«Двенадцать дней едешь по той равнине, называется она Памиром: и во все время нет ни жилья, ни травы, едý нужно нести с собою. Птиц тут нет, оттого что высоко и холодно. От великого холода огонь не так светел и не того цвета, как в других местах, и пища не так хорошо варится…»

Впечатление венецианского купца-путешественника XIII века Марко Поло о Памире (точнее, о Восточном Памире: его природа резко контрастирует с Западным Памиром), как о мрачной и пустынной горной стране, господствовало столетия. И правда, условия тут суровы. А потому жизнь растений, высоко в азиатских горах, казалось бы, должна быть просто невыносимой. И все же… это не совсем так.

В высокогорных долинах Западного Памира встречаются сказочные растения. Плодоносящая вишня тут может иметь диаметр ствола до полутора метров, тополь — до четырех. Клубни картофеля достигают и четырехкилограммового веса! Урожай помидоров доходит до 11,5 килограмма с куста. На подсолнухе удается насчитать — это на одном-то стебле! — несколько десятков крупных желтых шляпок…

Растения на Памире как бы сошли с ума, обнаруживая то, что можно назвать повышенной энергией роста. Они хотят только одного — расти как только можно, изо всех точек роста, из каждой почки!

Сущий парадокс! Удивительным образом тяжкие условия обитания для растений как-то уживаются на Памире с растительными чудесами. С демонстрацией бьющей через край жизнестойкости.

Растения и горы — так очень приближенно можно обозначить то, о чем пойдет речь в этой главе. Тема эта — и в науке, и при популярном изложении — весьма непроста. Автор остановился в смущении: как повести рассказ? С чего начать?.. Пожалуй, прежде всего уместно вспомнить о человеке, который, отдав этому делу так много сил, доказал важную роль гор в формировании земной флоры.

Путешествие к «Подножию смерти»

1916 год. Николай Иванович Вавилов (1887–1943), молодой, недавно окончивший «Петровку», ныне Московская сельскохозяйственная академия имени Тимирязева, и оставленный для подготовки к профессорскому званию исследователь по собственной инициативе и на собственные средства организует экспедицию на Памир. Он ищет родину пшениц и попутно хочет установить высотные границы земледелия.

Время выбрано крайне неудачно. Идет мировая война. Царское правительство гонит не желающих сражаться за чуждые им интересы на передовую. Поэтому спасающееся в горах, подвергающееся жестоким репрессиям местное население враждебно настроено к иноверцам.

Да и сезон путешествий близится к концу. Август: многие горные перевалы покрыты снегом. Проводники-киргизы в один голос молят Вавилова отступить, не искушать аллаха. И все же, сверившись по малодостоверным, дающим только самые общие ориентиры военным картам, Николай Иванович приказывает готовить лошадей и отправляться в путь.

Дорога была трудной. Часть пути пришлось идти вдоль реки Пяндж, по склонам гор, обрывавшихся пропастью глубиной в 1000 метров. Путь часто прерывался оврингами — висячими тропами: вбитые в отвесную скалу колья, устланные жердями и ветками, предательски трещавшими и проваливающимися под ногами; подвешенные на веревках бревна, покрытые настилом.

В одном месте проводники были вынуждены устроить над трещиной, шириной более метра, живой мост. По перекинутым над бездной телам прошли Вавилов и толстенный, семи пудов весом, переводчик хан Кильды. А лошадей пришлось обводить низом, через горные реки.

Не обошлось без потерь. При переправе через бешеную горную речку одна из вьючных лошадей с книгами, записями, дневниками Вавилова, с коллекционными материалами, поскользнувшись на гремящих камнях, была сбита водным потоком. Животное погибло подо льдами, унеся с собой ценный для исследователей Памира груз…

Не раз и не два спрашивал себя Вавилов: правильно ли он поступил? Стоило ли растениеводу, ботанику, искателю новых растительных культур столь настойчиво стремиться в страну, которую не без оснований называли не только «Крышей мира», но и Паймуром, что на санскрите означает «Подножие смерти». Надо ли было так рисковать?

Ведь известно же, что эти покрытые вечными снегами и ледниками места совершенно бесплодны и только в отдельных каньонах, на уступах встречаются кишлаки, где на крохотных площадках мотыжат землю дехкане и растут растения. Так стоила ли овчинка выделки?

Не мог тогда знать ученый, что этот поход кладет начало его долголетним странствиям по пяти континентам. (Вавилов не побывал лишь в Австралии.) Что в будущем, блуждая по Поволжью, Кавказу, Афганистану, Средиземноморью, Эфиопии, Монголии, Западному Китаю, Корее, Японии, по просторам Северной, Центральной и Южной Америки (он собирался еще обследовать Индию, весь Китай, Южную Африку и другие страны), столкнется он с трудностями гораздо большими: поломка самолета над Сахарой, фаланги и скорпионы в палатке, встреча с разбойниками на берегах Голубого Нила… (Всего Николай Иванович организовал в общей сложности 180 экспедиций: из 65 стран было привезено 250 000 образцов растений, составивших уникальную коллекцию.) Что в этих исканиях, вплоть до 6 августа 1940 года, когда Вавилов по ложному обвинению был арестован в Черновцах, окрепнут и найдут строгое подтверждение те теоретические концепции, которые впервые зародились здесь, на Памире.

Растения туземцы и космополиты

Нет, не напрасен был поход Вавилова. Позднее он писал: «Находки культурных растений на Памире превзошли все наши ожидания».

Неподалеку от Шунгана, в селении Кала-и-Вамар, на высоте двух с половиной тысяч метров (запомним эту отметку: смысл этих цифр станет нам понятным позднее), Вавилову предстало истинное сельскохозяйственное чудо. Он увидел сказочное поле гигантской ржи: высотой она была чуть ли не в рост человека, с толстым, не полегающим стеблем. Ее колосья и зерна были необыкновенно крупны.

Ради одной подобной находки стоило претерпеть все трудности и напасти долгого пути!

Ясно было: гигантская рожь могла быть уроженкой только здешних мест. То был, говоря языком высокой науки, явный эндемик.

Виды растений и животных разделяют на космополитические и эндемические (от греческого «endemos» — «местный», «туземный») формы.

Космополиты должны бы в принципе обитать повсюду, встречаться в любой точке планеты. Однако на деле абсолютных космополитов в природе не существует. И это естественно: ведь, скажем, обитатели моря не способны жить на суше, и наоборот.

К космополитизму наиболее склонны существа, обитающие в водной стихии. Ибо вода занимает две трети поверхности Земли, и это среда обитания, более однородная, чем суша, потому более легки и способы расселения в ней. К космополитам, живущим в воде, относятся, например, тростник обыкновенный, частуха подорожниковая и некоторые другие растения. А вот обитающих на суше космополитов гораздо меньше. Среди них наиболее распространены некоторые виды папоротников.

Космополитами многие живые формы делает сам человек. Осваивая все новые и новые земли, он ведет за собой не только домашний скот, собаку и кошку, но и менее привлекательных попутчиков — серых крыс, блох, тараканов. Увязываются за ним и подорожник, крапива, одуванчик и многие другие растения.

Противоположность космополитам — эндемики. Они словно бы привязаны к определенному месту обитания. Туземную жизнь ведет байкальский тюлень (само название говорит: в других местах его не найдешь), растущие на Черноморском побережье Кавказа пицундские реликтовые сосны, встречающиеся только на склонах гор Сьерра-Невада в штате Калифорния США гигантские секвойи.

Ареалы эндемиков подчас очерчены чрезвычайно узко. Улитка прудовик Limnaea convoluta обитает лишь в одном из небольших озер Ирландии. Эльдарская сосна — Pinus eldarica занимает площадь всего 25–30 квадратных километров на склонах горы Эйляр-буги в Грузии. Крохотную птичку колибри Oreotrochilus chimboraso можно повстречать только в Южной Америке, в Эквадоре, а в нем только на горе Чимборасо, и лишь на высоте 4–5 тысяч метров над уровнем моря.

Особенно богаты эндемиками участки планеты, изолированные от остального мира географически или экологически. Это глубокие озера — Танганьика, Байкал, уединенные острова, примером могут служить затерявшиеся в просторах Тихого океана Гавайи, и горы. Потому-то и не удивился Вавилов, встретив эндемиков на Памире. Удивить исследователя должно было бы не то, что он приметил в этой изолированной горными хребтами стране особую, без лигул — пленчатых язычков у основания листьев разновидность ржи, а то, что она оказалась столь крупной.

Растения-гиганты в горах? Это, пожалуй, и было истинным сюрпризом. Во всяком случае, это было против правил, вопреки известным ботаническим доктринам. То была небыль, обернувшаяся явью, одна из многих требующих объяснения тайн Памира.

Эксперименты Гастона Бонье

Систематическое изучение растений, обитающих в горах, по существу началось лишь в конце прошлого столетия. Тогда известный французский ботаник профессор Сорбонны, академик Гастон Бонье обратил внимание ученого мира на любопытные особенности жизни альпийских растений.

Поднимаясь по горным склонам, Бонье наблюдал, как за линией еловых лесов открывалась сначала область лугов и затем начиналась зона последних границ растительности, где растения отличались своим особым видом: это был все малорослый карликовый народец.

Бонье открыл большое внешнее сходство альпийских растений с арктическими: стелющиеся по земле стебли, маленькие толстые листья, ярко окрашенные цветы. Он писал в своих трудах о том, что во время пребывания в полярных странах, на Шпицбергене, например, часто встречал такие же растительные формы, как и высоко в горах. Отсюда ученый делал вывод: основным фактором, управляющим жизнедеятельностью и формообразованием растений в горах, является температура. С высотой она падает, так что температура определяет и верхнюю границу распространения флоры в горах. Это представление Бонье прочно вошло во все ботанические учебники.

Французский ученый не ограничился наблюдениями и констатацией фактов. Провел и ряд оригинальных, ставших классическими экспериментов, еще более, казалось бы, укрепивших правоту его научных выводов.

В окрестностях Парижа Бонье выбрал несколько многолетних растений и разделил их на две части. Одна была высажена на полях под Парижем, другая перенесена на отроги горной цепи Монблана и в ущелье Палума, близ пика д’Арбизона в Пиренеях.

И произошло то, что следовало ожидать. Оказавшись в горах, равнинные растения преобразились, — приняв вскоре все основные признаки растений альпийских.

Разницу между растениями равнинными и горными легко мог бы заметить и неспециалист. Первые были тонки и стройны, вторые похожи на распластанные на земле лепешки. Различие было столь поразительно, что только с помощью специальных микроскопических исследований удавалось доказать принадлежность этих внешне столь разных растений к одному и тому же виду.

Закономерность была уловлена. Она казалась непреложной. И вот, вопреки добытым Бонье ботаническим истинам, Вавилов на Памире повстречал не карликовую, а гигантскую рожь. И это не было единичным явлением. В окрестностях города Хорога Вавилов наверняка видел и другое чудо: задрав голову, тут можно любоваться неправдоподобно высокими пирамидальными тополями. До тридцати трех метров высотой!

Бросающиеся в глаза загадки. Будущий академик должен был обратить на них внимание. Обязан был задуматься: отчего на Памире не срабатывают законы, открытые Бонье?

Впрочем, в памирской экспедиции ум Вавилова был занят иным. Исследователя тогда интересовал не внешний вид растений, а то, как они сюда попали, откуда пришли. Он вел упорный поиск истоков земледелия.

Менделеев биологии

Академик ВАСХНИЛ Петр Михайлович Жуковский писал о своем учителе: «Николай Иванович Вавилов напоминал мне вулкан Стромболи в Средиземье, который, вечно пылая, служит морякам естественным маяком».

«Если ты встал на путь ученого, то помни, что обрек себя на вечное искание нового, на беспокойную жизнь до гробовой доски. У каждого ученого должен быть мощный ген беспокойства. Он должен быть одержим». Эти слова Вавилова стали нормой поведения и для него самого. Он был неутомим в исследованиях и, объездив весь мир (при встречах его спрашивали не «как вы поживаете?», а «куда вы теперь едете?»), отовсюду привозил экземпляры заморских растений. Ленинград был для него пристанью, мир — лабораторией. В письмах он шутил: «Подытоживаю в настоящее время земной шар…»

Работоспособность у Николая Ивановича была потрясающая. «Жизнь коротка, а так много нужно сделать!» — говорил он. По свидетельству тех, кто его близко знал, Николай Иванович обычно спал не более трех-четырех часов (случалось, приглашал сотрудников для работы к себе домой в 11–12 часов ночи), не признавал ни выходных, ни праздников, ни отпусков. Не выносил людей, которые мечтают, как бы «поскорее добраться до дома и поставить пластинку».

Гонка! С утра и до поздней ночи, с первого дня месяца до последнего — и так многие десятилетия. Мало кто выдерживал темпы его жизни. Директор Института хлопководства во Флориде (США) профессор Харланд, приехав в СССР, рассказывал, что после посещения их института Вавиловым всем сотрудникам пришлось дать трехдневный отдых.

В отпускное время Вавилов обычно ездил на опытные станции руководимого им Всесоюзного института растениеводства. И тогда, рассказывали очевидцы, для сотрудников наступал «великий пост». В 4 часа утра стук в окно: «Пора работать». И Николай Иванович, окруженный свитой, идет на поля.

Вавилов и его сотрудники подолгу ползали на корточках от растения к растению. Как часовой мастер со своим моноклем, Вавилов изучал с лупой строение цветов, пустулы ржавчины и многое другое. Так проходила неделя; сотрудники ходили небритыми, с отеками под глазами… И все же обожали своего шефа за темперамент, эрудицию, за поразительные прогнозы.

Но особенно неистовым становился Вавилов, когда, попав в иноземные края, пытался понять «земледельческую душу» той или иной страны. Ученый был страстным охотником за растениями. Мысли о будущих маршрутах Николай Иванович записывал на абажуре лампы, по вечерам эти записи таинственно светились, и мчался туда, где многовековая история земледелия накопила изобилие «растительной дичи».

Казалось, природа наделила организм Вавилова какими-то особыми физическими качествами, специально приспособленными для выполнения гигантской работы. Как рассказывали сопровождавшие Вавилова в экспедиции по Тянь-Шаню проводники, он поразил их тем, что большую часть пути шел пешком, забегал на каждый попутный откос, карабкался по крутым склонам, дотошно осматривал каждое ущелье, каждую скалу и везде находил, что собрать в свою гербарную сетку и в мешочки для семян. Затем писал, укладывал собранное, сушил, расправлял. Из каждой экспедиции Вавилов привозил огромный материал: колосья, початки, плоды, пакетики семян, черенки, гербарии, тетради с описью растений, путевые дневники и местные раритеты.

«Николай Иванович — гений, и мы не сознаем этого только потому, что он наш современник», — говорил о Вавилове его старший коллега, сам великий исследователь академик Дмитрий Николаевич Прянишников (1865–1948). Впоследствии, в 40-х годах, Прянишников мучительно страдал из-за того, что он, учитель Николая Ивановича, пережил его. Преодолевая унизительные барьеры, он добрался-таки до Берии, тогдашнего вершителя судеб многих советских ученых, но получил лишь грубый нагоняй. Вавилов был посмертно реабилитирован только в 1955 году.

Итоги циклопического труда Вавилова впечатляющи. Овация грянула в зале заседаний Третьего Всероссийского съезда селекционеров, случилось это в 1920 году в Саратове, когда тридцатитрехлетний профессор местного университета Вавилов изложил свой закон гомологических (от греческого «homólogos» — «подобный») рядов. Прерывая гром аплодисментов, председатель совещания, выдающийся русский ботаник Вячеслав Рафаилович Заленский (1875–1923) воскликнул; «Биологи приветствуют своего Менделеева!»

Открытый Вавиловым имеющий генетическую природу закон параллелизма в наследственной изменчивости у близких видов растений и животных недаром сравнивают с химической периодической системой. Ученый показал тогда, что если все известные у наиболее изученного в данной группе вида растения вариации расположить в определенном порядке в таблицу, то можно обнаружить и у других близких видов почти все те же вариации изменчивости признаков. Так, к примеру, у мягкой пшеницы есть растения с остистыми, безостыми, полуостистыми колосьями; белоколосые, красноколосые, черноколосые, сероколосые формы и так далее. Родственные мягкой пшенице виды имеют те же формы.

Обнаруженные Вавиловым закономерности находят все большее подтверждение. По мере развития исследований «пустые» места в таблице заполняются, и параллелизм в изменчивости видов становится все более полным. Выясняется также, что такую схожесть имеют виды не только одного рода, но и близких по своему происхождению родов, скажем, пшеницы, ячменя, ржи и других злаков. Поэтому закон гомологических рядов помогает исследователям лучше ориентироваться среди огромного разнообразия живых существ. Он облегчает и поиски нужных для селекции хозяйственных признаков растений и животных.

А в 1926 году Вавилов добился нового успеха: одним из первых в стране он был удостоен премии имени В. И. Ленина — высшей награды ученого, в том же году Вавилов вошел в состав ЦИК СССР, став членом правительства. Премия была присуждена Николаю Ивановичу за учение об иммунитете растений и труд фундаментального значения «Центры происхождения культурных растений».

Растительные кладовые

По подсчетам Вавилова, человечество выращивает свыше двух тысяч видов растений, но среди них лишь несколько десятков — пшеница, рис, кукуруза, ячмень, хлопчатник, картофель, подсолнечник и т. д. — обеспечивают людей пищей. И очень важно, чтобы эти основные культуры были высшего качества: и продуктивными и стойкими к болезням и капризам климата. Подобрать для каждого края, области, района такие сорта, ввести их в сельскохозяйственный обиход очень непросто, особенно для нашей страны, имеющей территорию, простирающуюся на 10 тысяч километров с запада на восток и на 4,5 тысячи километров с севера на юг.

Все эти вопросы стали особенно острыми в 20-х годах. Страна боролась с последствиями войн — голодом (в Поволжье от недорода гибли миллионы людей) и разрухой. Подъем сельского хозяйства стал неотложной задачей.

Путь к этому Вавилов видел в резком улучшении местных крестьянских сортов. В сортосмене. Под руководством Вавилова начали выписывать лучшие селекционные сорта из разных стран земного шара — в СССР завезли тысячи центнеров пшеницы, овса и других культур. Тем же целям были подчинены и многочисленные экспедиции, которые Вавилов организовал.

Где искать лучшие растения? Какими принципами, какой теорией при этом руководствоваться? Словно полемизируя с мнением немца Александра Гумбольдта (1769–1859), утверждавшего, что «первоначальная родина тех растений, которые сопровождают человечество с его раннего детства, покрыта таким же мраком, как и родина большинства домашних животных», Вавилов в 1923 году выдвинул такую идею. Почти любая нынешняя культура, исключая кукурузу и некоторые другие растения (человек изменил их настолько, что прямых предков отыскать в природе невозможно), утверждал ученый, имеет вполне определенную, строго локализованную родину. Более того, на планете есть небольшое число областей — первичных центров, где и зародилось все, что теперь выращивается на полях и лугах, в огородах и садах в любом уголке земного шара. Именно там, в этих центрах, и возникло земледелие.

И никакой гениальной сверхпрозорливостью первопроходцы сельского хозяйства не отличались. Просто волею случая попав в места наибольшего естественного скопления видов и разновидностей растений со съедобными зернами, плодами, корешками, клубнями, наши далекие предки разносили затем семена из этих мест по всему свету.

Растительные кладовые? Где они находятся? Где размещены очаги древнего земледелия? На первый взгляд они должны лежать там, где находились и первые великие цивилизации: в широких долинах крупных рек — Нила, Ганга и Инда, Тигра и Евфрата, Янцзы и Хуанхэ. Мысль о связи речных систем с цивилизацией, в частности, отстаивал в своей книге «Цивилизация и великие исторические реки» русский географ и социолог Лев Ильич Мечников (1838–1888), брат великого Ильи Ильича Мечникова.

Лучшие культурные растения выкованы великими цивилизациями древности? Нет, считал Вавилов, это заблуждение. Самые полезные растения создал вовсе не человек, а природа, он появился спустя десятки миллионов лет, после того как на земле возникли злаки.

И если, допустим, говорить об Африке, то не египетская, привязанная к руслу Нила, а предшествующая ей, скромная на памятники, не оставившая величественных пирамид земледельческая цивилизация подарила человечеству и кофейное дерево, и несколько видов сорго, и некоторые подвиды твердой пшеницы, и особый вид банана — энзете, и масличное растение нуг, и злак тэффа и некоторые другие ценнейшие растения. И все они заботами матушки-природы были взращены не в долине Нила (или Конго, Нигера, Замбези, Лимпопо), не в африканских краях с тучными почвами и обилием осадков, а в горной Эфиопии, на Абиссинском нагорье, на землях, лишенных многого из того, что потребно для получения больших урожаев. Египетская оставила для введения в культуру только несколько прибрежных растений: папирус, чуфу, злак Eragrostis pilosa, растущий по песчаным отмелям.

Пекла творения

У Вавилова-исследователя были предшественники. Примерно за полстолетия до выхода книги Вавилова «Центры происхождения культурных растений» (1926 год) были опубликованы классические труды швейцарского ботаника Альфонса Декандоля (1806–1893) «Ботаническая география» и «Местопроисхождение возделываемых растений».

Помимо ботанического метода, Декандоль в своих исследованиях опирался на новейшие завоевания археологии своего времени — находки пшеницы в саркофагах фараонов и т. д., истории — труды Плиния, Геродота, Страбона и других древних авторов, и лингвистики. Метод этот, правда, способен порождать и курьезы: кукуруза по-французски называется Ыé de Turquie — турецкая пшеница, хотя она происходит из Америки и, конечно, не от пшеницы. И все же, изучив досконально 247 культурных растений, решить поставленную задачу швейцарец так и не смог.

Иначе подошел к проблеме Вавилов. Он использовал результаты широчайших ботанико-географических изысканий — многочисленные экспедиции позволили Николаю Ивановичу собрать невиданного объема коллекцию растений — и, главное, Вавилову помог генетический метод. В шутливой форме ученый утверждал, что наиболее ценные, навеянные генетикой соображения возникли у него в Эфиопии, где живут люди с черной кожей, растут чернозерные, точнее, фиолетовозерные пшеницы (местное население называет эту пшеницу «черной»), темноцветный ячмень, черный горох, черные бобы и черная (!) морковь и распространены черноокрашенные паразиты человека. Подобное скопление в Эфиопии доминантных признаков и дало толчок к написанию Вавиловым в 1927 году в Средиземном море, на борту парохода «Криспи», возвращавшегося в СССР теоретически очень важной работы «Географические закономерности в распределении генов культурных растений».

Выводы обширнейших исследований Вавилова вкратце таковы. Именно в горных районах мира — Эфиопии, Передней и Средней Азии (в частности, на Памире), Китая, Индии, в Кордильерах Северной и Южной Америки — находятся очаги древнейшего земледелия. Всего ученый установил семь главных центров: пять — в Старом Свете и два — в Новом. Эти центры и были той кухней, где природа готовит свои самые совершенные растительные «блюда».

Да, вся совокупность данных сходилась у Вавилова в одном — центрами видообразования стали горные области аридного, сухого типа, с климатом вроде памирского. «Величайших достижений в земледельческом промысле, так же как и в искусстве, человечество в прошлом достигло не в богатейших по природным ресурсам низменных субтропических и тропических районах с их могучей растительностью, а, наоборот, в горах, преодолевая огромные препятствия, завоевывая каждый клочок земли». Там, где растениям-альпинистам, вопреки установленным Бонье запретам, удалось прорваться на высоты в несколько тысяч метров, где граница земледелия оказалась на удивление высокой, на Памире пшеница возделывается и на уровне 3500 метров, ячмень — до 4000: на Кавказе на тех же высотах лежат вечные снега! На Тибете растения забрались еще выше — до отметки 4600 метров, там и находятся «пекла творения» (название придумал Вавилов), мастерские по изготовлению наилучших растительных видов.

А как растения спустились с гор? Частично Вавилов дал и на это ответ. Он отмечал необычайно высокую плотность заселенности гор в прошлом. Задолго до появления супергородов горные районы были самыми плотнонаселенными местностями.

Горная зона занимает от силы 1/20 часть суши, а живет там, писал Вавилов, более половины человечества. И если вычесть в горных областях зоны бесплодных пустынь, скалы, каменные осыпи, льды и снега, если рассчитывать плотность населения по отношению к доступным для земледелия пажитям, то мы и получим рекордные цифры, которые еще не так давно превышали цифры плотности населения в самых культурных и обжитых районах Европы и Америки.

И прежде чем люди построили города на равнинных просторах, они были вынуждены жить под естественной защитой гор — в пещерах. В горных местностях, занимаясь собирательством, потом приручением растений, заботливо пестуя их, человек начал заниматься и селекцией растений. И только много позднее произошло «сошествие» древних земледельцев с гор. Тогда-то и возникли шумеро-вавилоно-ассирийские царства, египетская, индийская, китайская и другие цивилизации. «История происхождения человеческой культуры и земледелия, очевидно, более стара, чем об этом говорят дошедшие до нас документы в виде предметов, надписей, барельефов, могил…» — писал Вавилов.

Луковые горы

В этом пункте повествования можно бы поставить точку. Вавиловская часть темы «Растения и горы» исчерпана. Центры происхождения культурных растений — горные области планеты указаны. Конец? А почему не начало новой истории? Ведь открытие Вавилова возбуждает тьму вопросов. И право, их столько же, сколько гор на Памире!

Отчего это природе, когда она творит новые растительные формы, удобнее всего работается именно в горах?.. И чем существенным различается жизнь растений в горах и на низинных равнинах?.. Да и горы-то, похоже, годны не всякие?.. Почему вавиловские центры — это непременно горные страны, окруженные пустынями?..

А вот наиболее бросающееся в глаза обстоятельство. То, что прежде всего должно было бы заинтриговать любознательного читателя. Вспомним про памирский парадокс, с него мы начали в этой главе свой рассказ. Странно все-таки это выглядит, удивительно: ведь, если копать в глубину, получается, что наибольший успех ботаника, собирателя растений или земледельца, ищущего лучший сорт, наибольший успех всех их ждет именно в горах, скажем, на Памире, в регионе, где и людям, и животным, и растениям приходится совсем несладко?!

Итак, вернемся к разговору о Памире. Природа тут мало что обещает растениям. Есть районы, где чуть ли не каждую ночь, даже летом, замерзает вода. Если в солнечный день можно ходить в легкой рубашке, то вечером нужно надевать тулуп. Перепады температур огромны: от минус 30 градусов (ноябрь — март) до плюс 35 градусов (июль). И даже в разгар лета в тихие памирские ночи холодный воздух спускается в горные долины и создает так называемые морозобойные ямы.

Почвы? Пустынные сероземы, процент органических веществ в них ничтожен. В воздухе мало углекислоты (примерно вдвое меньше, чем на равнинах). Резкий солнечный свет, иссушающие ветры… Казалось бы, говорить о растительности в местах, где сошлись горные цепи (хребты высотою от 6 до 7,5 километра) Тянь-Шаня, Куньлуня и Гиндукуша, их вершины (здесь находится пик Коммунизма, 7495 метров — высшая точка СССР) лишь немного уступают Эвересту, где лежит крупнейший в СССР, почти 74 километра длиной, ледник Федченко, мало смысла.

Не только цитированный нами выше Марко Поло и другие очевидцы, посетившие Памир, особенно Восточный, он сильно отличается от Западного, не скупились на черные краски.

«…Здесь очень холодно, дует свирепый ветер. Снег выпадает даже весной и летом; ветер дует не стихая день и ночь. Почва пропитана солью и покрыта множеством камней. Хлеба и плоды не растут, травы же и деревья — очень редки. В диких пустынях этих нет никаких следов человеческого обитания» — так писал о Памире еще в VII веке в сочинении «Да-Тан-си-юй-цзи» («Записки о странах Запада») китайский путешественник Сюань-Цзань. Кстати, древние китайцы дали Памиру еще одно имя Цун-Лин, что значит Луковые горы, так как здесь много горного лука.

На фоне всех этих высказываний мысль о развитии на Памире сельского хозяйства может показаться праздной академической затеей ученых. Да, земледельцы здесь есть, но, смотрите, в каких тяжелейших условиях они трудятся! Им приходится бороться за каждый клочок земли. Памирские поля — это по большей части площадки, обложенные камнями, не превышающие нескольких метров в длину. Благо что только с водой нет хлопот — она сама ниспадает со снежных вершин, подвести ее нетрудно. А вот с землей морока: нередко крестьянам приходится устраивать поля, перенося землю на своих плечах!

И все же сельскохозяйственное освоение Памира началось. Велось оно под руководством соратника Вавилова члена-корреспондента АН СССР Павла Александровича Баранова (1892–1962).

САГУ

До Октября обширные земли Средней Азии и Казахстана именовались, с 1866 года официально, Туркестанским краем. Старые названия живучи, они цепляются за прошлое изо всех сил, а потому когда в апреле 1918-го здесь, в Ташкенте, этот город стал столицей, в составе РСФСР была образована автономная советская социалистическая республика, она также получила имя Туркестанской.

Одним из первых детищ новой власти явилось создание в Ташкенте в Доме Свободы, позднее тут размещался Дом Советов, первого в этом регионе советского вуза — Туркестанского народного университета.

Сохранилась фотография трехэтажного, на первом этаже располагался рабфак, массивного каменного здания с ложными колоннами на главном фасаде. На его фронтоне, если приглядеться, арабской вязью и русскими буквами была выведена торжественная надпись:

СРЕДНЕАЗИАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

САГУ, если кратко. Это название университета появилось в 1923 году, с 1960-го он стал просто Ташкентским.

История становления САГУ любопытна. Шла гражданская война. Туркестан был отрезан от Москвы и Петрограда Оренбургским и Закаспийским фронтами. И все же работа по организации нового центра культуры продолжалась. По крохам собирали оборудование, Первые микроскопы для университета удалось получить с гренажных (шелководческих) станций, кое-какие химические реактивы раздобыли на хлопкоочистительных и маслобойных заводах…

Не хватало учебников, преподавательские кадры были слабы, зато планы учредителей отличались грандиозностью. По первым наметкам под Ташкентом, на многих десятках десятин, предусматривалось возвести целый университетский городок со своими трамваями, парками, домиками для профессоров и студентов и, конечно же, с построенными по последнему слову техники институтскими лабораториями, библиотеками, клубами и т. д. Сохранились планы построек, спроектированных академиком, певцом русского архитектурного стиля модерн Федором Осиповичем Шехтелем.

Реальная помощь университету пришла из Центра. Гражданская война заканчивалась. В начале 1920 года была восстановлена железнодорожная связь с Туркестаном. И книги, приборы, квалифицированные кадры преподавателей начали переправлять в вагонах бывших санитарных поездов. Первый эшелон прибыл в Ташкент после 52-дневного исключительно трудного пути.

Всего из Москвы пришло пять таких эшелонов. Комендантом одного из них был Баранов.

Этого выпускника МГУ, коренного москвича, впереди ждала блестящая карьера столичного профессора, а он, бросив все, перебрался в сентябре 1920 года в Ташкент, на четверть века связав свою судьбу с исследованиями богатой и малоизученной флоры Средней Азии.

В САГУ Баранов стал доцентом, получил звание профессора, ученую степень доктора биологических наук, тут воспитал не одно поколение ботаников, писал прекрасные учебники; некоторые из них были изданы на узбекском языке. Одно время был даже членом правительства Таджикистана.

Павел Александрович был еще и неуемным путешественником (в возрасте 70, незадолго до кончины, несмотря на врачебные запреты, отправился во Вьетнам для знакомства с растительностью тропиков) и страстным исследователем. Как ученый, он отличался необычайной широтой интересов. Его занимали и высокая теория, скажем, вопросы онтогенеза — индивидуального развития организмов и формообразования растений, именем Баранова названы два представителя флоры Средней Азии: Astragalus Baranovii и Salsola Baranovii, и дела сугубо практические.

Много сил отдал он проблемам земледелия в Горно-Бадахшанской автономной области Таджикистана. Две трети ее территории приходится на высокогорные пространства Памира: до работ Баранова и его сотрудников считалось, что земледелие в пустынях Восточного Памира — вещь немыслимая. Для этих целей стараниями Баранова уже в 1928 году была проведена рекогносцировочная Таджикско-Памирская экспедиция. А в 1934 году Памирская экспедиция Среднеазиатского университета. В 30-х же годах была организована биологическая станция в Восточном Памире, на высоте 3860 метров. Это было первое в мире биологическое учреждение, занесенное в такие выси; в 1938–1940 годах Баранов был директором этой станции. У слияния впадающих в Пяндж рек Гунт и Шах-Дара заложен Памирский ботанический сад — на Западном Памире, вблизи города Хорога, на высоте 2320 метров.

Сахарное сено

Научная, земледельческая, культурная «колонизация» Памира постепенно открыла его несметные растительные сокровища.

Здесь можно встретить яблони, которые за короткое памирское лето успевают плодоносить дважды. Тут дуб, в возрасте 7–8 лет, давая за лето не один, а несколько являющихся продолжением друг друга побегов (ученые это свойство называют «поливалентностью»; «валент» — это один побег, или «квант» роста), вытягивается за год на… три метра. Он может впервые зацвести и принести желуди уже на четвертом году жизни, тогда как на равнинах это происходит не раньше 10–20 лет. Многие растения, например, терескен, отличаются примечательным долголетием — живут до 200–300 лет.

Растения на Памире своим обликом подчас напоминают Змея Горыныча, того, что о семи головах. Тут много уродцев с необычными свойствами. К примеру, деревья напоминают кусты. Березы, липы, клены, рябины стремятся образовать множество стволов, принять кустовидную форму.

Корнеплоды в результате сращивания имеют непомерные размеры и вес. (Это называют фасциацией; сращиваться могут соседние побеги, цветы, плоды — на Памире это обычное явление.) Урожаи тут громадны: в некоторых хозяйствах получают до тысячи центнеров картофеля и до семисот центнеров лука с гектара. Кстати, о луке: здесь у него на стрелках вместо семян образуются маленькие луковички.

Растительность на Памире отличают и многие другие странности. Вот одна из них. Когда ученые решили развивать высокогорное земледелие и стали привозить на Памир «иноплеменные» сорта, предполагалось, что в горах хорошо приживутся виды, взятые с севера. Однако их морозостойкость оказалась бесполезной, ибо они не успевали дать урожай за памирское лето. И неожиданно сорта, взятые из самых жарких стран — из Аравии, Палестины, Абиссинии — вызревали в суровых, холодных памирских условиях. Их преимуществом была скороспелость, а привычку к морозам они быстро выработали и стали столь же морозостойкими, как и растения-северяне.

О памирских морозах стоит поговорить еще. Тут короб чудес. Всяк знает, что листья у картофеля замерзают при первых же заморозках. А на Памире этот же картофель сохраняет ботву и при минус 7–8 градусах! Сочный шпинат образует поздней осенью семена, когда градусник по ночам регистрирует двенадцатиградусные морозы. Китайская капуста переносит похолодание в 15 градусов, и даже кончики листьев у нее не замерзают! Столь же выносливы ячмень, овес…

В чем причина? В том, что на Памире низкие ночные температуры каким-то образом препятствуют преобразованию накопленных за день запасов сахара в крахмал и другие вещества. Сахар остается в растительных тканях, прочно связывает воду, и тем самым (законы физики!) резко снижается точка замерзания воды. И чем больше сахара в клетках, тем более морозостойко растение.

Ученые утверждают, что сахар в таких больших количествах, как на Памире, еще никогда не встречался в клетках культурных растений. К примеру, в сухих листьях и стеблях ярового ячменя на долю сахара приходится до 40 процентов. Это в полном смысле «сахарное сено». Видимо, недаром наблюдательный и памятливый Марко Поло (свои воспоминания он продиктовал, находясь в тюрьме, многие годы спустя после возвращения на родину) рассказывал, что нигде он не встречал таких пастбищ, как на Памире: на них самый худой скот за несколько дней делается неузнаваемым.

Абдуло

Что же делает памирскую флору столь щедрой? Какие причины активизируют растительные процессы? Что это за таинственный Х-фактор (факторы?), который столь эффективно мобилизуют растительные силы? Почему в зоне, где должны прижиться лишь хилые растения-лилипуты (Бонье), такое раздолье для растений-гулливеров? (Вспомним про обнаруженную Вавиловым безлигульную рожь, легко привести и другие примеры.)

Подобные вопросы занимали ум Анатолия Валерьяновича Гурского (1906–1967) — доктора биологических наук (степень присуждена была без защиты), профессора, основателя и директора Памирского ботанического сада в Хороге, человека, проведшего на Памире более четверти века. Приехал сюда в 1940 году по приглашению Баранова.

Ученик Вавилова Гурский вполне оправдывал этот почетный титул. Как и учитель, он был непоседой, страстным путешественником, трудности горных переходов его не пугали. Удивительно, живой и веселый хозяин Ботанического сада за год успевал организовать до полудюжины экспедиций в самые дальние уголки Памира.

Де Фонтанелло писал: «Ботаника не является комнатной наукой, которая может развиваться в покое и тиши кабинетов… она требует, чтобы бродили по горам, лесам, преодолевали крутые склоны, подвергались опасностям на краю пропасти. Степень страстности, которая достаточна для того, чтобы стать ученым другой специальности, недостаточна для того, чтобы стать большим ботаником. И вместе с этой страстью необходимо еще здоровье, которое позволило бы предаваться ей, и сила тела, которая соответствовала бы ей».

Цель странствий Гурского? Не только сбор семян и другого посадочного материала, изучение деревьев Памира, установление верхних пределов растительности в горах, поиски пригодных для освоения земель. При огромной широте научных интересов внимание Гурского привлекали и вопросы, далекие от ботаники: наскальные рисунки и петроглифы, резьба местных мастеров по дереву, технология сталеварения в старинных кузнях и многое иное.

И состав экспедиций Гурского был необычен: с ним шли флористы, геоботаники, энтомологи, геоморфологи, археологи, геологи, физики, да и просто влюбленные в Памир люди.

Местное население ценило Гурского. Он был видной фигурой. Имени Анатолий, тем более отчества, да еще такого сложного — Валерьянович, у таджиков прежде не было, потому они ласкательно называли Гурского просто Абдуло. И очень доверяли ему. Он судил ссорящихся соседей, женил, давал житейские советы.

Его стараниями резко изменился сельскохозяйственный облик этого края. «Сажайте абрикосы», — посоветовал Гурский. И появилась великолепная курага, которую местные таджики везли на базар в Душанбе и быстро богатели.

Гурский ввел картофель. Он стал лучшим на Памире: урожаи по 400 центнеров с гектара, крупные, здоровые, вкусные клубни. Посоветовал разводить овощи, чего местное население совсем не знало. До этого здесь в основном питались диким тутовником, его толченые сухие плоды подмешивали в муку, и смесью ячменя и гороха: из нее пекли лепешки.

Безоглядно преданный науке Гурский всеми силами старался понять дух памирской растительности, удивляясь сонму ее причуд (у многих растений листья приобретают фиолетовую окраску), пытался их объяснить. Какие же причины так изменяют местную флору? Космические лучи? Вряд ли, их интенсивность в горах не очень велика. Особенности температурного режима? Химизм почв? Комплекс уникальных горных условий? Высокая сухость и прозрачность воздуха, обусловливающие повышенную солнечную радиацию?

А может, ультрафиолетовое излучение интенсивность которого на Памире существенно выше той, что наблюдается внизу?

Гурский все более укреплялся во мнении: ультрафиолетовые лучи мощный экологический стимул. Наблюдения (по мере уменьшения высоты действие на растения таинственного Х-фактора убывало) косвенно подтверждали эту мысль. И все же полной уверенности не было. Для победы ультрафиолетовой гипотезы нужны были прямые и неопровержимые доказательства.

Совет Курчатова

Фантастический, суровый, даже библейски мрачный и одновременно полный непередаваемого очарования ландшафт незнакомой планеты — таким предстает Памир человеку, впервые попавшему в эти края. Но особенно поражает пришельца совершенно необыкновенный памирский солнечный свет.

Когда мы в низине смотрим на какой-нибудь пейзаж, то всегда видим светлый купол неба и темную твердь. На Памире все получается наоборот: небо представляется неправдоподобно темно-синим, скорее даже лиловым, а земля оказывается залитой ярчайшим ослепительным сиянием. В памяти навсегда остаются и пронзительные жгучие лучи, отбрасывающие глубокие тени.

Горный свет Памира. Таким увидел его и показал в своих воспоминаниях еще один герой нашей истории — Юрий Лукич Соколов, доктор физико-математических наук, главный научный сотрудник Института атомной энергии имени Курчатова.

В одиночку Гурскому-ботанику пришлось бы туго. Требовалась помощь со стороны. Радиация — область физическая: вот бы поддержку физика! И, словно услышав призыв Гурского, к нему на выручку поспешил Соколов.

Он знает Памир не понаслышке. Примерно четверть века — впервые попал сюда в 1950 году, приехал изучать космические лучи — периодически наезжал Соколов в эти края. Здесь познакомился с Гурским, узнал от него про растительные диковины. Очарованный дикой красотой памирского края, заинтригованный растительными загадками, Соколов теперь уже зимой начинал готовиться к летним поездкам на Памир. Жадно читал все, что было известно про действие ультрафиолетового излучения на живые объекты.

Поверхности Земли достигает только часть ультрафиолетовой радиации Солнца. Содержащиеся в атмосфере водяные пары, частицы пыли и главным образом слой озона, он находится на высоте около 50 километров, играют экранирующую роль.

По физиологическому воздействию на живое ультрафиолетовое излучение условно подразделяют в порядке уменьшения длин волн на три области: А (от 400 до 320 нанометров), В (от 320 до 280) и С (от 280 до 200).

Ультрафиолета С, самого «злого», в горах нет, его полностью задерживает озоновый слой, однако интенсивность ультрафиолета А и В на Памире значительна.

А вот что писали авторитеты про воздействие ультрафиолета на организмы. Мнение биологов было единым и безапелляционным: получалось, что таких доз, как на Памире, растениям ни за что не перенести.

Биологи спорили лишь по частностям: какие именно из «цветочков» ультрафиолетового «букета повреждений» должны бы на Памире сильнее проявить себя. А-лучи считались практически не опасными. Но вот ожоги ультрафиолета В не должны были пройти для растений бесследно.

А к особо печальным последствиям привела бы встреча растений с ультрафиолетом С. Поставленная под прямой удар С-лучей (если, допустим, растения напрямую, без светофильтров, облучать светом ртутно-кварцевой лампы) листва вскоре должна была бы принять, все это в опытах демонстрировалось неоднократно, характерную бронзово-коричневую окраску. А затем начался бы и некроз — омертвение растительных тканей.

Но коли это так, задавал себе Соколов все тот же неотвязный вопрос, то, спрашивается, как же облучаемые вредным для них ультрафиолетом В растения там все-таки существуют? Мало того, отчего же это памирская зелень бывает столь обильна в сравнении с равнинной?..

В середине 50-х годов после одного из возвращений с Памира Соколов рассказал о своих наблюдениях и сомнениях Игорю Васильевичу Курчатову, под руководством которого в то время работал.

— Что же это ты, — сказал тогда Курчатов, — ведь каждый год ездишь на Памир, а в чем там дело, так и не разобрался. Вот возьми и разберись!..

Курчатов очень заинтересовался проблемой и дал возможность оказать большую помощь памирским биологам. «Если б не этот толчок, — вспоминал Соколов, — я вряд ли бы занялся столь запутанной проблемой». (Основного своего дела: изучения интерференции атомных состояний, экспериментальная проверка основ квантовой электродинамики — ученый бросать не собирался. — Ю. Ч.)

Овес-рекордсмен

Автор не раз встречался с Соколовым. Он работает в Москве и на Памир летает и не теряет надежды узнать окончательную разгадку памирского феномена.

— Проблема ультрафиолета оказалась столь запутанной, — объяснял мне Соколов, — потому что физиологи растений, привыкшие работать не в горах, а в долинах, где, естественно, ультрафиолета мало, имели обыкновение смотреть на этот агент примерно так, как мы воспринимаем рентгеновское излучение, полагая, что его можно создавать лишь искусственным путем, в лаборатории. Лет 30 назад ультрафиолетовых спектров Солнца, чтобы понять, какай тут связь с жизнью растений, в горах никто не измерял. Но что бы вы, например, сказали о физиологе, который в своих опытах по воздействию температуры на живые организмы, измерял бы эту температуру не термометром, а… пальцем? А ведь в «ультрафиолетовых» экспериментах было и того хуже: там даже и такого прибора, как палец, не существовало… Вообще с ультрафиолетовым излучением биологи работали очень мало. Известно вам, какая радиация обжигает на Памире наши носы? В те годы я таких работ не видел и ни разу не слышал о них…

Став из чистого физика наполовину фотобиологом, мучимый ультрафиолетовой загадкой (растения великолепно себя чувствуют под губительным ультрафиолетовым дождем?!), Соколов энергично взялся за дело.

Прежде всего надо было создать приборы, способные анализировать горный свет, особенно же его коротковолновую ультрафиолетовую часть. С благословения Игоря Васильевича Курчатова (позднее Соколова очень поддержал и бывший президент АН СССР, академик Анатолий Петрович Александров) Юрий Лукич сконструировал и изготовил в Москве специальный переносной кварцевый спектрофотометр с электрической регистрацией и другие необходимые приборы. Затем, регулярно бывая в летние сезоны на Памире, он приступил к прямым экспериментам. Совместная работа Соколова с Гурским велась с 1958 по 1965 год.

Исследователей ждали большие удачи. Однажды им пришла крамольная мысль: не ослаблять, с помощью светофильтров ультрафиолетовый гнет, а усилить его! Растения облучаются на Памире ультрафиолетом А и В, но не С, так что ж, восполним этот пробел! Начнем бомбардировать растения еще и С-радиацией. Сделать это просто: достаточно облучать растения лучами ртутно-кварцевой лампы.

Решили — сделали. И неожиданно получился эффект, перевернувший все обычные представления. Творилась какая-то чертовщина! По всем прописям биологии растениям следовало бы погибнуть, сникнуть, пропасть под ультрафиолетовыми С-ливнями.

«Вне всяких сомнений, стоит тот факт, что „короткие“ ультрафиолетовые лучи с длиной волны менее 290 нм вызывают гибель всякого растительного организма, будь то гриб или высшее растение. Речь может идти лишь о большей или меньшей устойчивости тех или иных видов растений. Несомненно, что данное явление находится в связи и с поглощением „коротких“ ультрафиолетовых лучей белками протоплазмы и денатурацией белков под влиянием квантов, превышающих 4 эВ. Мы предлагаем назвать эти лучи витацидной радиацией, несущей смерть всякому живому организму», — так писал Алексей Федорович Клешнин в 1954 году.

Так нет же! Растения не только не погибали, но как бы набирались новых сил, в ряде случаев развивались заметно лучше тех растений, которые не получали летальных доз радиации. Многие виды, лук например, просто-таки тянулись к смертоносным лучам лампы.

— Понятно, реакция растений на ультрафиолет индивидуальна, — рассказывал Соколов. — Одни виды, скажем фасоль, С- и даже В-лучи угнетают, другие же растительные формы получают мощный стимул для развития. Возьмем столовую свеклу. Ее листья под лампой приобретают синеватый оттенок, становятся волнистыми и более толстыми, покрываются сверху блестящим белесоватым налетом. Изменения есть, однако по всему заметно: растения вполне приспособились к столь необычному для них радиационному режиму и даже извлекают для себя при этом немалую пользу. А рекордсменом выносливости стал тут овес, уж он-то, кажется, ведет свое начало от черта! Выдерживает чудовищные дозы ультрафиолета С. Все выгорело вокруг, а овес вывернул лист наизнанку, белой стороной, и ему хоть бы что. Он может погибнуть от нагрева лампой, но не от ультрафиолета…

Ф-режим

Более 2 тысяч смертоносных доз витацидной радиации, случалось, получали растения и не гибли! Поразительное явление, оно просто обязано было иметь простую причину.

Раскрыть секрет помогли прямые опыты.

Прежде всего Гурский и Соколов решили убедиться в правильности обычных представлений о губительности С-лучей. Для этого часть растений облучали по ночам ртутно-кварцевой лампой, а днем ростки затеняли от солнечных лучей непрозрачным экраном. И вот на этот раз, через несколько суток после того, как их листья покрылись оранжевыми пятнами ожогов, растения погибли.

Слава создателю! Хоть здесь-то все было по правилам. И совсем не заблуждались Клешнин и другие работающие с ультрафиолетом биологи, те, кто вел эксперименты в лабораториях, оранжереях, на открытых площадках равнин. Они были правы всюду, но только не на Памире, где действовали иные закономерности.

Какие? Постепенно это стало понятным. Продолжая опыты, Гурский и Соколов решили облучать растения ртутно-кварцевыми лучами ночью, как и прежде, но днем оставлять их открытыми. Не затенять, что они делали до этого, а дать к растениям доступ памирскому свету. И на этот раз растения развивались как ни в чем не бывало.

Значит?.. Значит, памирский свет может как-то нейтрализовать вредоносное воздействие как В-, так и С-лучей!

Этот вывод-гипотеза в конце концов превратился в факт науки. Впрочем, схожие явления ученым были известны и получили особое название — «фотореактивация». Вспомним хотя бы про эффект Гершеля. Если обычную фотопластинку с зафиксированным на ней световым изображением облучать инфракрасными лучами, изображение полностью стирается.

Грубо говоря, фотореактивация у высших растений имеет, по-видимому, ту же природу. (Соколов назвал комбинированное воздействие на растения длинноволнового и коротковолнового ультрафиолета «Ф-режимом».) Внешне явление выглядит так, будто ультрафиолет А сглаживает, парализует, и часто не без пользы для растений, негативное влияние ультрафиолета В и С. Скорее всего главную роль в этих превращениях играют растительные пигменты-каротиноиды, они-то, видимо, и умеют защищать зеленые клетки от ультрафиолетовых разрушений.

— Это древнейшее свойство растений, — комментировал в беседе со мной свое понимание фотореактивации Соколов. — Она была для них крайне важна в далекие эпохи, при переселении живых организмов из океана на сушу. Кислорода тогда еще в атмосфере было маловато, оголенную Землю облучали мощнейшие потоки ультрафиолета. И растения вынуждены были выработать у себя защитную реакцию. Не оттого ли на том этапе растительной жизни планета была покрыта гигантскими папоротниками и хвощами. Позднее они исчезли: сами же растения, увеличив содержание кислорода в атмосфере, дали возможность образоваться слою озона, полностью поглощавшему опасный ультрафиолет С и большую часть ультрафиолета В. Необходимость в фотореактивации — ее рудименты все же сохранились в растениях и проявляют себя в условиях, близких к памирским, — отпала, а сами растения стали значительно меньше в размерах…

Ф-режим. Он проясняет многое. Льет свет и на понимание первой части нашего долгого рассказа. Вот теперь-то науке (и нам) становится понятным истинный смысл открытий Вавилова. Подлинная причина того, что центры происхождения культурных растений находятся не где-нибудь, а именно в горах. Только здесь ультрафиолет может продемонстрировать свою творческую силу. И необычный вид памирской флоры связан именно с этим. Ультрафиолетовые лучи могут уродовать растительность, угнетать ее, но они же способны и подстегивать жизнедеятельность растений, вызывать мутации и давать начало новым, невиданным в равнинных областях сортам.

Проект «ультрафиолет»

В свете добытых Гурским и Соколовым фактов и Бонье теперь можно было реабилитировать. Видимо, открытые им закономерности исправно работают только во влажных — гумидных горах, там, где в воздухе много водяных паров. Пары хорошо поглощают ультрафиолетовые лучи, низводя радиацию до равнинных норм, ультрафиолет может поглощаться и частицами пыли. Грубо говоря, во влажных горах коротковолновый ультрафиолет отсутствует. Здесь доминирует температурный фактор. И все идет по Бонье: с высотой растительность вырождается в карликовую и совсем исчезает.

Не та картина в сухих, аридных горах типа памирских, где с подъемом вверх интенсивность коротковолновой ультрафиолетовой радиации (В-лучи) растет. Ультрафиолетовые лучи повышают жизненный тонус растений, их стимулирующее воздействие частично гасит негативный температурный эффект, но, понятно, лишь до какого-то предела: на больших высотах уже настолько холодно, что вынести это не под силу никаким растениям. Да и ультрафиолетовое излучение начинает действовать в основном угнетающе: ведь даже на высоте 3 тысячи метров на Памире суммарная облученность ультрафиолетом А и В достигает огромной величины — 800–850 микроватт на квадратный сантиметр поверхности.

Так вот и возникает в аридных горах оптимальная для жизни растений зона. В ней идет усиленное цветение, плодо- и семяобразование, наработка крупных подземных (клубни, корнеплоды) хранилищ запасенных питательных веществ. Поэтому издревле (центры Вавилова!) люди и находили в сухих горах самые подходящие условия для собирательства, селекции и разведения съедобных растений.

Опыт ботаников показал: на Памире область наиболее активного развития растений расположена на высотах 2000–2500 метров над уровнем моря. Выше растениям становится слишком холодно, ниже слабеет воздействие ультрафиолета. Естественно, в разных горных областях мира зона оптимума может сдвигаться в ту или иную сторону. В Гималаях она выше, чем на Памире. Однако всюду: и в Андах, и в других высоких сухих горных местностях она есть.

Недаром в некоторых тропических странах сахарный тростник для оздоровления периодически перемещают в горные районы. А в Индии выращивание здорового картофеля для посадок сосредоточено теперь в высокогорном поясе, до этого семенной картофель ввозился в Индию из горных областей Италии.

Исследования роли ультрафиолета в жизни растений продолжаются. В нашей стране они, вероятно, скоро примут общегосударственный размах. Сейчас, одним из инициаторов этого стал Соколов, создается научный проект «Ультрафиолет». Участие в нем примут Институт физиологии растений, Институт биофизики, Институт общей генетики (все академические учреждения), Тимирязевская сельскохозяйственная академия, Институт атомной энергии. Работа будет вестись в теоретическом и в практическом аспектах. Самое важное понять, как удается растениям обратить вред — удары ультрафиолетовой дубинки — себе во благо.

Исследования памирского феномена много сулят науке. Собственно, это уже начало новой — третий этап! — чреватой, видимо, блестящими открытиями главы в долгой повести «Растения и горы». Эстафетная палочка поколений: Декандоль — Бонье — Вавилов — Баранов — Гурский — Соколов (надо бы тут упомянуть имена еще многих десятков ученых!) перейдет в молодые сильные руки. Придет новая когорта исследователей. Они будут вести научный розыск совсем по-иному, на другом — клетки, органеллы, ферменты, их взаимодействие с ультрафиолетовыми квантами, гены, молекулы ДНК и РНК — уровне. Их речь запестрит малопонятными для неискушенного читателя терминами, заимствованными из квантовой механики, биохимии, молекулярной биологии и других наук.

Будет все — ярость поиска, тернии ошибок, вопли творческого восторга, радость научных удач. Обо всем этом хотелось бы написать. Но сделают это уже другие авторы. Авторы, которым предстоит жить, видимо, в начале XXI века. Они совсем не так, как мы, станут смотреть на вещи, оценивать научные свершения. И, возможно, в разделе практических приложений их больше всего заинтересует план космический.

Скорее всего уже в начале XXI века человек отправится в далекие космические путешествия. Космонавты непременно возьмут с собой в дорогу зеленые растения, которые дадут космоплавателям пищу и кислород для дыхания. И поэтому нужно уже сейчас вести изучение жизнедеятельности растений в условиях, близких к космическим. Постараться получить пригодные для условий полета в межпланетном пространстве сорта.

И поднятый к звездам Памир — своеобразная природная лаборатория — может оказаться наиболее подходящим местом для таких опытов.