В начале XIX века английский священник Томас Мальтус (1766–1834) выдвинул теорию, согласно которой население Земли растет в геометрической прогрессии 1: 2 : 4 : 8 : 16 : 32 и так далее, удваиваясь каждый раз, а производство продуктов питания — в арифметической — 1 : 2 : 3 : 4 : 5 : 6. Следовательно, утверждал он, прогрессирующее обнищание, одичание человечества неизбежно, и посему голод, болезни, войны, сокращающие численность людей, — не что иное, как благо, ниспосланное господом.
Мальтус высчитал, что население Англии, удваиваясь каждые 25 лет, к 1950 году составит 704 миллиона человек, тогда как прокормить удастся всего 77 миллионов. На деле же число англичан к этому времени увеличилось лишь до 51 миллиона, причем питались они в среднем гораздо лучше, чем 11 миллионов их предков 150 лет назад.
Мальтус ошибся. И все ж какая-то доля истины в его рассуждениях есть. Она в том, что размеры суммы жизни на нашей планете, ее верхние пределы устанавливают растения. И максимальная численность человечества в конечном итоге определяется тем, насколько эффективно действует зеленая энергопреобразующая «машина».
Растения — машины? Сразу же возникает множество вопросов. Насколько совершенны эти механизмы? До какой степени их можно сравнивать с техническими созданиями рук человека? Можно ли попытаться усовершенствовать конструкцию растений?.. Вопросов тьма, но прежде хотелось бы выяснить вот что. Растение — это энергетический автомат, действующий всегда однообразно, стереотипно, запрограммированно? Или это тонкая, гибкая, податливая, эластичная система?
От Таймыра до Монголии
Однажды к ученым Ботанического института Академии наук СССР (сокращенно его называют БИН), что в Ленинграде, обратились… пограничники. Они просили помочь им разрешить одну научную загадку. Пограничники рассказали, что розыскные собаки, взяв след, ночью уверенно преследуют нарушителей. Но утром, после восхода солнца, овчарки словно бы утрачивают чутье, чувствуют себя неуверенно, сбиваются со следа.
Проблемы ботаники и тонкости работы пограничных собак — казалось бы, какая между ними связь? Какие могут быть точки соприкосновения? Тут нам вновь придется говорить про фотосинтез. Вспомним, ночью лишенные света растения могут только дышать. И лишь при свете дня, когда включается фотосинтез, усвоение листьями углекислоты начинает преобладать. Так вот, гипотеза пограничников — ее они и принесли на суд ученых — состояла в том, что утром, когда дыхание растений, грубо говоря, «подавлялось» фотосинтезом, бурно выделяющийся кислород окислял сохранявшиеся на листьях, цветках, стеблях и прочих частях растений пахучие вещества. Следы нарушителей границы как бы растворялись в воздухе, исчезали. Это и сбивало с толку овчарок, ведущих преследование.
Но пограничники хотели не просто утвердиться в своей правоте. Они ожидали большего: просили у ученых практических рекомендаций, какие растения следует сажать в пограничной зоне? Ведь процесс фотосинтеза у различных видов растений идет, конечно, не одинаково. Следовательно, казалось бы, можно подобрать породы деревьев, кустарников, трав, слабо фотосинтезирующих, выделяющих малые количества кислорода…
Эта погранично-фотосинтетическая история — лишь один из многих примеров того, какие интересные проблемы решают научные сотрудники лаборатории экологии и физиологии фотосинтеза в БИНе. Руководитель лаборатории профессор Олег Вячеславович Заленский начал подобные исследования еще в довоенные годы на Памирской биологической станции Таджикского филиала АН СССР. В 1940 году с помощью группы одесских альпинистов он поднял научные приборы в горы Восточного Памира, на высоту 6 тысяч метров. Туда же были доставлены проростки ячменя и пшеницы. Позже, перебравшись с Памирской биологической станции в Ленинград, Заленский стал организатором и руководителем многочисленных экспедиций, изучавших фотосинтез в тундрах Центрального Таймыра и острова Врангеля, в степях и пустынях Казахстана и Средней Азии, в сухих и пустынных степях далекой Монголии.
А зачинателем экологической физиологии растений в нашей стране стал академик Сергей Павлович Костычев (1877–1931). Это был инициативный, энергичный исследователь. Работа по физиологии фотосинтеза была начата им в 1920 году в Петроградском университете. В трудное время гражданской войны, когда даже для получения двух пудов керосина, пары примусов и нескольких электрических лампочек приходилось обращаться непосредственно в правительство, к Ленину.
Масштабное изучение фотосинтеза растений в условиях их естественного произрастания, не «искусственных» сельскохозяйственных посевов, а, так сказать, растений-аборигенов началось в 1928 году. Костычев направил многочисленные экспедиции в Закавказье (растения влажных субтропиков), в Среднюю Азию (растения глинистых и песчаных пустынь), на мурманское побережье Кольского полуострова (тундра), на Южный берег Крыма (сухие субтропики).
Изучались и культурные растения — хлопчатник, люцерна, виноград. Данные, полученные Костычевым и его сотрудниками, позднее вошли во все учебники и монографии по фотосинтезу растений. Было доказано, что суточный ход фотосинтеза крайне неравномерен. То он весьма ослаблен, то идет с большой скоростью и силой. Оказалось, что львиную часть времени растения почти совсем не запасают углерод. Но затем, в течение какого-нибудь часа, быстро наверстывают упущенное, обеспечивая свою потребность в углеводах.
Открытий было сделано немало. Естественно, скажем, ожидать, что в тропиках интенсивность фотосинтеза велика. Однако это не так: пышность и буйство тропических растений добыты за счет огромного увеличения сезонной продолжительности фотосинтеза и за счет развития обширной и длительно живущей листовой поверхности. А вот там, где жизнь растений нелегка (пустыни, север, высокогорье), машина фотосинтеза, вынужденная функционировать малое время, творит чудеса: развивает рекордную производительность.
Саксаул в Антарктиде
В первое мое посещение БИНа я не застал Заленского, познакомились мы позже. В тот раз я беседовал с его сотрудницей, доктором биологических наук Ольгой Александровной Семихатовой.
— Нас интересуют в первую очередь крайности, экстремальные условия существования растений, — говорила она. — Тут легче всего познать, как растение приспосабливает фотосинтез к тем или иным особенностям данной ботанико-географической зоны. Высокогорный як, если спустить его с гор, погибнет от разрыва сердца. В тепличных условиях тропиков кактус просто-напросто сгниет. Поэтому морошка в Африке или саксаул в Антарктиде — это, конечно, бессмыслица. И все же растения удивительно гибко и цепко приноравливаются к самым суровым и трудным условиям…
Ольга Александровна говорила далее о том, как нелегко исследовать фотосинтез в полевых условиях. Надо защищаться от морозов, слепящего солнца, сильных ветров, несущих тучи песка. А доставка к растениям необходимого измерительного оборудования, часто довольно громоздкого? А сам зеленый лист — до чего же прихотливый и капризный объект!
— Наша работа, — продолжала свой рассказ Семихатова, — важна для геоботаники, палеоботаники, для систематиков растений, морфологов и растительных анатомов. Но не думайте, что мы занимаемся лишь чистой наукой, чуждой практических нужд. Приведу примеры. Сейчас в невиданных прежде масштабах осваивается Север нашей страны. Но его природа очень хрупка: вездеход процарапал следы в тундре — нужны десятки лет, чтобы эти нанесенные цивилизацией шрамы исчезли. Природа нуждается в помощи, но какой? Этот вопрос обращен и к нам, ученым.
Познакомила меня Ольга Александровна и с проблемой светолюбивых (к ним относятся пшеница, рис, свекла, береза, дуб…) и тенелюбивых (бук, самшит, папоротники, кислица, женьшень) растений. Первые не выносят затемнения: оно действует на них угнетающе. Тенелюбы, наоборот, страшатся яркого света, прячутся в тень: они приспособлены для жизни в нижних затененных ярусах таежных ельников, лесостепных дубрав, тропических гилей.
И вот, говорила Семихатова, представьте, что лес вырублен, молодняк, жизнь которого складывалась в тени, неожиданно оказывается на свету и может погибнуть. Спрашивается, как с учетом данных о фотосинтезе у светолюбов и тенелюбов научно вырубать леса: через дерево или узкими полосами?..
Еще я узнал тогда о том, как несладко приходится растениям в городах, особенно больших, таких, как Москва или Ленинград. По-видимому, отчетливо стресс у растений впервые наблюдали в Берлине в начале этого века, когда там ввели газовое освещение. При этом погибли столетние липы на знаменитой Унтер-ден-Линден — одной из центральных улиц немецкой столицы.
— Фотосинтез может служить хорошим индикатором стойкости растений, — говорила Ольга Александровна, — он помогает очертить область температур, влажности, освещенности, — тех контуров, где растение находится в комфортных условиях и где для них начинается зона стресса. У нас, в Ленинградской области, да вот хотя бы в нашем Ботаническом саду (Ольга Александровна указала на пышную зелень за окном) многие деревья живут на крайних границах своего ареала, живут там, где, строго говоря, не должны жить. Это естественно, южане — каштаны, грецкий орех, белая акация (ленинградский день для нее слишком долог) и другие виды…
Наша беседа с Семихатовой подходит к концу. Я смотрю на виднеющиеся за окном огромные, высотой в десятки метров, деревья Ботанического сада (БИН расположен на его территории). Возле каждого из них дощечки с латинскими надписями… Эти пришельцы из самых разных краев земли таят многие не раскрытые еще учеными тайны фотосинтеза.
КПД — одна миллионная
Мы убедились: фотосинтетический аппарат растений — совершеннейшее устройство, способное подстраиваться под меняющиеся условия. И значит, у человека-исследователя появляется шанс найти среди растений лучшие образцы. Но по какому критерию их следует отбирать?
Конкретно поставим вопрос так: насколько умело растения используют солнечный свет? За миллион лет шлифовки все случайное и несовершенное, казалось, должно было быть отброшено. Ясно: коэффициент полезного действия (КПД) зеленой машины должен быть велик.
Увы! Практика показывает иное: в среднем по планете на фотосинтез идет лишь 0,1 процента от всей солнечной энергии, падающей на поверхность листвы.
КПД растений мал. Это научно установленный факт. Малоприятный для людей, ибо тут обнаруживается страшная расточительность природных процессов.
Чтобы прокормить 12-летнего мальчика телятиной в течение года, нужны 4 теленка. Телят кормит люцерна, и поля в 4 гектара для них достаточно. Но этой траве тоже нужна «еда» — солнечные лучи, их энергия. А теперь — простая арифметика. Из всей солнечной энергии, падающей на поле, люцерна использует для своего роста лишь 0,24 процента. Из энергии, накопленной люцерной, телята усваивают (на тот же рост) 8 процентов. Из энергии, запасенной, так сказать, телятами, мальчик берет, чтоб вырасти за год и увеличить свой вес на 3 килограмма, 0,7 процента.
Результат оглушительный — мальчику достается только миллионная доля энергии излучения! Остальные 999 999 растрачиваются впустую. Страшные цифры, если вдуматься. Выходит, что в природной кормовой цепочке человеку достаются какие-то жалкие крохи!
КПД — одна миллионная! В промышленности и говорить не захотят о такой машине. Подобную конструкцию инженеры не станут и рассматривать.
Тут необходимо, правда, отметить, что претензии наши к природе безосновательны. Она и не ставила перед собой цель прокормить человека. Она кормилец поневоле. Солнце заливает светом поле вовсе не для того, чтобы растить на нем люцерну. Люцерна растет не для того, чтобы ее жевали телята. А те бродят по полю совсем не ради того, чтобы стать отбивными. И у животных, и у растений свои задачи: им надо сохранить себя и дать потомство. А для этого необходимы и несъедобные рога, копыта, шкура, и не перевариваемые желудком человека стебли, листья, корни растений.
Что мы имеем от растений сейчас, нам известно, но есть ли надежда получить больше? Да. На рубеже прошлого и настоящего веков Тимирязев (уж сколько раз мы цитировали слова этого выдающегося исследователя!) писал: «Недалеко то время, когда… мы будем в состоянии разрешить вопрос, касающийся не только физиолога, но и практика, и экономиста, и, вообще, человека, интересующегося судьбами человечества… вопрос о предельном количестве органического вещества, которое человек в состоянии получить с известной площади земли при помощи растения…» И далее Тимирязев четко сформулировал научную стратегию — добиться увеличения коэффициента использования солнечной радиации растениями до 10–15 процентов.
Задумаемся над этими красноречивыми цифрами: 0,1 процента и 15 процентов, реальность и идеал — какие мощные резервы! Какие потенциальные возможности для прогресса уже существующего земледелия! Эти цифры никого не могут оставить равнодушными.
Опыты Варбурга
Ближайшая наша задача теперь — получить теоретически указанные Тимирязевым 15 процентов. Пусть это будет, так сказать, нашим «домашним заданием».
Тут нам придется еще раз вспомнить, что делает растение. Оно ловит световые кванты, порции лучистой энергии. Это — на входе, а на выходе растение выдает синтезированные им углеводы. Самопроизвольно химическая реакция образования углеводов не идет. Чтобы запустить этот процесс, и нужна энергия световых квантов. Сколько же их необходимо?
Расчеты показывают: для получения грамм-молекулы глюкозы или, что эквивалентно, грамм-молекулы кислорода (после отщепления от молекулы воды атома водорода остается кислород, который растение выделяет в атмосферу) нужно затратить примерно 120 килокалорий энергии. Поэтому трех квантов красных лучей, каждый красный квант несет 40 килокалорий энергии, было бы достаточно, чтобы процесс фотосинтеза шел с эффективностью 100 процентов.
Вот так, чисто теоретическим путем можно установить, что минимальное количество световых квантов — три. Но, конечно, потери неизбежны и действительное число квантов, эта величина в науке носит название «величины квантового расхода», должно быть большим. Каким?
За ответом я отправился к доктору биологических наук, сотруднику Института физиологии растений Академии наук СССР Леону Натановичу Беллу. Не один десяток лет этот ученый, физик по образованию, занят изучением термодинамики превращений солнечных лучей в растениях. Написанная им монография «Энергетика фотосинтезирующей растительной клетки» была удостоена высокой награды — премии имени К. А. Тимирязева. В книге этой подробно обсуждалась и одна из старых интригующих загадок фотосинтеза, вопрос о величине квантового расхода.
Первое измерение этой величины было выполнено еще в 1922 году знаменитым немецким биохимиком и физиологом, позднее лауреатом Нобелевской премии, открывшим природу и функции дыхательных ферментов, Отто Варбургом (1883–1970). Он дал метод исследований — респирометр, или просто аппарат Варбурга, прибор для определения небольших количеств выделяющихся газов.
Варбург предложил и очень удобный объект для исследований, одноклеточную водоросль — хлореллу (она придает изумрудный цвет тихим заводям и лужам), которая столь прославилась в более поздние годы. Замечательна хлорелла тем, что при размножении может делиться не на две, а сразу на 4, 8, 16, 32 и даже 64 части! Ее биомасса нарастает столь же быстро, как снежная лавина в горах…
Опыты, которые вели сотрудники Варбурга, были по замыслу очень просты. Зная интенсивность падающего на хлореллу света и определяя количество выделяющегося при фотосинтезе кислорода, можно оценить квантовый расход. Он оказался равным четырем: четыре кванта света на каждую выделяющуюся молекулу кислорода.
Эффективность фотосинтеза оказалась очень высокой: 75 процентов! Аналогов этому в технике в начале нашего века не существовало. Тепловые электростанции той поры преобразовывали химическую энергию угля с КПД не более 10 процентов. Да и ныне КПД лучших тепловых электростанций не превышает 40 процентов.
4 кванта или 81
Около 15 лет никто не сомневался в результатах, полученных Варбургом. Однако в 1939 году другие исследователи, в основном американские, нашли для квантового расхода величины, близкие к восьми. Научный интерес к проблеме резко возрос.
Критикующие Варбурга исследователи, их идейным вождем стал американский ученый Роберт Эмерсон, считали его выводы артефактом, методической ошибкой. Однако в ответ на каждое критическое замечание Варбург и его сотрудники ставили новые опыты, свободные от недостатков прежних экспериментов. И — удивительно! — всякий раз получались значения квантового расхода, близкие к четырем.
Четыре или восемь? И сегодня нет однозначного ответа. Измеряемые эффекты оказались очень тонкими. Поэтому в научной литературе можно встретить величины квантового расхода самые разные, от 3 до 12.
— Насколько важна эта проблема? — спросил я у Белла.
— Ну, прежде всего, мне кажется, — отвечал он, — здесь уместно будет вспомнить слова Тимирязева, который писал о том, что каждый луч солнца, не уловленный зеленой поверхностью поля, луга или леса, — богатство, потерянное навсегда, что это «кусок хлеба, вырванный изо рта отдаленного потомка».
Растения все еще остаются для человека высоким образцом, — продолжал ученый. — И знать, что обещает самое лучшее и совершенное в природе, крайне важно. Во всем мире сейчас начинается настоящий солнечный бум. Причины тут коренятся в энергетических и экологических трудностях. Многие ученые, инженеры, конструкторы и изобретатели строят различные варианты искусственных листьев, которые должны использовать даровую энергию Солнца. Поэтому проблема квантового расхода остается актуальной: нам надо твердо знать, на что мы тут можем надеяться…
Вот теперь, познакомившись с понятием квантового расхода, уже можно оценить потенциальный КПД растений. Приведем простые соображения, они принадлежат академику Александру Абрамовичу Красновскому.
Чтобы связать между собой молекулы воды и углекислого газа и образовать молекулу глюкозы, достаточно трех квантов красного света. Растения же реально поглощают больше: от 8 до 12. Возьмем среднюю величину — 10 квантов. Таким образом, они действуют с КПД примерно 30 процентов.
Но растения способны использовать далеко не всякое излучение. Ультрафиолет, хотя здесь энергия лучей наибольшая, для них недоступен. Не по вкусу растениям и инфракрасная область спектра. Инфракрасные лучи очень бедны энергией, их утилизируют лишь некоторые виды фотосинтезирующих бактерий.
Итог: лишь половина доступной для растений энергии солнечного излучения, та, что лежит в видимой области солнечного спектра, является для растений фотосинтетически полезной радиацией. А посему и получается: максимально возможный КПД растений при фотосинтезе составляет примерно 30 : 2 = 15 процентов.
Термодинамика растении
Дальше рассказ хотелось бы вести столь же бесхитростно, как бесхитростно, незатейливо рисуют маленькие дети… Вот паровоз с трубой, из трубы валит черный дым. А рядом оранжевый цветок — головка на тонком стебле с зелеными ручками-листиками.
Если поглядеть на эту картинку глазами взрослого, можно отметить классификационное свойство, включающее в некое единство и цветок, и паровоз. Ведь и то, и другое в конце концов — энергетические машины. Паровоз преобразует в движение запасенную в угле химическую энергию. А растение превращает энергию световых квантов в химическую энергию продуктов фотосинтеза.
Максимально возможный КПД тепловой машины определил, как известно, французский физик Сади Карно (1796–1832). Еще в 1824 году. Его расчеты покоились на законах тогда только зарождавшейся науки — термодинамики. Сейчас наши познания в ней обширны. Так нельзя ли попытаться приложить те же законы к растениям? Ведь добились же ученые и инженеры того, что КПД современных тепловозов в несколько раз выше, чем у паровоза!
Подобные попытки делаются давно. О выводах, которые следуют, если приложить законы термодинамики к биологическим объектам, говорили и писали, в частности, еще Климент Аркадьевич Тимирязев, Владимир Иванович Вернадский (1863–1945) и другие наши ученые. В Днепропетровском химико-технологическом институте имени Дзержинского новое научное направление — термодинамику растений — стал развивать доктор химических наук, профессор Октавиан Станиславович Ксенжек.
— Располагаясь на границе между почвой и атмосферой (борода корней в земле, шевелюра листьев в воздухе), растения обеспечивают интенсивный обмен веществом между ними, — рассказывал Ксенжек. — Все эти процессы должна рассматривать термодинамика растений. Надо детально разобраться в структуре энергетических затрат отдельного растения.
Эти слова Ксенжека свидетельствуют: ученые сейчас хотят понять, куда теряются кванты света и нельзя ли уменьшить величину этих потерь. Ведь тогда, очевидно, максимально возможный КПД растений значительно возрастет. А вместе с ним поднимутся реальные урожаи.
Если же заглянуть еще дальше, то, учитывая тенденцию к возрастанию энергетической цены единицы урожая при интенсификации сельскохозяйственного производства, нужно будет термодинамическими методами рассмотреть и общие принципы, определяющие условия энергообмена между биологической и технической подсистемами сельского хозяйства. Таким образом можно будет оценить уровни неизбежных затрат энергии и, сравнивая их с реальными, судить о степени совершенства различных процессов сельскохозяйственного производства с точки зрения энергетики.
Добавим к этому: кто самый крупный потребитель энергии? Не металлургия, не транспорт, не химическая промышленность, а… сельское хозяйство! За несколько летних месяцев растительный покров — эта гигантская энергопреобразующая машина, распластавшаяся по поверхности земли, получает от солнца в тысячу раз больше энергии, чем ее вырабатывают за целый год все электростанции страны.
Как в пчелином улье
Оперируя первым и вторым началами термодинамики, удается дать ответ не на один «наивный» вопрос. Скажем, отчего одиночная клетка микроскопически мала? Да потому что количество световой энергии, поглощаемой клеткой, пропорционально квадрату ее радиуса, а диффузионный поток необходимых клетке веществ этому радиусу обратно пропорционален. И с увеличением размера клетки быстро нарастает диспропорция между обилием энергии и скудостью материального баланса, оттого-то клетка и обречена быть столь ничтожно малой.
Иной энергетический расклад существует для многоклеточных организмов, растений, например. Количество энергии, поступающей к растению, приближенно пропорционально квадрату его размеров, а объем зон питания — корни, листва — даже пропорционален кубу размеров. И все же растений-гигантов мы не наблюдаем. Отчего? Дело в том, что при достаточно больших размерах транспортная система растения становится лимитирующим звеном: энергозатраты на поддержание работы транспортной системы — подача в растение минеральных солей, воды, отвод продуктов — растут пропорционально третьей степени размера растения, то есть возрастают быстрее, чем увеличиваются его энергоресурсы.
Ксенжек, делая простейшие оценки, приводя несложные формулы, демонстрирует мне (все это похоже на ловкие термодинамические фокусы, трюки), как ладно, тонко сообразованы отдельные звенья и узлы растительной машины. Допустим, проблема «лист — стебель»: оказывается, между радиусом стебля и площадью листьев имеется четко прослеживаемое соответствие, эти параметры ювелирно подогнаны друг к другу.
Говорил Ксенжек и о проблемах интеграции, о том, как из малого, из крох возникает большое, величественное.
На небольшой лист растения площадью 50 квадратных сантиметров под прямыми лучами солнца за одну секунду падает около 1019 квантов света. Столько же капель дождя выпадает за целый год на весь бассейн Волги — на треть европейской территории СССР.
— Слияние мириадов капель в могучую реку, — объясняет Ксенжек, — происходит как многоуровневый иерархический процесс: отдельные капли сливаются в мелкие струйки, струйки объединяются в ручейки, ручейки — в ручьи покрупнее, ручьи — в речушки, в реки и т. д. Иерархический характер с неизбежностью приобретают любые транспортные системы, будь то естественные или технические, если масштабы потоков на входе и выходе системы сильно различаются. Возьмем систему электропередачи: на дальние расстояния электроэнергия передается напряжением в сотни киловольт, на средние расстояния — десятки киловольт, в пределах городского района порядка 6 киловольт, и, наконец, потребители в жилых домах имеют напряжение 0,22 киловольта…
В этой беседе узнал я о многом. Особенно запомнилось мне то, как изящно решает растение проблему сбора солнечного урожая и его последующей переработки. Пигментный аппарат растений прошел долгий путь эволюционных изменений. Постепенно происходило разделение труда между различными молекулами хлорофилла, которые, когда их еще было мало, в примитивных перворастениях, возможно, все выполняли одинаковые функции, совмещая непосредственное улавливание световой энергии и фотохимический катализ. Однако эти молекулы хлорофилла, действующие по принципу «и швец, и жнец, и на дуде игрец», не могли обеспечить в достаточной степени снабжения организма растений световой энергией. Пришло время специализации. И с возрастанием мощи фотосинтетического аппарата все большая часть молекул хлорофилла получала вспомогательную роль.
В пчелином улье на одну матку трудятся многие десятки тысяч рабочих пчел. Они собирают нектар, пыльцу, выкармливают личинок… Нечто подобное наблюдается и при фотосинтезе. Подавляющее большинство молекул хлорофилла выполняет лишь обслуживающие функции — сборщиков квантов света. Перебрасывая фотоны, словно мячики, хлорофиллы-сборщики практически без потерь доносят поглощенную энергию до так называемых реакционных центров. И вот в этих-то центрах несколько молекул хлорофилла (химически они ничем не отличаются от молекул-сборщиков) способствуют стоку и переработке энергетического урожая.
Каждый центр может в секунду переработать около 50 квантов света. Их надо собрать, что непросто, ибо даже при ярком освещении на каждую молекулу зеленого пигмента приходится лишь один поглощенный квант в секунду, а при слабом освещении даже за десятки секунд. Если бы фотохимическая реакция шла в той же молекуле хлорофилла, которая только что поглотила фотон, то подобная система работала бы очень неэффективно, простаивая большую часть времени. Оттого-то каждый реакционный центр и обслуживает сотни молекул-сборщиков…
На инженерную основу
— Когда о человеке образно говорят, что он живет растительной жизнью, — помню, шутил Ксенжек, — сразу становится ясно, что он пассивен и бездеятелен. Но реальная жизнь растений отнюдь не пассивна и вовсе не бездеятельна…
Да, хлопотлива жизнь растений. Они извлекают из почвы, прокачивают сквозь свои тончайшие сосуды и выбрасывают в атмосферу в виде паров громадное количество воды — порядка тысячи тонн на тонну урожая. Впитывают из почвы минеральные вещества, «разбавленные» землей в миллионы раз. Буквально по крохам собирают из воздуха углекислоту и делают многое другое. Самое же главное — растения выполняют важнейшую для человечества функцию — фотосинтез. И все это требует затрат энергии. К сожалению, «энергоемкость» тех или иных функций у растения известна лишь очень приближенно и недостоверно.
Чтобы просветлить темные места в энергетике растений, Ксенжек взялся за термодинамические расчеты. И сразу возникло много недоуменных вопросов. Так, скажем, выяснилось, что если даже в процессе дыхания растение «сожжет» все накопленные им ранее продукты фотосинтеза, то и тогда оно будет не в состоянии энергетически обеспечить комплекс идущих в нем активных процессов жизнедеятельности. Накапливая в виде зерна одну тонну органических веществ, растения прокачивают сквозь свои структуры до тысячи и более тонн воды. Количество тепла, расходуемое на испарение этой воды, примерно в 100 раз превосходит количество энергии, запасаемой в урожае. Напрашивается предположение, что большая часть полезной работы совершается растением не через цикл связывания углекислоты и последующего окисления продуктов фотосинтеза, а минуя его. Но что это за загадочные механизмы, позволяющие растению как будто непосредственно использовать солнечную энергию? Ответа пока нет.
Так же неясна судьба большей части энергии, поглощенной растительными пигментами. Обычное объяснение, что эта энергия, 50–60 процентов энергии, поглощенной растением, просто превращается в тепло, в сущности, ничего не объясняет. Оно только переводит проблему из сферы физики в сферу биологии: если высокоспециализированные светопоглощающие системы растения работают в значительной мере вхолостую и даже нагружают растение избыточным теплом, температура листьев растений в солнечный день может быть на 10, на 15–20 градусов выше температуры окружающего воздуха, то почему эти системы не были отбракованы эволюцией?
Напрашивается еще одна гипотеза: а правомерно ли рассматривать растение только как химическую машину? Не есть ли это еще одновременно и машина тепловая? Не действуют ли растения как тепловые насосы? Традиционно считается, что в процессе испарения воды листьями растение освобождается от избыточного тепла. Однако можно показать (вновь термодинамика), что при определенных условиях испарение влаги сопровождается охлаждением окружающего воздуха, а вовсе не растения!
Осознание подобных парадоксов имеет большое значение. Оно может изменить стратегию подхода к повышению продуктивности растений. Исторически получилось так, что больше всего ученые потратили сил на изучение энергетики фотосинтеза. Этот процесс создает все, что нам нужно от растений, за исключением разве тени и эстетического наслаждения! И даже сейчас все нацелено на это. А практики, следуя рекомендациям ученых, всячески стремятся облегчить растениям фотосинтез. Но, может быть, человек тут берется за дело не с того конца? Может быть, облегчив растению выполнение более трудоемких для него задач, удастся скорее добиться желаемого? И тогда мечта о КПД в 15 процентов станет реальностью?
Ксенжек полагает, что путь к решению проблемы широкомасштабного использования солнечной энергии лежит, по всей вероятности, через создание «энергетических плантаций», то есть через выращивание растений для энергетического использования биомассы. Растения, система самовоспроизводящаяся и размножающаяся и при том хорошо приспособленная для улавливания и фиксации потока солнечной энергии, позволяют создавать огромные светопоглощающие поверхности несопоставимо быстрее и дешевле, чем это возможно с помощью устройств технических.
Возможности нового, термодинамического подхода трудно переоценить. Ведь он позволит оценивать принципиальные пределы продуктивности различных видов растений в разных условиях, аналогично тому, как в технике рассчитывается предельный КПД тепловых машин. Дело будет поставлено на инженерную, технологическую основу. Конструкторы растений положат на стол «рабочие чертежи» нужных нам растений, выведут формулу их жизнедеятельности. Укажут оптимальную ширину капилляров, что облегчит испарение — этот, возможно, наиболее тяжелый для растений процесс. Жизнь возникла в воде! Растения «высадились» на сушу лишь недавно, и жить на ней им нелегко. Вычислят необходимую архитектонику листвы, позаботятся о надлежащей «фигуре» растений. Сейчас человек, заботясь лишь о плодах, делает ставку на «толстяков», а они, увы, страдают одышкой. И не только усовершенствуют конструкцию растительных машин, но и укажут правила их грамотной эксплуатации.
Пока все это только мечты. Но знание вечных законов природы, которые открывают ученые, прокладывает пути к тому, чтобы они стали реальностью.