«Почему и зачем растение зелено?» — так называлась одна из работ Климента Аркадьевича Тимирязева (1843–1920), посвятившего всю свою жизнь изучению фотосинтеза. Немало лет прошло с тех пор, одержаны замечательные научные победы, разработана невиданная для тех времен, облегчающая исследования научная аппаратура. А дать исчерпывающий ответ на этот, казалось бы, простой вопрос наука все еще не может…

Листозелень

Голландец Антони ван Левенгук (1632–1723) не был ученым в строгом, нынешнем смысле этого слова. Занимался торговлей (мануфактура и галантерея), а свой досуг использовал для шлифовки оптических стекол. В деле этом достиг он такого совершенства, что изготовленные им линзы, которые он вставлял в металлические держатели с прикрепленной к ним иглой для насаживания объекта наблюдения, давали 150–300-кратные увеличения.

Так, в 1674 году Левенгук смастерил первые образцы микроскопа. И тут страсть разглядывать скрытую дотоле от глаз человека часть Вселенной всецело овладела голландским купцом. А человек это был пытливый и неугомонный. Все, что попадалось ему под руку, Левенгук тут же тащил к микроскопу. И волос, и крылышко мухи, и кусочек ткани, и бумагу, и капельку дождевой воды… Свои наблюдения-открытия Левенгук описывал в научных статьях-письмах, посылая их в Лондонское Королевское общество, членом которого стал с 1680 года.

Естественно, Левенгук не прошел мимо зеленого листа. В растительной ткани, ее клеточках, он разглядел крохотные зеленые скопления частиц. В 1698 году, говорят, когда Левенгука посетил Петр Первый, голландец и русскому царю дал поглядеть через линзу на таинственные зеленые шарики…

Левенгук одним из первых наблюдал хлорофилл. Но получили его и, главное, дали ему имя французские химики Пьер Пельтье (1788–1842) и Жозеф Каванту (1795–1877). Именно они нарекли «листозелень» (словечко, придуманное Тимирязевым) хлорофиллом (от греческих «хлорос» — зеленый и «филлон» — лист).

Пельтье и Каванту были профессиональными фармацевтами, а значит, и химиками. Из листьев растений, из трав, коры деревьев, из корней они извлекали исцеляющие начала. Особенно прославило их открытие хинина: верного средства против малярии. Так, возясь с листьями, видимо, попутно, не придавая этому слишком большого значения, Пельтье и Каванту (в 1817 году они опубликовали «Заметку о зеленой материи листьев») и открыли хлорофилл.

Опыт с выделением хлорофилла прост и доступен каждому. Стоит залить свежие зеленые листья спиртом, и вы заметите, что спирт окрасится в зеленый цвет, а листья станут бесцветными. Эту нехитрую операцию и проделали Пельтье и Каванту. Но, кроме того, они промыли полученную полужидкую зеленую массу водой (удалив при этом водорастворимые примеси), а затем просушили ее и получили зеленый порошок.

Радуга под лезвием ножа

Разделить пигменты, получить хлорофилл в чистом виде удалось русскому ученому Михаилу Семеновичу Цвету.

Цвет (1872–1919) — ботаник, физиолог и биохимик, сын итальянки и русского интеллигента, не поладившего с царским режимом. Родился в Италии, учился в Швейцарии, долгое время жил в Польше (она была тогда частью Российской империи), умер в России (в Воронеже). Он был поэтом (магистерская диссертация его начиналась словами: «Своеобразный таинственный процесс, происходящий в хлорофилловом зерне под прибоем световых волн…»), а дал толчок изобретению приборов, которые сейчас можно найти на любом заводе, связанном с химической промышленностью.

В 1906 году, защитив в Женеве диссертацию «Этюды по физиологии клетки», ее центральная глава посвящена хлорофиллу, Цвет неожиданно для окружающих решает вернуться в Россию. Вернуться туда, где никогда не жил! Здесь он вначале работал у Андрея Сергеевича Фаминцина, в его фитофизиологической лаборатории, изучал все тот же хлорофилл. Но на птичьих правах: ни дипломов, ни ученых степеней, полученных за границей, в России не признавали, а без них получить штатное место ни в одном учреждении Цвет не мог. Образовался заколдованный круг: чтобы получить степень доктора, надо было иметь университетский диплом, а его не давали без гимназического аттестата (гимназия в 30 с лишком лет?!)… В 1910 году Цвет защитил вторично докторскую диссертацию «Хромофиллы в растительном и животном мире».

1915 год, дивизии кайзера Вильгельма вторглись в Польшу, Цвет вместе с Варшавским политехническим институтом оказался в Нижнем Новгороде. Его избрали профессором Юрьевского, ныне Тартуского университета, который в те годы из Эстонии был эвакуирован в Воронеж; здесь (голод, неустроенность, врожденная болезнь сердца) на 47-м году его настигла смерть.

В 1943 году известный женевский ботаник Чарлз Дэре писал, что Цвет за свое открытие, несомненно, достоин Нобелевской премии, ибо без его хроматографии значительная часть нынешних нобелевских лауреатов по химии не получила бы столь значительных результатов.

В 1903 году Михаил Семенович Цвет прочел доклад со сложным для ботаников и отпугивающим названием: «О новой категории адсорбционных явлений и о применении их к биохимическому анализу». Но суть была проста. Цвет показал, что при пропускании растворенных в жидкости растительных пигментов через слой бесцветного пористого сорбента отдельные пигменты располагаются в виде окрашенных (каждый пигмент имеет собственный цвет или хотя бы оттенок) зон.

Порошок сорбента, это может быть мел, сахарная пудра… адсорбирует, поглощает (латинское «sorbere» значит «глотать») разные пигменты с неодинаковой силой: одни могут «проскочить» с током раствора дальше, другие будут задержанными ближе. Полученный таким образом послойно окрашенный столбик сорбента Цвет назвал хроматограммой, а метод — хроматографией.

(Странным образом собственная фамилия — Цвет — ученого совпала с существом его наивысшего научного достижения: по-гречески «хрома» значит «цвет»!)

На фоне тех усилий, которые уходили на эту процедуру прежде, манипуляции, проделываемые исследователем при хроматографии, похожи на фокус, волшебство. Вот исследователь в стеклянную трубку, плотно набитую хорошо измельченным мелом, через воронку льет темно-зеленый хлорофилловый экстракт. И происходит обыкновенное (научное) чудо: медленно спускаясь вниз, жидкость окрашивает порошок в разные тона. Пояски — желтый, зеленый, сине-зеленый, оранжевый…

Столбик мела извлекается из стеклянной рубашки и кладется на стол. И ножом (!) разрезается на отдельные цветные части. В каждой — чистейший пигмент. Осталось лишь с помощью растворителя вымыть, извлечь нужный исследователю пигмент из соответствующего кольца сорбента…

Хроматографический метод Цвета позволил ученым открыть для себя красочную и загадочную страну пигментов.

Пигменты желтые, красные, зеленые

Листва зелена — эту аксиому разрушает осень с ее желтой, красной и оранжевой листвой.

Хлорофилл хрупок и недолговечен: лучи солнца убивают его, но на смену погибшим молекулам лист синтезирует новые. Однако осенью образование хлорофилла прекращается: лист теряет зеленую окраску, обнажая до того скрытые под зеленью другие пигменты.

Так гибель и распад рождает красоту, столь восхищавшую поэтов!

Семья растительных пигментов, уже и сейчас довольно многочисленная, растет с каждым годом. Число одних только хлорофиллов подошло к десяти: есть хлорофиллы (словно витамины) a, b, c, d, e — у высших растений, у водорослей, у бактерий.

(Цвет первым показал, что кроме хлорофилла a — он главный! — в зелени растений присутствует еще и хлорофилл b. Ученый, правда, называл их иначе: хлорофилл альфа и хлорофилл бета. Увы! Латынь вытеснила греческий.)

Но особенно «плодовиты» каротиноиды.

Всем хорошо известна эта группа пигментов, окрашивающих морковь, апельсины, лимоны и другие плоды и овощи. И желтый цвет оперения канареек и желтка яйца также обусловлен каротиноидами. Они же образуют пигментный слой кожи у обитателей Юго-Восточной Азии.

Животные и человек сами не могут синтезировать каротиноиды, которые используют в качестве предшественника витамина А. Желтки яиц, снесенных курами, получавшими мало зеленого корма, еле окрашены, в то время как оперение канареек, в пище которых было много красных каротиноидов, приобретает яркую красноватую окраску.

Число различных каротиноидов — каротинов (они желты), ксантофиллов (красны) — быстро растет. Если в 1947 году каротиноидов насчитывалось около 70, то к 1970 году — более 200! Здесь все обстоит так же, как в ядерной физике.

Когда-то были только атомы (Демокрит), затем ученые стали говорить об электронах, протонах и нейтронах. Но вскоре, орудуя мощными ускорителями, физики-экспериментаторы начали обнаруживать все новые и новые ядерные частицы. Их стали обозначать просто буквами. Так появились Λ-частицы, Σ-частицы и многие другие.

Сейчас их уже набралось несколько сотен, эпитет «элементарные» был окончательно скомпрометирован. Чтобы наконец разобраться в этом хаосе, физики-теоретики ввели кварки — сверхэлементарные частицы, различными комбинациями которых вроде бы являются все остальные. Однако физики-экспериментаторы ну никак не могут их обнаружить!

И пигменты тоже: множатся и множатся, подобно элементарным частицам… И специалисты по фотосинтезу, как и ядерщики, недоуменно разводят руками, силясь объяснить подобную многоликость щедрой на выдумки природы.

К чему такое изобилие? Когда-нибудь это станет ясным. Пока же известно немного. Так, ученые установили, что каротин охраняет молекулы хлорофилла от окисления особым синглетным кислородом: он образуется как побочный продукт в процессе фотосинтеза и крайне агрессивен.

Другая функция желто-красных пигментов — видимо, расширить интервал эффективных для фотосинтеза длин волн света. Те лучи, которые хлорофилл не в состоянии ассимилировать, поглощают каротиноиды и «передают» на переработку молекулам хлорофилла.

Растительные пигменты преподнесут ученым еще немало сюрпризов. Но, как и прежде, наиболее интригующим среди них остается зеленый пигмент — хлорофилл. Вот уже полтора столетия ученые многих стран мира упорно исследуют это загадочное вещество. Если перебрать все химические соединения, то среди них хлорофилл по числу посвященных ему публикаций, вероятно, занимает первое место. И длинный список этих работ непрерывно пополняется.

Гейне спорит с Бюргером

Зеленый цвет вовсе не обязателен для каждого фотосинтезирующего организма. Водоросли, к примеру, в большинстве случаев бывают желтые, бурые, оливковые, красные или синие, но не зеленые. И на суше некоторые растения имеют желтые или красные, а не зеленые листья. Но в какие бы одежды они ни рядились, ключевую роль в них играет хлорофилл. Всякий раз, когда пигментная система «цветного» фотосинтетика подвергалась анализу, в ней обязательно находили и зеленые «кровяные тельца».

Тимирязев спрашивал: почему и зачем растение зелено? Уместно спросить: а почему растение не черно? Ведь если белые поверхности отражают почти все лучи, то черные, наоборот, поглощают весь солнечный спектр. Казалось бы, растения с черными листьями были бы в более выгодном положении!

Увы, черная листва быстро бы перегрелась. И, если бы температура листа поднялась выше 50 градусов, это означало бы смерть для растения. Белки — основная составляющая часть клетки — гибнут при температуре, лишь несколько превышающей 40 градусов.

Итак, ни белые, ни черные листья растениям не подходят. Но отчего природа выбрала из промежуточных зеленый цвет? Ведь мыслима еще и желтая или, скажем, синяя листва?

Зеленый цвет листьев настолько характерен для большинства растений, что невольно напрашивается мысль о его особом физиологическом значении, о том, что он чем-то полезен для флоры, имеет перед другими цветами какие-то явные преимущества.

Из всего огромного диапазона падающего на земную атмосферу излучения: γ-лучи, рентгеновские, ультрафиолет… — нижних слоев атмосферы и растений достигает лишь та радиация, которой удается проникнуть в так называемые «окна прозрачности»: сравнительно широкое «радиоокно» — волны от нескольких миллиметров до десятков метров — и узкое «оптическое окно» — излучения с длинами волн от 0,3 до десятков микрон; именно в этом «окне» находятся и все видимые человеческим глазом лучи.

Хлорофилл приспособлен к поглощению красной и синей полос спектра в «оптическом окне». Но удивительно, что этот пигмент не поглощает желтые и зеленые лучи, а ведь это самая насыщенная часть солнечного спектра! Оптикам известно, что максимум спектра прямого солнечного излучения лежит в желтой (художники недаром рисуют рыжее солнце) спектральной области.

Конечно, можно предположить, что приспособление растений к солнечной радиации как раз и проявляет себя в этом: хлорофилл и «создан» для того, чтобы поглощать в основном рассеянное солнечное излучение, имеющее максимум в сине-фиолетовой части при безоблачном небе и в красной области — при небе пасмурном.

Сторонники целесообразности природных конструкций выдвигают и другие более сложные варианты, объясняющие, отчего зеленый хлорофилл столь популярен в царстве растений. Не будем вдаваться в эти тонкости, но отметим, что идеология всех подобных рассуждений одна — в природе, дескать, все тщательно отлажено, пригнано, сработано с особым смыслом и не без пользы.

Однажды, путешествуя по Гарцу (горный массив, лежащий на территории нынешних ФРГ и ГДР), поэт Генрих Гейне повстречал простоватого бюргера, наивно и чрезмерно восхищавшегося премудростью творца, столь дивно устроившего этот лучший из миров. Иронизируя над простодушием своего собеседника, поэт в разговоре с ним, подтрунивая, утверждал, что-де «в природе все целесообразно. Вот она создала быка, чтобы из него можно было делать вкусный бульон; она создала осла, чтобы человек имел перед собой вечный пример для сравнения; она создала, наконец, человека, чтобы он ел бульон и не походил на осла…».

Любопытно, что Тимирязев, который привел этот эпизод в одной из своих пропагандирующих дарвинизм работ, приходит к выводу, что остроумие было, несомненно, на стороне поэта, однако ближе к истине оказался его собеседник. Таким образом, и Тимирязев полагал, что зеленая окраска растений имеет глубокий смысл.

Неслучайная случайность

Понятно, не все согласятся со взглядами бюргера, хотя бы потому, что не все верят в божий промысел. Однако споров атеистов с теологами мы касаться не будем. Лучше вспомним развернувшуюся лет 20 назад на страницах журнала «Природа» дискуссию все на ту же тему: зачем лист зеленый? Кое-кто полагал тогда и старался доказать, что зеленый цвет растений — чистая случайность. Что у нас не больше оснований говорить о приспособительном значении зеленой окраски хлорофилла, чем утверждать целесообразность красного цвета у гемоглобина.

Если бы кровь человека и животных была бы не красной, а синей или желтой, мы не искали бы в этом, утверждали спорщики, особого смысла. Так же не следует придавать специального значения и тому, что хлорофилл случайно оказался зеленым, ибо в земных условиях вполне удовлетворительным поглотителем энергии солнечного излучения мог бы оказаться пигмент иной окраски. И тогда леса, кустарники, травы имели бы соответствующий цвет.

Случайность? А может, вернее здесь говорить о неслучайной случайности? Дело вот в чем. Весьма вероятно, что наземные растения получили хлорофилл уже готовым «в наследство» от каких-то древнейших перворастений, обитавших некогда на нашей планете и исчезнувших в ходе дальнейшей эволюции. Возможно, эти предки растений обитали в воде, под небесами с совсем иным составом газов. Они поглощали свет солнца через другие, чем сейчас, «окна прозрачности». И может, тогда хлорофилл был очень на месте, его конструкция была очень функциональна, очень ладно приспособлена к особенностям окружающей эти перворастения среды.

С тех пор условия жизни на Земле сильно изменились. Однако природа не смогла выбросить хлорофилл и заменить его другим, более подходящим пигментом, поскольку хлорофилл оказался слишком глубоко вплетенным в ткань жизни. Появились красные, желтые пигменты, они, возможно, гораздо эффективнее улавливают солнечные лучи, однако и в растениях с красными или желтыми листьями в самом центре процесса фотосинтеза продолжает трудиться хлорофилл, пусть, возможно, и с меньшей силой, чем раньше.

Это последнее мнение об амплуа и судьбе хлорофилла, конечно, уместно лишь для растений земных. Не исключено, что в условиях других планет (допустим, что на Марсе будут обнаружены примитивные растения), при резко выраженном дефиците лучистой энергии, когда каждая «капля» света на строгом учете, окраска растений может уже приобрести прямое приспособительное значение. И между цветом пигментов и их назначением ловцов света будет прямое и однозначное соответствие.

Но это все лишь предположения, догадки… Чарлз Дарвин, очень интересовавшийся в последние годы своей жизни пигментами растений, как-то обмолвился: «Хлорофилл, — писал он, — это, быть может, самое интересное из органических веществ». С этими словами трудно не согласиться. И очень возможно, что тайны хлорофилла так никогда и не будут полностью раскрыты.

На заре истории

Лист зелен, но красящий пигмент — хлорофилл — не распределен равномерно в его клетках, а сосредоточен в крошечных зернышках — хлоропластах. Эти микроскопические тельца разнообразны по величине и форме. У зеленых водорослей спирогир они имеют форму спиральных лент; у хлореллы хлоропласт по форме напоминает чашу. Наблюдая хлоропласты, ученые давно догадывались: это, видимо, и есть те микроскопических размеров живые «машины», где происходит фотосинтез. Но как это показать?

Число хлоропластов в отдельной клетке высших растений может быть большим: до нескольких сотен. И каждое из этих живых образований имеет очень сложное строение. Внешне отдельный хлоропласт напоминает… огурец или половинку его: так обычно и изображают хлоропласт на рисунках, чтобы можно было хорошенько разглядеть его строение. Внутри хлоропласт — диаметр его сотые доли миллиметра — перегорожен (от одной его стенки — внешней мембраны-оболочки — до другой) тонкими мембранами, называемыми ламеллами. В отдельных местах ламеллы утолщаются, образуя граны.

Под электронным микроскопом удается разглядеть граны. Они представляют собой как бы стопки уже совсем мелких, едва видимых, аккуратно уложенных круглых плиток. И в каждой такой стопке от 250 до 300 молекул хлорофилла. Отдельный хлоропласт содержит миллиарды молекул хлорофилла. Нет никаких сомнений: хлоропласт — это созданный природой аппарат для фотосинтеза, а доказал это теперь очевидное положение в 1881 году Теодор Энгельман.

Энгельман (1843–1909) — немецкий физиолог, ровесник Тимирязева, автор выдающихся работ по физиологии животных. Открыл (1888), что фотосинтез присущ не только растениям и водорослям, но также и особым пурпурным (названы так, потому что содержат темно-красный пигмент) бактериям; в отличие от растений они, правда, не выделяют кислорода и поглощают синие и зеленые лучи света. Установил связь между окраской водных растений и их распределением по глубинам. Давно замечено: в глубинах морей и водоемов преобладают красные водоросли, а ближе к поверхности — бурые и зеленые. А дело, оказывается, в том, что лучи разных участков солнечного спектра поглощаются водой неодинаково. Больших глубин достигают в основном лишь синие лучи, которые хлорофилл не может эффективно использовать. Поэтому на глубинах до ста метров живут красные водоросли: их красный пигмент фикоэритрин способен поглощать желто-синюю часть спектра. Энгельман изобрел и усовершенствовал множество приборов для физиологических и иных исследований.

Энгельман сконструировал особый микроскоп: он позволял освещать небольшими пучками света различные части зеленых клеток. Так можно было начать поиск областей, где совершается процесс фотосинтеза. Для этого исследователь подобрал бактерии, жадно поглощающие кислород, продукт фотосинтеза. И вот эти бактерии начали концентрироваться только в тех участках, где находились освещенные хлоропласты…

Хлоропласты полны загадок. Есть гипотеза, что эти органеллы — потомки древних организмов, которые на заре истории жизни на Земле случайно внедрились в незеленые клетки и тем самым сделали их автотрофами, способными создавать органические вещества путем фотосинтеза. Союз этот оказался очень выгодным для обеих сторон.

Любопытно, что зеленые клетки можно «избавить» от хлоропластов, нагревая их. Поколения клеток, живущих при высоких температурах, все более и более бледнеют и в конце концов становятся бесцветными, лишенными хлоропластов. Того же удается достичь и химическими средствами, воздействуя на зеленые клетки стрептомицином и другими веществами.

Фотонный зонтик

Хлоропласты давно стали объектом пристального внимания ученых. В этот коллективный труд вносит весомую лепту и сильный отряд фотобиологов Белоруссии. Долгие годы его возглавлял академик Тихон Николаевич Годнев.

Годнев (1893–1982) — физиолог растений, академик АН БССР (1940), родился в городе Задонске Липецкой области в семье учителя, окончил Московский университет, работал в Москве, Астрахани, Иванове, с 1927 года в Белоруссии; но где бы ни жил ученый, он всегда оставался верен своей первой, возникшей еще в студенческие годы научной страсти: его волновала тайна важнейшего растительного пигмента — хлорофилла. Годнева постоянно занимала мысль, как такая большая и сложная молекула может строиться в живом организме. Труд жизни ученого был подытожен в монографии «Хлорофилл. Его строение и образование в растении», в 1967 году эта работа была удостоена премии имени Тимирязева АН СССР. Годнев по праву считается создателем советской школы исследователей биосинтеза хлорофилла, основателем и учителем школы белорусских физиологов и биохимиков растений, среди его учеников — член-корреспондент АН СССР Александр Аркадьевич Шлык и другие известные советские ученые.

Под фотонным, световым дождем многие из молекул хлорофилла, находящихся в зеленом листе, разрушаются. Отчего же тем не менее листва до осени сохраняет свой цвет и свойства? Природа снабдила растения особыми фотонными зонтиками? Нет, все гораздо проще и одновременно сложнее. Объяснение стабильности свойств зеленой материи в том, что в недрах листа идет непрерывный синтез все новых и новых молекул хлорофилла.

Здесь дело обстоит, как и во всех других живых тканях. Прошло время, когда считалось, что клетки живого и составляющие их молекулы неизменны. Теперь никого не удивляет мысль о том, что, например, у человека в течение 80 дней половина всех тканевых белков распадается и строится заново. И что с химической точки зрения сегодня мы с вами уже совсем не то, чем были вчера!

Биосинтез хлорофилла — интереснейшая тема! Ученые показали, что по утрам листья «более зеленые», чем вечерами, на закате солнца. Причина? Обновление хлорофилла в основном идет по ночам, в темноте.

Где же расположены центры биосинтеза? В каких частях зеленого листа готовится хлорофилл? Что это за цехи такие? Как они устроены? Что собой представляют? По каким принципам работают? Автора книги все это очень интересовало. Он знал, что этой темой занимаются доктор биологических наук Владилен Лазаревич Калер и его сотрудники. В Библиотеке имени В. И. Ленина в Москве были разысканы работы этого ученого. Вот так фотосинтетическая дорожка и привела автора в Минск.

Сентябрь в тот год выдался на редкость теплым и солнечным. Деревья еще сохраняли зелень крон, а кусты цветущих роз источали аромат, когда я дорожками Ботанического сада шел к увитому плющом серому четырехэтажному зданию Института экспериментальной ботаники имени Василия Феофиловича Купревича — родоначальника многих биологических учреждений Академии наук Белоруссии. Вот и комната 214. Лаборатория фотосинтеза…

Многие поколения ученых пытались разгадать структуру хлорофилла — самой, пожалуй, популярной молекулы жизни. И теперь в любом учебнике по физиологии растений можно найти «портрет» этой молекулы. Она похожа… на головастика. Имеет плоскую квадратную «головку» (хлорофиллин) и длиннющий «хвост» (фитол).

— В пруду головастик, лишаясь хвоста, превращается во взрослую лягушку, — помню, рассказывал Владилен Лазаревич. — В листве последовательность обратная: тут можно сказать, что «лягушка» — молекула протохлорофиллида, предшественника хлорофилла, обзаведясь фитольным «хвостом», становится «головастиком» — хлорофиллом. Но это лишь краткий эпизод в долгой и до сих пор во многом таинственной мистерии биосинтеза хлорофилла…

Молекулы на самообслуживании

В большую науку Калер пришел в 1957 году с… авторемонтного завода, где заведовал после окончания университета химической лабораторией. Ему было 32 года, когда тайны фотосинтеза всецело покорили и увлекли его. И ныне он автор известной и в Союзе и далеко за его пределами монографии «Авторегуляция в системе биосинтеза хлорофилла в высших растениях».

В зеленом листе возникновение новых молекул хлорофилла происходит на фоне большого количества уже имеющегося пигмента. Поэтому биосинтез «невидим», он как бы одет в маскхалат, и его нелегко исследовать.

Можно, конечно, начать разделять зеленую материю на все более мелкие части в надежде дойти до «первоисточников». Средств для этого придумано немало. Листья дробят в ступке под слоем жидкого азота или быстро пропускают зеленую ткань растений через крохотные отверстия из камер с высоким давлением: оно разрывает хлоропласты на мельчайшие фрагменты. Можно разрушать мембраны зеленых клеток с помощью детергентов или, проще говоря, ПАВов — поверхностноактивных веществ, типа моющих средств. «Резать» их ультразвуком… Однако всюду исследователь как бы оказывается перед выбором: все или ничего, ибо он, отвлекаясь от изучения живой клетки в целом, осуществляющей нормальный фотосинтез, получает в руки груду безжизненных «деталей», отдельных химических компонентов, о роли которых можно только гадать.

Эта довольно безрадостная ситуация изменилась к лучшему с приходом в науку радиоактивных изотопов… Ведь они, эти ядерные детективы, позволяют, не разрушая зеленой ткани, следить за происходящими в ней тонкими процессами. И все же трудности остались немалые. Ведь при биосинтезе хлорофилла одновременно происходят многие десятки превращений. И можно себе представить, как непросто при этом установить истину.

Что же делать? Как одолеть преграды, расставленные хитроумной природой? Долго ломал себе над этим голову Калер. И решил призвать на помощь ЭВМ. Заняться математическим моделированием явлений. Хотя в те годы многим такой подход к биологическим объектам казался несерьезным, игрой в бирюльки. (Теперь-то уже так не думают.)

Что же дало математическое моделирование? Можно ли сейчас представить себе, как устроена и действует «фабрика» биосинтеза хлорофилла? Вместо ответа на мои настойчивые расспросы Калер, помню, просто открыл ящик стола и достал оттуда диковинное устройство, внешне напоминающее восемь груш, соединенных вместе теми местами, где у плодов обычно торчат хвостики — плодоножки.

— Вот вам… — сказал он. — Можете подержать в руках модель того, что природа отлаживала многие миллионы лет. Это полиферментная система, каталитический центр. Место, откуда, словно детали с конвейера, сходят только что изготовленные молекулы хлорофилла…

Владилен Лазаревич (беседа наша была долгой) ввел меня в тонкости биосинтеза хлорофилла. Его рассказ впечатлял. В самом деле, попробуйте представить себе завод, который бы выпускал не только какую-то продукцию, но изготавливал еще и станки, и все необходимое оборудование для этого производства. И обходился бы при этом без рабочих и вообще без обслуживающего персонала!

Да, как это не удивительно, но молекулы хлорофилла сами должны еще и управлять процессами своей сборки. Ничего другого природе не оставалось, выбора у нее не было! В таком самообслуживании и заключена соль «авторегуляции хлорофилла» — явления, открытого Калером.

В мудреных терминах науки это называется кооперативным управлением. Теория подтверждена многочисленными расчетами на аналоговых и цифровых ЭВМ сложных систем десятков нелинейных дифференциальных уравнений. Однако суть дела проста и может быть пояснена двумя словами. Деятельность зеленого конвейера налажена таким образом, что пока конечный продукт — молекула хлорофилла — не выйдет из каталитического центра, работа над созданием новой молекулы не начнется…

Солнце убивает сорняки

Исследования биосинтеза хлорофилла недавно нашли неожиданный выход в практику. Физиологи растений из Иллинойсского университета (США) разрабатывают принципиально новый тип гербицида. Он разбрызгивается ночью, скажем, на кукурузном поле и до утра бездействует. Но через несколько часов после восхода солнца сорняки увядают, а кукуруза или другое какое-нибудь культурное растение остается нетронутым.

Картина та же, что и в известной легенде про графа Дракулу. Этот ужасный вампир как раз перед рассветом должен был забираться в гроб, чтобы спрятаться от лучей восходящего солнца. Иначе ему пришел бы конец. Отныне, считают ученые, та же участь ждет многие виды сорняков, вот только спрятаться от солнца им не удастся!

Фотодинамические гербициды, так называют новый препарат, изобрел Карл Рибейз, научный сотрудник отдела садоводства при одном из филиалов Иллинойсского университета. Рибейз обнаружил, что биосинтез хлорофилла вовсе не идет одинаково у всех растений, как это прежде предполагалось. Исследователь открыл шесть различных химических способов выработки хлорофилла в растениях. Каждый вид растений, полагает ученый, использует свою уникальную последовательность этапов биосинтеза зеленого пигмента. У фиалок она одна, у яблонь — другая, у клевера — третья…

Зачем природе такое множество способов образования хлорофилла? Вопрос интересен и сам по себе. Но Рибейзу эта многоликость биосинтеза подсказала сугубо практическую мысль. Ведь если два растущих рядом растения пользуются различными способами выработки хлорофилла, то следует попытаться заблокировать этот процесс у одного из растений — сорняка! — не причиняя никакого вреда его соседу по полю.

Предложенный ученым гербицид представляет собой сравнительно простое химическое вещество, известное под названием АЛА (дельта-аминолевулиновая кислота, если аббревиатуру английских слов превратить в русский термин). Это исходный материал для образования хлорофилла во всех растениях, независимо от способа выработки окончательного продукта.

Рибейз утверждает, что если растение опрыскать определенной дозой АЛА в определенное время суток, то оно заготовит избыточное количество первичных для биосинтеза хлорофилла молекул. Под воздействием света эти молекулы активируются, но растение не может их переработать. И фактически растение само себя душит или отравляет. Соседним же растениям, у которых способ образования хлорофилла иной, вреда не причиняется, даже если и на них также попал гербицид.

Подобные пояснения могут показаться не очень убедительными. Однако следует принять во внимание, что Рибейз разработал еще с десяток различных добавок к АЛА. Кроме того, открытие его было запатентовано в 1985 году, и ведутся переговоры о продаже лицензий крупным агрокомпаниям. Поэтому в сообщениях о новом средстве борьбы с сорняками нет достаточной ясности. Но вот один из выводов, с которым можно согласиться. В чистом виде АЛА должен представлять собой идеальный гербицид. Он повсюду встречается в природе и потому безвреден для животных. К тому же препарат этот быстро разрушается и полностью исчезает в течение суток.

Продавший душу Мефистофелю

Однажды известного химика-органика Дерека Бартона спросили: чего бы он пожелал, явись к нему Мефистофель. Ученый ответил: «Я думаю, этот вопрос следовало бы задать не мне, а доктору Вудворду, потому что я совершенно уверен: он продал свою душу дьяволу лет двадцать назад за право стать гением органической химии…»

Роберт Бёрнс Вудворд (1917–1979) — американский химик-органик, химией увлекся с детства: имел дома химическую лабораторию, где проводил всевозможные опыты. В 16 лет поступил в Массачусетсский технологический институт и был бы в 17 лет исключен за неуспеваемость, если бы преподаватели не успели разглядеть его недюжинные способности. Для него была составлена специальная программа занятий, по сути дела, ему предоставлялась полная свобода и самостоятельность. И эта мера оправдала себя: когда в 1936 году сокурсники 20-летнего Вудворда получали степень бакалавра, он удостоился степени доктора философии (эта ученая степень эквивалентна степени кандидата наук в СССР).

Эту романтическую версию годов учебы Вудворда изложил в своей энциклопедии биографий виднейших ученых Айзек Азимов. Другой, прозаический вариант того, как на самом деле проходила его молодость, дал сам Вудворд в беседе с корреспондентом советского журнала «Химия и жизнь» доктором химических наук Олегом Сергеевичем Чижовым: «Я поступил в Массачусетсский технологический институт и проучился там полтора года. А потом меня выгнали, потому что я не отдавал должного принятым курсам обучения; мне было интереснее заниматься тем, что я считал нужным, а не тем, что полагалось по программе. Я пошел на работу. Но, проработав немного, вернулся в институт, решив выполнить все, что от меня потребуют…»

В 21 год Вудворд был уже в числе сотрудников Гарвардского университета. Здесь им были синтезированы сложные и биологически очень важные органические соединения: хинин (1944), кортизон (1951), резерпин (1956), хлорофилл (1960), тетрациклин (1962)… В 1965 году за эти работы он был удостоен Нобелевской премии. В 1976 году к списку почетных званий американского химика прибавилось еще одно: он был избран иностранным членом АН СССР.

…«Сенсация! Ученые покорили фотосинтез!»… «Конец голоду и нищете: теперь каждый сможет готовить себе пищу на любой вкус и в любом количестве!..»

Возможно, примерно такими словами газеты США и других стран оповестили в 1960 году мир о том, что Роберт Бёрнс Вудворд добился небывалого, осуществил синтез хлорофилла.

Да, конечно, это был крупный успех. Одно дело — разгадать состав и структуру этой знаменитой молекулы, совсем иное — синтезировать ее.

Вудворд готовился к подобному подвигу буквально с детских лет. Искусство, артистичность — вот что характеризует стиль его работ. Его подходы, методы так же отличаются от традиционных, как дедуктивный метод Шерлока Холмса от приемов инспектора Лестрейда. «Если путь к цели очевиден, то к такой цели неинтересно идти», — писал Вудворд. И дальше: «…я надеюсь, что „синтез ради синтеза“ будет продолжаться наперекор утилитарному духу нашего времени. Органический синтез — штука волнующая, полная неожиданностей, требующая смелости, подчас поднимающаяся до вершин искусства».

И все же над синтезом хлорофилла Вудворду пришлось изрядно потрудиться. Он возглавил громадный коллектив ученых-химиков. Ведь полный синтез хлорофилла включал в себя до 30 стадий!

Это дело потребовало долгих четырех лет. Вудворд как-то признался: «Мы не просто играем, а напряженно и упорно трудимся. Этот труд требует от нас не только большого экспериментального мастерства, но и железных нервов…»

Да, это была научная сенсация. В популярной литературе того времени это замечательное достижение приравнивалось к решению (и окончательному!) всей проблемы фотосинтеза. И даже революции в производстве пищи! Однако революция не состоялась. Почему?

Все очень просто. Хотя природа, надо полагать, не случайно использует хлорофилл как универсальный фотосинтетический пигмент всюду, начиная от простейших одноклеточных водорослей и кончая высшими растениями, — листу необходимо и многое другое: различные ферменты, особая структура, особые комплексы из белков, пигментов. Ученые — знатоки фотосинтеза давно уже поняли всю неизмеримую сложность этой грандиозной проблемы. Двухсотлетний опыт исследований показывает: не существует одной «загадки» фотосинтеза, а есть целый ряд ключевых вопросов. И механизм действия хлорофилла — лишь один из них. Поэтому-то блестящий синтез хлорофилла, осуществленный американцем Вудвордом (справедливости ради следует отметить, что почти одновременно с Вудвордом хлорофилл был синтезирован в ФРГ Мартином Штрелем и его сотрудниками), ничего не решал окончательно.