кварки! Открытие кварков стало бы подлинным триумфом науки. Оно было бы записано в ней золотыми буквами, попало бы во все учебники и, несомненно, осталось бы в них на ближайшие, скажем, сотни лет.
Опыт Милликена
Итак, очень многие жаждали поймать хотя бы один кварк. И дело это вроде бы не должно было доставить много хлопот: кварки же ведь существа весьма экзотичные, и выделить их будет несложно.
Главное — у кварков дробный электрический заряд (дробным, кстати, является и их барионный заряд; +⅓), что и должно существенно облегчить их наблюдение. Эта дробность не позволяет им исчезнуть: распасться на обычные частицы (электроны, например), обладающие целым или нулевым зарядом. Иначе нарушился бы закон сохранения зарядов — один из краеугольных камней физики. Все эти рассуждения значили одно: кварки должны быть стабильными частицами. Если они существуют, то должны быть везде.
И их, как только была выдвинута кварковая гипотеза, принялись искать повсюду — на поверхности Земли, в океанах, в космических лучах, на ускорителях элементарных частиц.
Но, допустим, кварк у нас в руках: в той горстке материи, что мы держим. Как отличить его от других частиц? Какой для этого использовать метод?
И здесь вспомнили про то, как был измерен заряд электрона. Сделал это в 1911 году американский физик-экспериментатор Р. Милликен (1868–1953).
Р. Милликен был ученым с некоторыми странностями. Он один из немногих, кто упорно пытался примирить религию и науку. В колледже (другой пример эксцентричности) он специализировался по греческому языку и в физику влюбился только в университетские годы. Но уж зато экспериментатором Р. Милликен был первоклассным.
Дж. Томсон, мы помним, открыл электрон, а вот измерил его заряд, да еще с прецизионной точностью, именно Р. Милликен. За это в 1923 году он был удостоен Нобелевской премии. Его опыт был элегантен, красив, точен, наивно прост и стал добротной классикой. Ученый изучал падение заряженных капелек в электрическом поле конденсатора.
Опыты эти были начаты в 1906 году. Вначале бралась крохотная электрически заряженная водяная капелька.
Вниз ее тянуло поле тяжести, вверх — электрическое поле.
Неудача первых опытов состояла в том, что ничтожно малые капли воды быстро испарялись, и уменьшение их веса вносило погрешность в расчеты. Поэтому в 1911 году ученый начал экспериментировать с каплями масла: тут испарение уже не вносило больших осложнений.
Капельки масла (проводились и опыты с ртутными шариками) у Р. Милликена были настолько легкими (они весили 10-11 — 10-12 грамма), что изменение их количества электричества всего лишь на один электрон (тоже лилипут: его заряд 10-19 кулона) уже заметно влияло на скорость их падения.
Заряжение капель производилось их облучением X (икс) — лучами (так вначале называли лучи Рентгена).
При этом менялся электрический «вес» капельки: капли начинали падать быстрее пли медленнее. В определенных условиях их можно было заставить даже подниматься вверх.
Минимальное изменение в движении капли было обусловлено прибавлением пли вычитанием уже далее неделимой порции заряда. Ее (заряд электрона) и вычислил Р. Милликен, окончательно доказав атомарную (корпускулярную) природу электричества.
Эти опыты и вспомнили прежде всего, когда начались энергичные розыски кварков. А обнадеживало тут вот что. Сам Р. Милликен однажды наблюдал капельку с количеством электричества, равным ⅔ заряда электрона!
Этот необычный результат показался ученому подозрительным, он его просто отбросил, посчитав, что в опыт закралась какая-то погрешность. Лишь спустя годы в одной из своих статей Р. Милликен вскользь упомянул об этом наблюдении. Значит, он наблюдал кварки?
Кто знает. Мнения тут разделились. Многие считали, что условия проведения эксперимента не давали ему на это никаких шансов. Кварки звери довольно редкие.
Повстречать их непросто. А капельки у Р. Милликена были очень маленькими: вероятность того, что в капельке спрятан кварк, становилась ничтожной.
Но из последних рассуждений следовал и обнадеживающий для поисков кварков вывод: капли (пли частицы вещества) надо брать покрупнее, и еще желательно было бы их предварительно обогащать кварками. Ну н, естественно, надо использовать аппаратуру в миллионы раз более чувствительную, чем та, что была у Р. Милликена.
Тогда и можно рассчитывать на успех.
Подобно «гробу Магомета»
И физики немедленно впряглись в поиски. Работа велась одновременно во многих странах.
В США (Стэнфордский университет) группа исследователей измеряла заряды маленьких сверхпроводящих шариков диаметром около 0,1 миллиметра, заставляя их осциллировать, совершать колебания, в переменном электрическом поле. Величина осцилляции зависела от электрического заряда шарика. Это была рафинированная версия опыта Р. Милликена.
Американцы сообщили радостную весть. В прибор один за другим помещали 9 маленьких шариков из ниобия, на 3 из них исследователи нашли заряд, равный одной трети. Эти заряды можно было удалить, промывая шарики ацетоном. Заряд исчезал или появлялся и в результате электрического разряда. Похоже, кварки находились на поверхности шариков. Кварки наконец обнаружены?
Вряд ли. Достоверность этих результатов осталась под сомнением. Вполне возможно, что тут играли роль какие-то неучтенные особенности эксперимента. К примеру, шарики ведь должны быть абсолютно круглыми, симметричными не только по форме, но и по своему составу.
Иначе неоднородность сказалась бы на равновесии шарика, а значит, и его заряде. Но в том, что шарики круглы, можно убедиться с помощью микроскопа. Однородность же объемных свойств проверить уже гораздо труднее.
А она приводит к погрешностям в расчетах, что и может выглядеть как дробный заряд.
При суждении об опытах американцев настораживало и то, что попытки повторить их «успех» в аналогичных исследованиях, проводившиеся в других странах, потерпели неудачу.
В СССР поиски кварков схожим с милликеновским способом велись в МГУ под руководством академика Я. Зельдовича и профессора В. Брагинского. Исследовались частицы графита, весящие во многие тысячи раз больше больше вероятность встретить кварк! — чем капельки у Р. Милликена. В такой «махине», как рассчитали теоретики, кварки уже вполне можно было бы встретить (если, конечно, они есть в природе!).
Частица графита в экспериментах висела между полюсами электромагнита, поле которого создавало земную невесомость: неоднородность поля (его градиент) компенсировала силу земного притяжения. И графитовые крупинки оказывались подвешенными между пластинками конденсатора подобно левитирующему йогу, висящему в воздухе безо всяких опор.
Теперь на парящую в воздухе частицу направляли поток рентгеновских лучей, чтобы ее зарядить. Потом включали еще и электрическое поле.
Заряженная частица в электрическом поле должна немного сместиться. Это смещение и интересовало экспериментаторов. А гораздо больше их заботило, будет ли смещение соответствовать заряду ⅓ или заряду еще какого-нибудь числа с тройкой в знаменателе.
Дальше события развивались, как в добротной мелодраме. Недолгое счастье сменилось унынием. Вначале в серии из 17 измерений трижды наблюдались кваркоподобные смещения графитового тельца. То же повторилось и в видоизмененной серии опытов. И все же кварки тогда найдены не были.
Частица графита, висящая в магнитном поле, подобно легендарному гробу Магомета, обладала дипольным электрическим моментом. Его взаимодействие с неоднородным электрическим полем, смещающим частицу, и явилось причиной этого научного недоразумения. Когда экспериментаторы нашли наконец способ сделать электрическое поле совершенно однородным, коварный дипольный момент перестал влиять на результаты опытов.
Но при этом исчезли и кварки, точнее, те смещения, которые до этого свидетельствовали, казалось, об их присутствии. И исчезли уже навсегда.
Открытие и закрытие. Иногда их делают разные исследователи: одни открывают, другие закрывают.
Чаще же «закрывание» осуществляют сами «открыватели». Так было и в случае, о котором мы только что рассказали.
Хотя и бывают порой «закрытия» ценные, «закрытия», восстанавливающие истину, спасающие науку от заблуждений, ложных дальнейших шагов, — цена их явно неравнозначна открытию. «Золото» найденного сверкает и слепит, веселя сердце первооткрывателей, помогая им быстро забыть всю тяжесть усилий, потраченных для достижения победного результата.
Иное при «закрытии». Здесь трудности часто те же — отрицательность результата не уменьшает их ни на йоту.
Ученые тратили последние силы, рискуя здоровьем, а то и самой жизнью (и такое бывает!). А что могут получить взамен? Разочарование, иронические замечания коллег, потерю веры в собственные силы, апатию. Не только победных возгласов не услышат, но даже просто опубликовать отрицательный результат не всегда смогут. В лучшем случае где-нибудь, как бы ненароком, в сносках, в примечаниях удастся упомянуть про кусок научной жизни, отданный такой неблагодарной работе.
Следы невиданных зверей
Когда высоко в небе пролетает реактивный самолет, он оставляет за собой постепенно расплывающийся след — облачко кристалликов льда. Сам самолет часто невидим, и его присутствие выдает лишь оставленный им белый пушистый хвост. Глядя на этот след, мы можем думать о чем угодно, но только не об элементарных частицах.
А напрасно! Многие сведения о микромире ученые получили, как раз разглядывая следы, подобные следу самолета в небе. Оказывается, точно таким же способом и микрочастица может тропить свой путь.
Но следы, невольно выдавая охотнику свое присутствие, оставляет и зверь в лесу. Так вновь пересекаются охота лесная и охота ядерная. По этому поводу можно было бы даже сочинить небольшое эссе. В нем нашлось бы место и для особых заповедей, отличающих охоту ученую от охоты обычной. Тут пришлось бы перечислить пункты вроде таких:
1. В охоте научной поймал тот, кто поймал первым.
Второй, третий и последующие «удачливые» охотники в зачет уже не идут.
2. Совершенно неважно, сколько ты поймал. Даже единственного экземпляра «зверя» будет вполне достаточно.
3. Вовсе не обязательно ловить самого «зверя»: достаточно его каким-то образом обнаружить — увидеть и сфотографировать (чтоб не сомневались остальные охотники!) или, скажем, найти его след…
Умению детектировать следы невидимых частиц, сделать их заметными для глаза или регистрирующего их аппарата мы обязаны английскому физику, выходцу из Шотландии Ч. Вильсону (1869–1959).
Ученый начинал свою научную карьеру как метеоролог. Его интересовало, как зарождаются в атмосфере облака. Но эти поиски неожиданно завели его совсем в другую область науки.
Ч. Вильсон часто любовался облаками, обволакивающими вершину Бен Невиса — высочайшего горного пика не только Шотландии, но и всей Англии. И уже в лаборатории (Ч. Вильсон был сотрудником Дж. Томсона в Кембридже) пытался в меньшем масштабе воспроизвести это красивое и загадочное тогда явление.
Он поступал так: насыщал водяным паром воздух в небольшой камере, затем быстро выдвигал стенку-поршень камеры, смесь воздуха и водяного пара расширялась, температура ее падала. Воздух в камере переохлаждался, и в ней в любой момент могло начаться выделение капелек влаги. Так можно было имитировать образование облаков.
Однако лабораторные облака, как и естественные, образуются не всегда. Хотя пересыщенный пар находится в крайне неустойчивом состоянии (ученые называют это состояние метастабильным), для образования капелек необходима «затравка», какие-нибудь микрозародыши. Ими могут быть, к примеру, всегда присутствующие в городском воздухе частицы индустриальной пыли. (След самолета в небе — это и есть капельки влаги, которые сконденсировались на частичках недогоревшего топлива, выбрасываемых мотором самолета, и быстро замерзли.)
Ч. Вильсон продолжал экспериментировать, и однажды его осенила счастливая мысль, что зародышами каплеобразования могут стать и ионы воздуха. И доказал это.
Когда заряженная элементарная частица проходит сквозь вещество, она своим электрическим полем срывает часть электронов с оболочек встречных атомов — ионизирует их. Вдоль пути пролетающей частицы выстраивается цепочка ионов. Если частица при этом движется в переувлажненной среде, то на ионах будут возникать капельки влаги. Они начнут быстро расти и достигнут видимых размеров.
В 1912 году Ч. Вильсон сконструировал камеру (она теперь носит его имя), которая сыграла важную роль в изучении нравов микромира. Несколько десятилетий это был практически единственный способ, позволяющий визуально регистрировать ядерные процессы. (В 1927 году Ч. Вильсон получил за это изобретение Нобелевскую премию.)
И все же это дерзость — по следам воссоздавать образ элементарной частицы. Грубо говоря, это похоже на попытку определить по следу только что пролетевшего реактивного самолета его конструкцию. Дерзость? Тем не менее физики давно научились довольно хорошо разбираться в ядерных следах.
След следу ведь рознь. Движущийся электрон оставляет тонкий волнистый след: он легко искривляется, если вблизи траектории оказываются другие электроны. Массивная альфа-частица, наоборот, оставляет прямой и толстый след: это как бы носорог микромира, мчащийся сквозь заросли напролом. Но если на ее пути встретится тоже массивное атомное ядро, альфа-частица изменяет свой путь: в камере Вильсона будет виден резкий излом следа (следы физики называют треками).
Чтобы теперь узнать подробности о заряде ядерной частицы, камеру Вильсона обычно помещают в магнитное поле. Оно искривляет ее путь, превращая его в дугу. Радиус изгиба траектории зависит от величины электрического заряда частицы: чем заряд больше, тем меньше радиус. Направление изгиба (направо или налево) говорит о том, какой у частицы знак заряда — положительный или отрицательный.
Эти знания могут пригодиться и при ловле кварков.
Ведь у них аномально малый заряд: и это хорошая зацепка для ученых-следопытов. Толщина следа, который оставляет частица в камере Вильсона, пропорциональна квадрату ее заряда. Поэтому частица с зарядом 7з — кварк — оставит в 9 раз более тонкий след, чем электрон. Вот по таким «рыхлым», разреженным следам и можно надеяться отыскать кварки среди других жителей микромира.
С мышеловкой на слона
Источником кварков (в опытах по их определению) могут стать космические лучи. Однако метод этот не очень надежен.
Физик-экспериментатор, имеющий дело с не подчиняющимися его воле хаотическими потоками космических лучей, похож на авиаконструктора, который вдруг вздумал для испытания крыла самолета выбрать чистое поле, где, как он надеется, возникнет ветер нужной ему силы и направления. И подобно тому, как авиаконструкторы вынуждены были призвать на помощь аэродинамическую трубу, где режим испытаний строго контролируется, так и физики в конце концов обратились к подчиняющимся их требованиям пучкам частиц, разогнанных в ускорителях. И если к помощи космических лучей прибегают и по сей день, то причина понятна: в космических лучах — а вдруг повезет! — можно встретить частицы с энергиями, которые пока на несколько порядков больше тех, что дают самые крупные из ускорителей.
Погоня за кварками в космических лучах, преследование их в ускорителях — как все это вновь наводит на мысли об охоте обычной. Параллели напрашиваются сами собой.
Охота на лесного зверя официально подразделяется на охоту ружейную и охоту самоловную. И у ученых го же. Пальба в ускорителях — ну чем не ружейная охрга? А ученые, выслеживающие кварки в космических лучах, конечно же, занимаются охотой самоловной: прилетевший из космических глубин кварк попадает в приготовленные для него учеными капканы.
Простейший физический «капкан» — фотопластинка.
Она очень похожа на ту, что применяется в обычных фотоателье, только фотослой здесь особый. Он готовится по специальному рецепту, ибо должен быть крайне высокочувствительным, чтобы реагировать даже на очень слабые ионизирующие повреждения.
К разряду ядерных капканов можно отнести и различные счетчики элементарных частиц. Старейший и, видимо, простейший из них — счетчик Гейгера.
Это газоразрядная трубка, в которой создано сильно неоднородное электрическое поле. При попадании в рабочий объем счетчика ионизирующей частицы образуется электронная лавина: через счетчик течет ток. Это и позволяет вести учет частиц.
Подобное устройство было изобретено Э. Резерфордом и немецким физиком X. Гейгером в 1908 году. Тогда этот прибор был незаменим при исследовании радиоактивности. По импульсам тока можно было подсчитать, что, например, грамм радия в секунду испускает 37 миллионов альфа-частиц.
Физические приборы, использующиеся сейчас для ловли микрочастиц, довольно многочисленны — всех не перечтешь. Добавим сюда еще только уже знакомую нам камеру Вильсона для того лишь, чтобы обратить внимание на ее явные недостатки.
Для ловли кварков камера Вильсона так же мало подходит, как рогатина или духовое ружье плохо вяжутся с современной охотой, где в ход пошли даже вертолеты!
Счетчик Гейгера вышел из моды (правда, его еще используют, например, в биологии, где требования не столь высоки, как при ловле микрочастиц), потому что уж очень он «неповоротлив»: регистрация сверхбыстрых сигналов ему явно не под силу.
А «неповоротливость» камеры Вильсона проявляется в другом. Что можно довольно просто объяснить.
Камеру наполняет газ (пары). Он очень разрежен в сравнении с жидкостями. Поэтому и следы получаются жидковаты, чересчур тонкими. А кварки (пора вспомнить о них) и сами не очень-то следоспособны. Так что ловить кварки в камере Вильсона — это то же, что при охоте на слонов пользоваться… мышеловками.
Для ловли кварков и других необычных частиц требуются средства более надежные. И физика дала их.
Приборы отбились от рук
В 20-е и 30-е годы камера Вильсона все еще была чудом науки. Но требования к измерениям возрастали. Ученые имели дело со все более быстрыми и, главное, короткоживущими частицами. И хотя целое поколение физиков билось над усовершенствованием детища Вильсона, преуспели тут мало.
Революцию в этом деле совершила изобретенная в 1952 году пузырьковая камера. Она справедливо стала сенсацией 60-х годов. С ее помощью был открыт и знаменитый омега-минус-гиперон, упрочивший славу М. Гелл-Мана и торжество кварковой гипотезы.
В двух словах пузырьковую камеру можно представить как камеру Вильсона «наоборот». Вместо капелек жидкости в пересыщенном паре теперь исследователи имеют дело с пузырьками пара в перегретой жидкости.
Жидкость мгновенно вскипает вдоль трека ионизирующей частицы и отмечает его гирляндой мелких пузырьков газа.
Когда пузырьки в камере достигают значительных размеров, камера освещается и следы (они имеют микронные толщины) фотографируются (стереофотосъемка с помощью 2–4 объективов). После фотографирования давление в камере поднимается до прежней величины, пузырьки при этом исчезают, и камера вновь оказывается готовой к действию. Весь цикл работы пузырьковой камеры составляет величину порядка 1 секунды.
Эволюция пузырьковой камеры — от рождения до наших дней — весьма примечательна и характерна. Методические усовершенствования шли гигантскими темпами: началось все с «сургуча и бечевки» (обычное выражение физиков, когда они хотят подчеркнуть, что в прошлом выводили законы с помощью самых простых средств), а закончилось дело тоннами и тоннами материала.
Примером современной установки может служить созданная во Франции для совместной работы с советскими физиками водородная камера «Мирабель», установленная на ускорителе Института высоких энергий АН СССР под Серпуховом. Ее объем 10 кубических метров, общий вес движущихся частей достигает 2 тонн, а стоит она миллионы. Создание подобных устройств — уже дело государственного и даже межгосударственного масштаба.
К чему такие гиганты? Они себя оправдывают, это легко доказать. Заполняющий камеру «Мирабели» жидкий водород представляет собой хорошую (простую и однородную) мишень для частиц, врывающихся в камеру из космоса или из «жерла» ускорителя. Тут пузырьковая камера решительно одерживает верх над ядерными фотоэмульсиями — этим винегретом из водорода, углерода, азота, кислорода, брома и серебра. (Работающие с ядерными эмульсиями физики всегда спорят о том, в какое именно ядро попала частица с высокой энергией.)
Достоинство большого объема камеры в том, что теперь можно следить за ядерными событиями — за последовательными этапами распада частиц — на протяжении многих метров, а также регистрировать очень редкие процессы (рождение кварков?), представляющие для науки огромный интерес.
Но гигантизм выставляет и свою оборотную, негативную сторону: обработать информацию, даваемую пузырьковой камерой, нелегко.
Дело прежде шло так. Сначала лаборанты просматривали все полученные фотографии и отбирали те из них, где достаточно много «вилок». Отобранные снимки поступали затем на измерительные микроскопы. Все увиденное приборами автоматически засылалось в память ЭВМ.
Но на изучение каждой фотографии даже современная электронно-вычислительная машина тратит немало времени. Вот и получается, что с помощью даже пузырьковых камер практически невозможно исследовать очень редкие события, которые случаются, скажем, раз за сто тысяч взаимодействий, вылетающих, к примеру, из ускорителя частиц с веществом камеры. И сейчас физики хотят совсем исключить человека из системы обработки поступающей из камеры информации. Автоматизировать все.
Да, созданные человеком приборы сами стали проблемой. И изумленный их быстрым ростом изобретатель пузырьковой камеры американский физик Д. Глейзер мог с полным основанием сказать: «Приборы стали очень большими, они отбились от рук…» Добавим еще, что, получив за свое изобретение Нобелевскую премию по физике в 1960 году, Д. Глейзер тут же в интервью журналистам заявил, что его научные интересы изменились: он покидает ядерную физику и отныне займется молекулярной биологией.
Поиск ведут кварколовы
Вооруженные современными приборами (а мы рассказали только о некоторых из них, стоило бы еще поговорить о сцинтилляционных и черепковских названы в честь советского физика, лауреата Нобелевской премии академика П. Черепкова — счетчиках, об искровой камере и других чудесах экспериментальной техники), физики продолжали поиски кварков.
Если протон действительно состоит из трех кварков, надо его расколоть, как орех, и сделать это можно при ускорении частиц на мощных ускорителях. Свыше 50 таких тщательных и остроумных экспериментов было поставлено. Но, увы, результат оказался нулевым.
Конечно, можно предполагать, что энергии ускорителей недостаточно. «Скорлупа», дескать, протона или нейтрона так толста, что разбить ее пока не удается. Что же, тогда стоило бы поискать кварки в космических лучах, где энергия частиц может быть практически любой.
Искали и в космических лучах, и поиски эти были отмечены драматическими моментами. Отдельные группы ученых уже считали, что ими пойманы частицы с дробными зарядами.
Счетчики американцев — группа Адейра — полгода (!) свидетельствовали о попадании в них кварков. А потом? Перестали свидетельствовать, и ведут себя так же и до сего дня.
К ловле кварков подключились и астрономы.
Есть звезды, излучающие частицы очень высокой энергии. Эти последние могли бы способствовать образованию заметного количества кварков. Надежда была на то, что при этом возникнут (правда, в небольших количествах) «кварко-атомы»: в них вокруг протона вращался бы уже не электрон, а отрицательно заряженный кварк.
Такие атомы должны излучать спектр, похожий на спектр водорода, но самая интенсивная линия этого спектра будет уже ультрафиолетовой (длина волны около 2750 ангстрем).
Астрономы надеялись, что так же, как столетие назад они обнаружили «солнечный газ» — гелий — сначала на небе (лишь потом гелий был открыт на Земле), так и кварки тоже окажутся «небесными пришельцами».
Астрономы надеялись, но сейчас, видимо, надежду потеряли.
И наше родное Солнце обмануло ожидания астрономов. В его спектре были обнаружены линии, которые хотелось бы приписать присутствию кварков, однако вскоре нашлось и другое, более простое и правдоподобное объяснение.
Ученые искали кварки и в ближнем космосе (изучались образцы лунных минералов, метеориты, исследованиями занимались космонавты на орбитальных станциях), и в совсем дальнем.
Думалось так: раз наша Земля, и Солнце, и Млечный Путь, все это результат сложной эволюции Вселенной, то, возможно, когда-то не было и протонов с нейтронами, а были только кварки. А уже потом из них образовалась материя, что окружает нас, но часть кварков — «реликтовые кварки» — не смогла воссоединиться в троицы.
Вот ловлей этих чудищ, сохранившихся в первозданном виде (они не смогли «выгореть» и превратиться в нормальные частицы), и занимались ученые.
К реликтовым кваркам следует добавить и те, которые могут образоваться, когда потоки космических лучей встречаются с веществом нашей планеты. Как ни малы тут шансы, все-таки Земля уже миллиарды лет подвергается воздействию космических лучей, если кварки существуют, они — как создания стабильные: распасться им уже не на что! — должны накапливаться в окружающем нас веществе.
Где искать кварки? В земной тверди, в воде океанов, в атмосфере?
Если доля кварков в веществе очень мала, их надо предварительно концентрировать. И были предложены разные проекты по обогащению океанической и иной кварковой «руды».
Химики и геохимики тоже включились в кварковые поиски. Надежда была на то, что кварки в принципе могут очень охотно соединяться с определенными химическими элементами. Не будут ли тогда залежи, в которых эти элементы встречаются особенно часто, и залежами кварков?
Исследовались и образцы осадочных отложений, взятых со дна океана: считалось, что массивные кварки должны скопиться там. Изучались даже раковины устриц, но и это не принесло желанного результата.
К стану кварколовов примкнули и биологи. Известно, что некоторые растения могут накапливать в своих тканях и клетках редкие элементы, рассеянные в окружающей среде в мизерных количествах (этой способностью отличаются, кстати, и многие представители фауны).
В северной Финляндии, например, есть лишайники, накапливающие стронций-90 (этот радиоактивный изотоп образуется при делении урана). Быть может, стоит поискать и растения — накопители кварков?
Предложений было немало. Попыток их реализации (конечно, наиболее активными были физики) также оказалось предостаточно. Но после завершения каждой такой акции неизменно звучал неприятный рефрен — «нет».
Это суровое слово, конечно, не перечеркнуло кварковой гипотезы, но и не способствовало укреплению ее позиций.
Правда, один положительный итог поиски кварков дали. Было совершенно точно установлено, что если свободные кварки и существуют, то концентрация их в веществе ничтожно мала: не превышает 10-18-10-20 доли от общего числа протонов и нейтронов (по некоторым данным кварков еще меньше: 10-24-10-30!).
Космические разбойники
Тщательные поиски кварков ведутся вот уже два десятилетия. Большой для современной физики срок! Однако до сих пор никто уверенно ни одного кварка так и не «увидел».
Забавно, что пока физики-охотники «обшаривали окрестности», шла оживленная дискуссия о том, что означает само слово «кварк».
Вдруг обнаружилось, что его использовал И. Гёте.
В прологе к первой части «Фауста» Мефистофель говорит, что «бог сует свой нос во всякую дрянь». Звучит это по-немецки так: In jedem Quark begrabt er seine Nase.
Кроме того, оказывается, «кварк» также и творог.
В витринах молочных магазинов в странах, говорящих по-немецки, часто можно увидеть объявление: «Покупаем творог!» (Wir brauchen Quark!)
Не дремали и писатели. Фантасты, должно быть, завидуя славе Г. Уэллса, «открывшего» атомную бомбу за тридцать с лишним лет до Хиросимы, наперебой писали о кварковых бомбах.
Лингвистические и литературные дела шли успешно, а вот поиски физиков результатов не давали, что очень разочаровывало. В чем дело? Как объяснить неудачи?
Может быть, кварки живут столь мало, что никакие современные приборы не в состоянии их обнаружить?
Но, казалось бы, их даже сверхмимолетное присутствие должно было бы оставить какие-то следы: ядерные (уже долго живущие) продукты, разные излучения… Тогда, выходит, кварки вообще не существуют?
«Нет, — полагают сторонники существования кварков, — неоткрытие этих частиц — явление временное».
И в подтверждение этого своего мнения приводят различные исторические аналогии.
Ведь злословили же когда-то о кинетической теории газов, что молекулы-де только фикция и просто все происходит так, как если бы они существовали, но что в действительности-то их нет. Что это-де только понятия, которыми удобно пользоваться в химии и термодинамике.
Только много позднее эти «понятия» превратились в реальные молекулы и атомы.
И законы Г. Менделя были высказаны задолго до того, как гены были обнаружены и исследованы непосредственно.
О Г. Менделе (1822–1884) стоит поговорить немного подробнее.
Сын бедного австрийского священника, он был вынужден вступить послушником в августинский монастырь города Брюнна (ныне Брно, Чехословакия), был посвящен в священники, но никаких церковных обязанностей не исполнял, а занимался преподаванием наук и опытами по скрещиванию растений.
Г. Менделя интересовали две далекие друг от друга области — математика и ботаника. Ему нравилось возиться с растениями в монастырском саду, ибо с детства приобрел практические навыки в садоводстве.
Восемь лет неторопливо и тщательно этот странный монах скрещивал различные сорта гороха и терпеливо фиксировал результаты, подвергая их математической обработке. В 1865 году итоги работы были доложены в Брюннском обществе естествоиспытателей и опубликованы в «Записках» того же общества (1866).
Все это не вызвало никакого отклика в научном мире.
Не было ни дискуссий, ни просто вопросов к творцу новой науки. Чувствуя всю шаткость своего положения никому не известного любителя, Г. Мендель решил обратиться к светилам тогдашней ботаники. Его выбор пал на К. Негели. Однако тот лишь бегло проглядел работу, видимо, его, натуралиста старой закалки, оттолкнули математические выкладки. Ответ К. Негели был сухим и кратким.
При жизни Г. Менделя его выдающиеся, теперь классические, исследования не были по достоинству оценены, хотя не только К. Негели, но и другие крупные биологи знали о них. Ученый скончался, не подозревая о произведенном им революционном перевороте в научных взглядах. Лишь в 1900 году непонятная и забытая работа Г. Менделя привлекла всеобщее внимание. Сразу несколько исследователей — X. Де Фриз, К. Корренс и Э. Чермак — на собственных опытах убедились в справедливости выводов Г. Менделя. Но и тогда до экспериментального обнаружения генов — этих материальных носителей наследственности — все еще было очень далеко.
Сторонники существования кварков вспоминают и более близкие события. Скажем, такая частица, как нейтрино, возникла в физике так же, как и кварки, отнюдь не в результате ее экспериментального обнаружения.
Нейтрино «изобрел» швейцарский физик-теоретик В. Паули. Он сам не очень-то верил в свое открытие.
В письме участникам семинара в Тюбингене (1930 год) В. Паули сообщал о своей «отчаянной попытке» «спасти» закон сохранения энергии.
К новой частице физиков привели опыты с р-распадом.
Так называется самопроизвольное превращение ядер, сопровождающееся испусканием электрона. Количественные измерения показывали, что испускаемые ядрами электроны имели энергию самую разную, хотя вроде бы в этом процессе должно выделяться вполне определенное количество энергии. Похоже было на то, что энергия куда-то исчезала.
Интерпретируя эти эксперименты, многие физики (среди них были и видные ученые, например, Н. Бор) заговорили о возможном невыполнении закона сохранения энергии, до тех пор одного из основополагающих законов мироздания.
Стали говорить о том, что-де энергия сохраняется только в среднем, а не в каждом элементарном акте.
Но вот странность! Если энергия при β-распаде не сохраняется, то резонно было бы ожидать, что иногда энергии электронам будет не хватать, а иногда у них появится лишняя энергия. Так нет же! Выигрыша энергии у электрона никогда не наблюдалось. И В. Паули допустил, что вместе с электроном из ядра вылетает еще одна частица. Именно она, оставаясь незамеченной, уносит недостающую часть энергии.
Казалось бы, вопрос исчерпан. Эта гипотеза должна была бы сразу же прийтись по душе всем физикам, однако даже сам автор этого предложения говорил о безумии своей идеи, о том, что он предложил «что-то ужасное… нечто, что никогда нельзя будет проверить экспериментально». И верно, основания для подобных сомнений были, ведь масса и электрический заряд новой частицы обязаны были считаться ничтожно малыми, а то и вовсе равными нолю. Это свойство и дало повод итальянскому физику Э. Ферми окрестить частицу «нейтрино», буквально по-итальянски «нейтрончик», уменьшительное от уже известного тогда науке нейтрона.
Экстравагантность свойств нейтрино приводит к тому, что его взаимодействие с веществом пренебрежимо мало (на заряды оно не реагирует, а из-за ничтожности массы ему удается избежать и тенет сил тяготения). Поэтому зарегистрировать нейтрино чрезвычайно трудно.
И это при условии, что мы буквально купаемся в нейтринном море. Один только поток приходящих на Землю солнечных нейтрино необычайно велик около 1014 частиц в секунду в расчете на каждого из нас; а есть еще нейтрино космического и земного (радиоактивность) происхождения.
Два десятилетия выдуманное теоретиком нейтрино героически боролось за свое реальное воплощение. И победило! В. Паули полагал, что при его жизни нейтрино не будет обнаружено, однако в 1955 году (за три года до смерти В. Паули) наблюдения нейтрино на ядерном реакторе — интенсивном источнике этих частиц — заставило большинство физиков поверить в эту частицу. А полное признание пришло только в 1959 году.
Сейчас позиции нейтрино в физике настолько прочны, что даже поэты начали слагать о нем стихи. Вот образчик нейтринной поэзии (отрывок из стихотворения Д. Апдайка «Космические разбойники»); неуловимость этих частиц, их способность к всепрониканию прежде всего, как видим, будоражит поэтическое воображение:
Для адвокатов кварковой гипотезы история научного становления нейтрино приходится как нельзя более кстати. «Нет, — настаивают они, — кварки не выловлены только потому, что сети у экспериментаторов, видно, с дырками. Или заброшены не там, где надо. А то и просто им не везет…»
Не везет? Значит, не все еще потеряно; счастье обязательно улыбнется физикам, так рассуждают оптимисты.
Но им возражают скептики, они твердят свое: дело не в счастье; если в пруду нет рыбы, то никакие, даже самые совершенные удочки и крючки не спасут: улова не будет.
Может, к их словам стоит прислушаться?
Приметы придуманы сыщиком
Неудачи с кварками охладили многих исследователей.
Раздались голоса, что кварки — всего лишь удобная абстракция, что, возможно, в 2000 году на вопрос, что такое кварк, физик лишь недоуменно пожмет плечами, так как теория кварков к тому времени уже будет полностью забыта. «Если из собаки «исходят» звуки лая, то это вовсе не означает, что она состоит из них, — рассуждают некоторые физики. — Так и «слышимый» в экспериментах лай кварков не стоит, право, принимать слишком всерьез!»
Чтобы подкрепить эту свою точку зрения, скептики также увлеклись историческими изысканиями. Они стали вспоминать случаи, когда предсказания теоретиков не только не были подтверждены экспериментами, но позднее на поверку оказались вздорными и были справедливо преданы забвению.
«Не каждая из выдумок теоретиков должна обязательно материализоваться: полагать так было бы слишком наивно. Вспомните, — настаивают они, историю теплорода (жидкости, якобы переносящей тепло от тела к телу) и флогистона — этого гипотетического начала горючести. С их помощью в XVIII веке прекрасно объясняли очень многие явления — от горения тел до их нагревания и охлаждения».
Теория теплорода была прекрасно разработана. С. Карно в 30-х годах прошлого века с помощью понятия теплорода создал, как известно, теорию паровых машин. Тем не менее после того, как в сознании физиков укрепилось понятие о законе сохранения и превращения энергии, теплород был отброшен и забыт. О флогистоне забыли еще раньше.
История науки знает и еще более убедительный пример. Столетиями укреплялось и развивалось представление о мировом эфире, который якобы заполняет пространство и служит средой для распространения электромагнитных волн. Никто и ни в каком опыте не обнаруживал присутствия эфира, но без него, казалось, никак нельзя было объяснить распространение света и другие важные электромагнитные явления.
Свойства эфира описывали, старались определить его плотность, некоторые крупные ученые вычисляли вес атомов эфира. Но теория относительности навсегда отбросила эту гипотезу.
А между тем все факты и наблюдения, которые заставляли признать реальность существования классического эфира и вроде бы неопровержимо «доказывали» его присутствие, остались. Они только получили новое объяснение.
«Как и эфир, кварки — плод умственных спекуляций, — продолжают скептики, — ведь нет пока ни одного эксперимента, который однозначно требовал бы их реального существования. Разговоры о кварках — это дележ шкуры неубитого медведя. И давайте говорить не об охоте и о рыбной ловле, а лучше уподобим физиков-экспериментаторов инспектору-детективу. С точки зрения детективной истории о преступнике-кварке известно многое, если не все: заряд, спин и целый ряд других характеристик-примет. Бывало, ученые находили частицы, зная о них значительно меньше. И если рассуждать в таком ключе, то, видимо, следует честно признать: на сей раз приметы преступника (кварки) оказались придуманы самим сыщиком! Классификация элементарных частиц на кварковой основе, несомненно, очень удачна и полезна, соглашаются критики, — но искать в природе сами кварки ей-ей не стоит…»
Пока идут эти пререкания и споры (ведутся они и в наши дни), стоило бы вспомнить слова Э. Хемингуэя.
Вот что он писал в повести «Зеленые холмы Африки»:
«Настоящий охотник бродит с ружьем, пока он жив и пока на земле не перевелись звери, так же как настоящий художник рисует, пока он жив и на земле есть краски и холст, а настоящий писатель пишет, пока он может писать, пока есть карандаши, бумага, чернила…»
Добавим к этому: настоящий ученый не занимается спорами, а продолжает поиски. Разрабатывает все более совершенные методы для ловли кварков.
Так, в частности, в одной из недавних научных работ предложено воздействовать на поток капелек электростатической силой. Отклонение каждой капельки от первоначальной траектории пропорционально ее электрическому заряду. Поэтому капельки с дробным зарядом могут быть отделены от остальных.
А главное тут: при помощи этого способа можно исследовать тысячи (интенсификация поисков кварков!) капель в секунду.
* * *
Эта глава подошла к концу. Мы видим, что ядерное сафари пока успехом не увенчалось. Непойманные кварки остаются величайшей загадкой физики наших дней.
В чем тут дело? Может, в том, что мы еще плохо понимаем общие законы природы, правила ее игры? И поэтому стучимся в намертво заколоченные двери? Возможно, так.
И есть смысл сейчас поговорить об общих основаниях физики, о том, как эта наука в целом представляет себе окружающий нас мир.