Наука воскрешения видов. Как клонировать мамонта

Шапиро Бет

Глава 4. Создаем клона

 

 

Когда вы работаете в тундре, никому нет дела до того, что вы фальшиво поете во весь голос, прогуливаясь вдоль извилистой реки. Никто не смеется над пятью слоями одежды, надетыми на вас, и не подшучивает над разнообразием сеток, которыми вы опутали себя в последней обреченной попытке не подпустить комаров к своему телу. Никто и ухом не ведет, когда ваш видавший виды вертолет Ми-8 совершает неожиданную посадку посреди сибирской тундры, чтобы подобрать франкоговорящую пару с пятилетним ребенком и большим красным холодильником.

Всему этому я научилась летом 2008 года, во время того, что я с нежностью вспоминаю как свой самый странный и наименее успешный сезон охоты за костями. Тем летом мы провели несколько недель в маленьком лагере, окруженном озерами, в низинной тундре полуострова Таймыр. Мы охотились на мамонтов.

Руководил экспедицией на Таймыр Бернар Бьюиг, бывалый и в хорошем смысле эксцентричный исследователь Арктики, и причин считать, что мы потерпим неудачу, не было. На протяжении десятилетий Бернар возглавлял компанию «Церполекс» (от франц. CERcles POLaires EXpédition) и руководил сухопутными экспедициями по Сибири и на Северный полюс. Эти экспедиции начинались на его хорошо оборудованной базе в Хатанге, небольшом российском городе, стоящем на реке Хатанге в Красноярском крае. К началу 2000-х Бернар переключился на экспедиции, имеющие более научный характер, и основал при «Церполексе» организацию Mammuthus (лат. «мамонт»), заявленной целью которой было исследование и прославление Арктики и ее многочисленных сокровищ. Однако, как намекает название этой организации, в центре ее особого внимания был поиск мумифицированных останков мамонтов и содействие их исследованию. Образование компании Mammuthus было либо предприимчивым шагом, либо просто очень своевременным, поскольку с начала этого столетия мумии мамонтов и других древних гигантов ледникового периода стали обнаруживаться в вечной мерзлоте Сибири на удивление часто.

Повстречавшись с Бернаром, нельзя было не увериться как в его лидерских качествах, так и в успехе экспедиции. К 2008 году Бернар имел десятки лет опыта работы в сибирской тундре. Он обладал неисчерпаемой энергией и энтузиазмом, был хорошо знаком с трудностями логистики при работе в Сибири (и знал способы обойти эти трудности), а также владел большой коллекцией теплых курток. Что важнее всего, он долго сотрудничал с местным населением, и это некоторым образом объясняет, почему он так часто первым получал доступ к недавно обнаруженным мумиям мамонтов. Все указывало на то, что экспедиция должна увенчаться успехом.

Наше приключение началось в сибирском доме Бернара в Хатанге. Хатанга – необычное место. Это одна из самых северных точек в мире, где живут люди. Хотя население города составляет менее 3,5 тысячи человек, там есть аэропорт, гостиница и музей природы и этнографии, полный экспонатов, связанных с людьми, живущими в этой местности, и ее историей. В Хатанге также есть несколько ресторанов, где подают мясо местных животных, приправленное укропом, и несколько маленьких магазинчиков, где продается морковь с признаками обморожения по цене 8 долларов, полуавтоматические пулеметы и причудливое разнообразие ароматизированной жевательной резинки. Дороги и речные берега усыпаны незнакомыми механизмами, некоторые из них, возможно, все еще работают. Люди там живут где угодно – и в маленьких деревянных хижинах, и в больших многоквартирных домах и даже транспортных контейнерах – тех, которые используются на судах-контейнеровозах для перевозки грузов через океан. Даже дом Бернара частично состоял из транспортных контейнеров, соединенных вместе и, предположительно, хорошо изолированных от внешней среды. В конце концов, город располагается на 71 градусе северной широты, и зимы в Хатанге темные и холодные, со среднемесячной минимальной температурой около –35 ˚C и полным отсутствием солнечного света в течение многих дней в декабре и январе. Правда, мы находились там с июля по август, и температура воздуха колебалась в приемлемых пределах 5–15 ˚C, а солнце светило круглые сутки. Разумеется, вокруг кружило несколько комаров, портя в остальном прекрасную атмосферу. Точнее, несколько сотен комаров.

На кубический сантиметр воздуха.

В нашей экспедиции участвовали Бернар, его жена Сильвия и их двадцатилетний племянник Питу, несколько русских, работавших на Бернара, французская женщина-режиссер и ее бойфренд, а также целое собрание ученых с самыми разнообразными интересами, касающимися животных ледникового периода. Самым старшим ученым в нашей группе был Дэн Фишер, специалист по изучению мамонтов и профессор Мичиганского университета. Дэн – мировой эксперт в своей области: исследуя паттерны роста мамонтовых бивней, он может определить пол, репродуктивную историю, образ жизни и даже причины смерти животного. Дэн тоже измеряет количество стабильных изотопов химических элементов, углерода и азота, накапливавшихся в бивне мамонта по мере его роста. Эти изотопы образуют почти непрерывную запись изменений в рационе мамонта и в окружавшей его среде. С нами также работали Адам Раунтри и Дэвид Фокс, ранее обучавшиеся под руководством Дэна. Наконец, среди нас было двое исследователей, интересующихся ДНК: я и Иэн Барнс, который в то время преподавал в колледже Ройял-Холлоуэй в Лондонском университете, но я познакомилась с ним во времена, когда трудилась над своей диссертацией в Оксфордском университете.

Дэн, Дэвид и Адам мечтали найти бивни, мы же с Иэном надеялись на кости мамонтов. Бивни лучше подходят для изотопного анализа, но в них содержится очень мало ДНК. Нас с Иэном, кроме того, интересовали все животные, обитавшие на Таймыре в периоды оледенения, так что мы не были строго сосредоточены на сборе мамонтовых костей.

По причинам, оставшимся для меня загадкой, и несмотря на обещания, данные Бернару еще до нашего прибытия в Хатангу, вертолета нам пришлось ждать целую неделю. Мы временно поселились у Бернара и, чтобы убить время, занялись исследованием Хатанги. Мы примерили на себя множество теплых курток и противомоскитных приспособлений. Мы бродили по улицам, дразня местных собак и пытаясь разгадать предназначение разнообразных механизмов. Мы устанавливали ловушки для насекомых и определяли виды тех, которые туда попались. Мы просверлили отверстия в нескольких костях из коллекции Бернара для нашей съемочной группы и на благо будущих исследовательских проектов. Пока мы ожидали, Бернар организовывал и был вовлечен в одну за другой встречи с его группой российских ученых и специалистов по логистике. Эти собрания были яркими и волнующими: гигантские карты не помещались на столах, разговоры переходили на повышенный тон, проводились сверки со старыми научными документами, описывающими географические пределы прошлых оледенений, водка лилась в стаканы и строился план будущей экскурсии.

Наконец, вертолет прибыл и настала пора вылетать в поле. Мы собрали еду, горючее и вещи и отправились из дома Бернара прямо в аэропорт. Мы пробрались через контроль безопасности на взлетную полосу и встретились лицом к лицу со своим следующим транспортным средством: всеми любимым вертолетом Ми-8. Около четверти пространства в нем уже занимали два огромных газовых баллона. Пробираясь мимо баллонов, мы забросили внутрь свое походное снаряжение, камеры и осветительные приборы для съемок, две большие надувные лодки и два подвесных мотора мощностью в 250 лошадиных сил каждый, запасы риса и неизвестной сублимированной еды, достаточные, чтобы прокормить двадцать человек в течение шести недель, гигантскую канистру бензина для готовки и водку в объеме, достаточном, чтобы ощущать счастье в течение по меньшей мере суток. В вертолете Ми-8 недоставало около трети окон, предположительно, чтобы на борту было удобнее курить.

Загрузив все свои вещи, мы забрались внутрь и устроились на лавках под окнами, а также сверху на вещах и баллонах с газом. Последним на борт поднялся Паша, пес нашего повара, годовалый сибирский хаски. Паша выражал свои опасения по поводу участия в нашей экспедиции, пытаясь слиться с покрытием взлетной полосы под трапом. Я разделяла Пашины сомнения относительно того, что лучше: быть проглоченным взлетно-посадочной полосой или подняться в небо на Ми-8. Когда стало ясно, что полоса не желает поглощать Пашу, он сбежал. Повар и один из пилотов выбрались наружу, выкурили несколько сигарет, поймали Пашу, подняли его на руках примерно до середины трапа, каким-то образом умудрились упустить его, поймали снова, усмирили в достаточной степени, чтобы дотащить до конца трапа и внести в дверь, и, наконец, мы устроились в кабине. Под радостные возгласы и отчаянный вой Паши мы оторвались от земли и полетели в сторону тундры.

 

Соматический ядерный перенос

Если в коллекциях по всему миру уже накоплено такое множество костей, зачем нам выбираться в поле, чтобы найти еще какие-то? Зачем иметь дело со сломанными вертолетами, золотыми рудниками, двадцатичетырехчасовым световым днем и тучами комаров? Ответ прост: лучшие кости – те, которые попали к нам прямиком из обледеневшей тундры. Мы хотим найти кости, которые ни разу не оттаивали. В них содержатся наилучшим образом сохранившиеся клетки с наилучшим образом сохранившейся ДНК.

Мы – не единственная группа ученых, проводящая свое лето в Арктике в поисках останков животных ледникового периода или болтающаяся по золотым приискам, но мне приятно думать, что у нас самый здравый подход к делу. К примеру, мы знаем, что не ищем клетки, которые можно будет клонировать. Все, что известно ученым о клонировании животных с использованием соматических клеток (то есть не являющихся ни сперматозоидами, ни яйцеклетками), говорит о том, что клонирование сработает только в том случае, если клетка содержит неповрежденный геном. Ни одной такой клетки не было обнаружено в останках вымерших животных, найденных во льдах тундры.

Разрушение ДНК начинается сразу же после смерти организма. Растительные и животные клетки содержат ферменты, задача которых – разрывать связи внутри молекулы ДНК. Эти ферменты, называемые нуклеазами, обнаруживаются в клетках, слезной жидкости, слюне, поте и даже на кончиках наших пальцев. Пока мы живем, нуклеазы критически важны для нас. Они уничтожают проникающие в наш организм патогенные микробы до того, как они причинят нам какой-либо вред. Они устраняют поврежденную ДНК, позволяя нашим клеткам починить то, что было сломано. А после смерти наших клеток нуклеазы разрушают их ДНК, так что нашему организму проще избавиться от них. Другими словами, нуклеазы эволюционировали таким образом, чтобы оставаться активными и после того, как клетка гибнет, и это плохие новости для тех, кто хочет клонировать мамонта.

В лаборатории мы не даем нуклеазам разрушать ДНК, которую мы пытаемся выделить, либо погружая свежий образец в раствор химических ингибиторов, либо подвергая его быстрой заморозке. Арктика – холодное место, но недостаточно холодное, чтобы заморозить что-то (особенно такое большое, как мамонт) достаточно быстро, чтобы защитить ДНК от распада. Вдобавок нуклеазы вырабатываются всеми живыми организмами, включая бактерии и грибы, которые колонизируют разлагающиеся тела мертвых животных. Следовательно, шанс, что геномы каких-либо клеток могут сохраниться совершенно нетронутыми в течение длительного времени после смерти, невелик. Без неповрежденного генома клонировать мамонта не получится. Точнее, не получится клонировать мамонта путем соматического ядерного переноса.

Соматический ядерный перенос – это унылое, но вполне подходящее название для процесса, благодаря которому у нас появился, в частности, самый известный клон – овечка Долли (рис. 8). Долли клонировали ученые из Рослинского института в Шотландии в 1996 году. Ученые удалили ядро – часть клетки, содержащую геном, из клетки молочной железы, взятой у взрослой овцы, и поместили это ядро в подготовленную яйцеклетку другой взрослой овцы. Затем эта яйцеклетка развилась в матке еще одной взрослой самки в совершенно здоровую особь своего вида. Важно отметить, что овца, клонированная путем ядерного переноса, была генетически идентична животному, ставшему донором клетки молочной железы, и не имела ничего общего со своей суррогатной матерью или той овцой, у которой взяли яйцеклетку.

Рис. 8. Соматический ядерный перенос, или «клонирование». У двух разных организмов берется соматическая клетка (слева вверху) и неоплодотворенная яйцеклетка (слева внизу). Ядра клеток удаляются, и ядро соматической клетки переносится в яйцеклетку, лишенную ядра. На яйцеклетку воздействуют электрическим током, и она начинает делиться. Образовавшийся эмбрион имплантируют суррогатной матери, и из него развивается особь, генетически идентичная донору соматической клетки

Чтобы разобраться в хитросплетениях этого процесса, нужно узнать кое-что о клетках. Наши тела (и тела других живых организмов) состоят из клеток трех основных типов: стволовых, половых и соматических. Соматических – больше всего, к ним относятся клетки кожи, мышечные клетки, клетки сердца и т. д. Соматические клетки имеют диплоидный набор хромосом, – это означает, что в них содержится по две копии каждой хромосомы – одна от матери и одна от отца. Соматические клетки также имеют специализацию – это могут быть клетки мозга, клетки крови или клетки молочной железы, подобные тем, которые использовали при создании Долли. Еще одна категория клеток – это первичные половые клетки (гоноциты), из которых образуются гаметы – сперматозоиды и яйцеклетки. Гаметы имеют гаплоидный набор хромосом, то есть в них содержится только одна копия каждой хромосомы. При нормальном половом размножении две гаплоидные гаметы сливаются в момент оплодотворения, образуя диплоидную зиготу, из которой затем развивается эмбрион.

При ядерном переносе этап оплодотворения и слияния гамет опускается. Вместо этого происходит процесс, называемый энуклеацией, в ходе которого удаляется гаплоидный геном яйцеклетки. Затем на его место помещается диплоидное ядро соматической клетки (в случае Долли – клетки молочной железы).

При нормальном половом размножении млекопитающих зигота, образовавшаяся при оплодотворении, содержит клетки, не имеющие никакой специализации. Такие неспециализированные клетки относятся к третьей категории и называются стволовыми. Стволовые клетки, из которых состоит зигота на раннем этапе своего развития, называют тотипотентными, потому что они могут превратиться в клетки любого типа и, следовательно, способны дать начало целому живому организму. По мере дальнейшего развития зародыша клетки размножаются и начинают дифференцироваться, то есть выполнять более специализированные функции в организме. На одном из самых ранних этапов развития зародыша тотипотентные стволовые клетки теряют свою способность превращаться в клетки любого типа, но все еще не имеют четкой специализации. Теперь эти клетки называются плюрипотентными. Плюрипотентные стволовые клетки млекопитающих, к примеру, могут превращаться в клетки любого типа, кроме плацентарных.

Плюрипотентные стволовые клетки представляют особенный интерес для науки, поскольку с их помощью можно лечить людей. Когда стволовые клетки делятся, из них получаются либо другие стволовые клетки, либо специализированные соматические. Это означает, что они потенциально способны заменять собой больные или поврежденные клетки. Стволовые клетки можно обнаружить не только в развивающемся эмбрионе, но и во всех тканях взрослого организма. Стволовые клетки взрослых склонны к более высокой специализации, чем эмбриональные, но, несмотря на это, они критически важны для восстановления поврежденных тканей и их обновления. В медицинских целях зачастую берутся стволовые клетки взрослых. К примеру, кроветворные стволовые клетки могут превращаться в различные виды кровяных клеток, и их используют в лечении заболеваний крови, в том числе лейкоза.

Давайте вернемся к клонированию путем ядерного переноса. Соматические клетки, в отличие от стволовых, высокоспециализированны. Они не могут превращаться в разные типы клеток, поскольку представляют собой конечную точку процесса дифференцировки. У соматических клеток есть конкретная функция, и их клеточные механизмы приспособлены к качественному выполнению этой работы. В соматической клетке, взятой из молочной железы овцы, происходит экспрессия только тех белков, которые нужны ей, чтобы выполнять функцию клетки молочной железы, и поэтому в ней включаются только те гены, которые кодируют эти белки.

Чтобы соматическая клетка смогла превратиться в целый живой организм, она должна «забыть» все о своей специализации и дедифференцироваться. Она должна снова превратиться в эмбриональную стволовую клетку.

Хотя Долли, возможно, – самое известное животное, появившееся на свет благодаря соматическому ядерному переносу, она не была первым клоном, созданным таким образом. В 50-х и 60-х годах XX века Джон Гёрдон из Оксфордского университета доказал, что лягушачьи яйцеклетки развиваются в лягушек даже после того, как ядра этих клеток были изъяты и заменены ядрами соматических клеток. Хотя в те времена механизм этого явления был не очень хорошо понятен, ключевым наблюдением Гёрдона стало то, что яйцеклетка каким-то образом запускает процесс дедифференцировки соматической клетки – и последняя «забывает», каким типом клетки была до этого. В 2012 году Гёрдон получил за это открытие Нобелевскую премию совместно с Синъей Яманакой из Киотского университета. Яманака позже обнаружил, что такой же плюрипотентности (дедифференцировки соматических клеток) можно добиться in vitro, то есть в тканевой культуре в лабораторных условиях, добавив в клетку набор факторов транскрипции, представляющих собой белки, которые соединяются с определенными участками ДНК и контролируют, какие гены должны включаться и когда. Такие клетки называют индуцированными плюрипотентными стволовыми клетками (iPSC).

Ядерный перенос используется для клонирования овец, коров, коз, оленей, кошек, собак, лягушек, хорьков, лошадей, кроликов, свиней и многих других животных. Также набирает популярность клонирование животных со специфическими требуемыми свойствами. В интернете широко рекламируются коммерческие службы, занимающиеся клонированием домашних животных и созданием клонированного потомства лошадей-чемпионов. Первые результаты уже видны: в конце 2013 года шестилетняя лошадь Шоу Ми, клон кобылы Сэйдж, выступавшей в конном поло, стала чемпионом Тройной короны в Аргентине, возможно, тем самым возвещая наступление новой эры в разведении животных для шоу и спорта.

Однако клонирование путем ядерного переноса имеет невысокую эффективность. Долли была единственным эмбрионом из 277, созданных в Рослинском институте, который дожил до своего рождения. Кобыла по имени Прометея, первая клонированная лошадь, появившаяся на свет, была единственным эмбрионом из 841, который развился в полноценную особь своего вида. Снуппи, кобель афганской борзой, клонированный корейским ученым Хваном У Соком, стал одним из двух щенков, рожденных после того, как 1095 эмбрионов имплантировали 123 разным суррогатным матерям, и единственным, прожившим более нескольких недель. Во всех этих случаях ученые имели доступ к потенциально бесконечному числу соматических клеток, взятых у живых зверей.

Живых мамонтов не существует.

 

В поисках чуда

В последние десятилетия в Сибири, на Аляске и на канадской территории Юкон были обнаружены места, богатые очень хорошо сохранившимися замороженными костями. Эта область, называемая Берингия, была важным связующим звеном между Азией и Северной Америкой в эпоху плейстоцена. Судя по количеству и разнообразию костей, обнаруженных на просторах Берингии, в плейстоценовую эпоху эта область просто кишела мегафауной – животными, весящими более 45 килограммов. Останки мегафауны Берингии выходят на поверхность, когда нарушается слой вечной мерзлоты, в котором они погребены. Мы тревожим этот слой, когда строим свои города и соединяющие их дороги, а также при поисках золота. Кости животных ледникового периода также обнажаются вследствие естественных процессов, к примеру ежегодных разливов рек и озер после весеннего таяния снега (ил. 10). Высоко поднявшаяся вода быстрым потоком врезается в излучины реки, заливая замороженную почву речных берегов и вымывая кости и другие останки мегафауны, вмерзшие в нее.

Бернар, хорошо знакомый с Таймыром, после долгих часов, проведенных за изучением географических карт и разговорами с местными жителями, выбрал для нашего базового лагеря место, которое, по его мнению, имело наиболее удобное расположение для охоты за костями. Мы поставили палатки вблизи вершины довольно высокого, большого холма, посреди пейзажа, большую часть которого составляла вода, с отдельными вкраплениями низинной тундры, лишенной деревьев (ил. 11–13). Наш план заключался в том, чтобы ходить по берегам всех этих озер и соединяющих их протоков, высматривая кости и бивни.

Я множество раз проводила лето в Берингии в поисках костей животных ледникового периода. В основном эта работа выглядит одинаково: нужно прогуливаться вдоль берегов озер и рек, внимательно всматриваясь в мелководье, или болтаться без дела в местах активной разработки золота в ожидании момента, когда из шлангов перестанет литься вода и можно будет изучить начавшую таять поверхность на предмет сокровищ ледниковых эпох. Почти каждый день, проведенный мной в поле, приносил богатые плоды.

Наш первый день на Таймыре не принес ничего. Мы поставили свои палатки, палатку повара и общую палатку «для отдыха», представлявшую собой на самом деле каркас с натянутой на него огромной противомоскитной сеткой, создающей достаточно пространства, чтобы можно было собраться вокруг стола, не опасаясь кровожадных насекомых. Мы надули лодки и приготовили их к использованию. Мы расставили ловушки на рыбу. Мы поели риса с рыбой и отпраздновали свое прибытие тостом. Но нам не удалось найти ни одной косточки.

Второй день также не был продуктивен. Мы вынесли лодки наружу и отправились на прогулку вдоль берегов озер, находившихся чуть подальше от лагеря. Мы надели забродные костюмы и отважились зайти глубже в ледяную воду. Нам не удалось найти никаких костей. Мы вернулись в лагерь и съели ужин, состоящий из риса и рыбы.

Третий день также не принес результатов. Мы разделились на маленькие группы, чтобы разведать обстановку на нескольких озерах поблизости, но удача не улыбнулась никому. Тем вечером мы сидели в молчании в своем укрытии, спасающем от комаров, и ели рис с рыбой. Никогда еще я не участвовала в экспедиции, где мы не нашли бы ни одной косточки за три дня. Думаю, это можно было сказать обо всех нас. Романтический ореол арктической экспедиции по большей части развеялся после того, как мы получили первые семь тысяч комариных укусов, а наши запасы водки подошли к концу. Сказать, что настроение было мрачным, это ничего не сказать. Мы должны были провести еще несколько недель в тундре и совершенно не понимали, почему здесь нет костей, и не имели ни малейшего представления, что с этим делать.

А затем произошли две вещи. Во-первых, мы услышали шорох, доносящийся снаружи, и, выглянув, обнаружили, что там тихо стоят два человека с дробовиками, не имеющие никакого отношения к нашей экспедиции. Во-вторых, французская пара открыла свой холодильник.

 

Новая надежда и звери из подземного мира

В вечной мерзлоте Сибири находят больше мумифицированных животных, чем в вечной мерзлоте Северной Америки. Возможно, дело в том, что популяции мамонтов в Сибири были крупнее, или в том, что какие-то особенности климата Сибири делают сохранение там мумифицированных тел более вероятным, чем в Северной Америке. Какой бы ни была причина, обнаружение мумии мамонта всегда вызывает переполох. Для многих аборигенов сибирской тундры этот переполох имеет глубоко личный характер. В мифологии некоторых культур мамонтов считают чудовищами из подземного мира и предостерегают, что прикосновение к ним принесет незадачливому человеку, обнаружившему их, несчастье, а то и смерть. Однако намного чаще встречается переполох взволнованного предвкушения. Мумифицированная туша представляет собой совершенно особенную вещь – за такую ученые готовы очень хорошо заплатить.

Некоторые мумии, извлеченные из сибирской вечной мерзлоты, сохранились в безупречном состоянии, с неповрежденными мягкими тканями, шерстью и внутренними органами, четко видимыми на срезах КТ и при аутопсии. Странно, что даже в наилучшим образом сохранившихся мумиях ДНК, как правило, находится в худшем состоянии, нежели ДНК в костях. Возможно, дело в разном количестве времени, необходимом для того, чтобы заморозить ДНК. Если части тела животного растаскивают падальщики, а плоть пожирают хищники, кости, лишенные мягких тканей, скорее всего, быстро окажутся под землей и замерзнут, в то время как мумии будут оставаться теплыми куда дольше. Пока мумия медленно замерзает, микроорганизмы из кишечника животного и окружающей среды колонизируют все ее ткани, разлагая труп изнутри и одновременно разрушая ДНК.

Хотя нам известно, что ДНК на удивление плохо сохраняется в мумиях, похоже, нам трудно смириться с тем, что при такой впечатляющей физической сохранности ДНК не удается обнаружить. С каждой находкой у нас появляется новая надежда на то, что именно эта мумия подарит нам нечто невероятное. Именно эта мумия будет содержать целые клетки с неповрежденными ядрами, внутри которых сохранились нетронутые геномы. Эта мумия станет донором клеток для клонирования путем ядерного переноса.

Я впервые услышала о Бернаре Бьюиге сразу после того, как была сделана одна из таких замечательных находок. Шел октябрь 1999 года, и мамонт, без сомнения имевший нетронутые разложением клетки с такими же нетронутыми ядрами и геномами, только что пролетел над сибирской тундрой.

Всякий раз, когда в мире исследований древней ДНК появляется какой-либо впечатляющий результат, у меня и моих коллег телефоны разрываются от звонков журналистов, желающих стать первыми, кто напишет о надвигающемся воскрешении мамонта/динозавра/дронта. В тот самый день я сидела за своим столом в лаборатории исследования древней ДНК Алана Купера при Оксфордском университете. Это был первый год моей аспирантуры и иммиграции в Соединенное Королевство.

Зазвонил телефон, и я взяла трубку. Звонящий разразился серией быстрых вопросов, произнесенных с акцентом, незнакомым моему американскому уху. Я смогла разобрать слова «вертолет», «отбойный молоток», «криогеника», «бивень» и «Сибирь», но не смогла поймать паузу, чтобы уместить в нее свой ответ («Не могли бы вы, пожалуйста, перезвонить попозже, когда придет кто-нибудь, занимающийся этим дольше двух недель?»). Затем журналист перевел дыхание и куда более четко спросил, как я думаю, способен ли фен для волос уничтожить наши шансы на клонирование мамонта.

Конечно, я могла бы кое-что рассказать о роли фена для волос в клонировании мамонта. Но поскольку мне хотелось, чтобы меня принимали всерьез как специалиста по древней ДНК, мне пришлось попросить разъяснить ситуацию, прежде чем делиться своим мнением.

Как выяснилось, группа исследователей Арктики во главе с моим будущим другом и коллегой Бернаром Бьюигом только что откопала то, что показалось им практически целой мумией мамонта. Затем, в решительной и драматичной попытке сохранить клетки мамонта в замороженном и, следовательно, неповрежденном состоянии, они оставили начавший слегка разлагаться труп в земле до зимы, чтобы почва замерзла. Затем, с помощью отбойных молотков и хороших лопат, работая в морозной темноте, они вырезали из вечной мерзлоты блок земли весом в 21 тысячу килограммов и, привязав его к нижней части большого вертолета, провезли по воздуху на расстояние около 300 километров, обратно к подземной пещере Бернара в Хатанге, где они собирались медленно и методично разморозить тушу мамонта с помощью фена.

Сверх того, поскольку это сделало бы фото и видео более впечатляющими, Бернар (он признает, что проявил в этот момент «креативность») перед тем, как вертолет поднялся, вставил в замороженный блок бивни мамонта, найденные неподалеку от обнажившегося черепа, со стороны это выглядело так, как будто через тундру летит целый мамонт, замороженный в блоке льда. Они знали, что телу мамонта внутри блока недостает частей. К примеру, они уже отделили от него голову, которая частично растаяла и начала гнить. Кроме того, они попробовали заглянуть внутрь с помощью георадара, и судя по результатам, внутри находилось чуть меньше, чем целый мамонт. Но они продолжали надеяться.

Мамонт, которого назвали Жарков по фамилии местного жителя, обнаружившего его, жил на Земле около 23 тысяч лет назад. Жарков был взрослым самцом мамонта, имел около трех метров в высоту и, по всей видимости, умер за несколько лет до своего пятидесятилетия. Мысль о том, что Жаркова можно клонировать, появилась и разошлась практически мгновенно. Эту идею в особенности приветствовал канал Discovery, спонсировавший эффектное извлечение Жаркова из земли. Ларри Агенброд, специалист по мамонтам из Университета Северной Аризоны, в пресс-релизе своей исследовательской группы сообщил о том, что они уже подготовили для этого лабораторию с экспертами в криогенике и «доступом к слонам».

Спустя год, разморозив блок с помощью фена, ученые увидели лишь малую часть туши мамонта внутри огромного земляного блока. Еще большее разочарование вызвало то, что основная часть сохранившейся туши представляла собой кости с незначительными фрагментами мягких тканей и шерсти. Ученым не удалось обнаружить нетронутые ядра, но короткие фрагменты ДНК, выделенные из шерсти, были использованы для создания полного митохондриального генома и, в конечном счете, части ядерного генома мамонта. Жаркову не суждено было стать первым клонированным мамонтом. Но зрелище его извлечения из земли и полета над тундрой внушило людям ощущение, будто для клонирования мамонта важно найти замороженную тушу. Оно также подкрепило неверное предположение, будто целая, безупречно сохранившаяся мумия – это именно то, что нам нужно.

За год до того, как мамонт Жарков пролетел над тундрой, группа японских ученых во главе с Акирой Иритани и Казуфуми Гото основала «Проект создания мамонта», цель которого ясно заявлена в его названии. Иритани и Гото участвовали в исследованиях процесса оплодотворения in vitro в Японии, и оба сделали потрясающие открытия относительно прочности сперматозоидов. К примеру, они выяснили, что бычьи и свиные сперматозоиды, замороженные до –20 ˚C, можно разморозить и использовать для оплодотворения яйцеклеток, из которых затем развиваются абсолютно здоровые телята и поросята. Прочитав о Плейстоценовом парке Зимова, они заинтересовались, не может ли сперма мамонта стать ключом к возрождению главной достопримечательности этого парка.

Иритани организовал серию экспедиций в Сибирь в поисках замороженного самца мамонта, в надежде обнаружить сперматозоиды. Экспедицией руководил геолог Петр Лазарев, заведующий Музеем мамонта в Якутске. Если бы удалось обнаружить самца мамонта, Иритани и Гото планировали взять у него сперматозоиды и использовать их для оплодотворения яйцеклеток слонихи. Поскольку в результате получилось бы гибридное потомство, а не клонированный мамонт, они предполагали использовать исключительно сперматозоиды, содержащие X-хромосомы, чтобы получить потомство только женского пола. Затем, когда гибридные самки достигнут полового созревания, им должны были имплантировать эмбрионы, созданные слиянием их собственных яйцеклеток и сперматозоидов другого мамонта. Таким образом, по прогнозу Иритани, у них получилось бы создать животное, чей геном на 88 % соответствовал бы геному мамонта, в течение всего лишь 50 лет.

После двух экспедиций, проведенных в 1997 и 1998 годах, у «Проекта создания мамонта» закончились деньги, а сперматозоиды мамонта, несмотря на все усилия, так и не были найдены.

Затем, в 2002 году, нашли Юкагирского мамонта.

 

Первая попытка

Осенью 2002 года Василий Горохов охотился за бивнями мамонтов на берегах реки Муксунуоха в Якутии, на севере Сибири. Горохов и его сыновья заметили верхушку чего-то, что выглядело как особенно хорошо сохранившийся образец, и начали копать. Когда Горохов добрался до основания бивня, то понял, что он все еще присоединен к черепу, настолько хорошо сохранившемуся, что его частично покрывали кожа и шерсть. Новость о новой находке разлетелась быстро, и конкурирующие группы исследователей поспешили найти способ попасть к этому месту. Бьюиг узнал о находке благодаря своим обширным связям по всей Сибири. В Якутске эта новость достигла ушей Петра Лазарева из Музея мамонта. Лазарев позвонил Иритани и сообщил, что планирует продолжить раскопки следующей осенью. Но Иритани решил, что в свои 71 год он слишком стар для еще одной сибирской экспедиции. Вместо себя он послал одного из своих студентов.

Спустя год на место находки прибыла международная группа ученых. Группой, включавшей, среди прочих, студента Иритани по имени Хироми Като, Петра Лазарева и Алексея Тихонова, ученого секретаря Мамонтового комитета РАН на базе Зоологического института в Санкт-Петербурге, руководил Бернар Бьюиг. В ходе этого второго сезона раскопок группа методично, шаг за шагом, откопала левую переднюю ногу мамонта, проявляя предельную осторожность, чтобы сохранить ее замороженной. Подобно черепу, нога была в отменном состоянии и все еще покрыта мягкими тканями и шерстью.

Затем начались проблемы. Внезапно появилась конкурирующая японская группа, предложившая большое вознаграждение тому, кто добудет им мамонта, который станет главным экспонатом предстоящей Всемирной выставки 2005 года. Стало невозможно получить разрешение на вывоз. В конце концов ногу пришлось оставить. Като вернулся к Иритани с пустыми руками, ни на шаг не приблизившись к клонированию мамонта. Лазарев, в свою очередь, отрезал кусочек от передней ноги и лично привез его Иритани в Японию, но к моменту прибытия ткани начали разлагаться.

Еще одна осень прошла в раскопках, на этот раз под руководством Наоки Сузуки из Университета Джикей в Токио, и Юкагирский мамонт был извлечен целиком из своей могилы в тундре. Удалось восстановить участки позвоночного столба и реберной части грудной клетки, а также часть кишечника с фекалиями. Анализ этих останков показал, что Юкагирский мамонт умер около 22 500 лет назад в возрасте 45 лет и весил при жизни от 3500 до 4500 килограммов – средний вес для взрослого самца мамонта. Сузуки проконтролировал транспортировку Юкагирского мамонта в Японию, где его тщательно изучили с помощью рентгеновской компьютерной томографии, получив первый неповрежденный анатомический срез внутренностей мамонта. Во время своего пребывания в Японии Юкагирский мамонт стал главным экспонатом Всемирной выставки 2005 года, проводившейся в префектуре Айти.

Пробыв некоторое время в Японии, Юкагирский мамонт отправился обратно в Якутск, где он находится и сейчас, в подземной пещере в центре города, где также хранится замороженная рыба, оленина и другая пища (ил. 14). Несколько лет назад мне довелось увидеть Юкагирского мамонта своими глазами. Он сидит в дальнем углу пещеры, в своем собственном отдельном помещении. Юкагирский мамонт производит именно такое впечатление, какого можно ожидать исходя из ажиотажа, поднявшегося вокруг него. Но, несмотря на то что он очень хорошо сохранился, в его теле не было найдено нетронутых разложением клеток.

Несколько лет назад Иритани и его группа опубликовали научную статью в журнале Proceedings of the Japan Academy («Издания Японской академии»), в которой описали свой первый эксперимент по клонированию мамонта путем ядерного переноса. Группа Иритани выделила клетки из фрагмента передней ноги, которую Лазарев смог вывезти из России, включая клетки того, что оказалось сохранившимся костным мозгом. Ученые подготовили мышиные яйцеклетки для ядерного переноса, удалив из них ядра. Они перенесли в эти подготовленные мышиные яйцеклетки ядра, которые смогли извлечь из клеток Юкагирского мамонта. Если бы геномы мамонтовых клеток сохранились в достаточной степени, мышиные яйцеклетки запустили бы дедифференцировку соматических клеток мамонта в стволовые и началось бы развитие эмбриона.

Но ничего не произошло.

 

Мамонт получше и возможное решение загадки консервации

В 2007 году трое сыновей ненецкого оленевода Юрия Худи обнаружили почти идеально сохранившегося мамонтенка у берегов реки Юрибей, на северо-востоке Сибири. Худи хотел достать мамонта, но не был уверен в своем решении. Ненцы верят, что мамонты – это чудовища, бродящие в темноте морозного подземного мира и приносящие людям несчастье. Не решившись навлечь на себя кару чудовищ, Худи и его друг отправились к директору местного музея, чтобы узнать, нет ли у него каких-нибудь идей. Почувствовав, что дело серьезное, директор убедил местные власти помочь им. Затем они все вместе отправились обратно к реке Юрибей. Но когда они прибыли туда, мамонтенка на месте не оказалось.

Дело в том, что один из двоюродных братьев Худи услышал историю о мамонтенке у реки и, больше озабоченный возможностью хорошего заработка, нежели плохой удачи, решил самостоятельно извлечь его оттуда. Худи не был рад такому повороту событий. Он выяснил, что его брата видели направляющимся в близлежащий город, так что они с другом поехали за ним следом. По прибытии они обнаружили мамонта прислоненным к стене на складе, он поистрепался и выглядел немного хуже, чем раньше. Брат Худи продал мамонта хозяину склада за два снегохода и сумму, достаточную, чтобы купить запас еды на год. К несчастью для мамонта, местные собаки откусывали понемножку от его конечностей, когда хозяин отворачивался.

Конец у этой истории счастливый: Худи успешно затребовал мамонтенка обратно, пока тому не нанесли еще больший ущерб, и его передали на хранение в музей имени Шемановского в Салехарде.

Это была самка мамонта, позднее получившая имя Люба, и ей был всего один месяц, когда она умерла 42 тысячи лет назад. Она так хорошо сохранилась, что в ее желудке все еще оставались следы материнского молока. Примерно через год после того, как ее нашли, ученые, среди которых были Бернар Бьюиг, Дэн Фишер, Алексей Тихонов и Наоки Сузуки, провели трехдневный марафон по вскрытию ее тела в лаборатории Санкт-Петербурга. Они обнаружили мелкую грязь у нее во рту, горле и легких, что, вероятно, свидетельствует о том, что она погибла от асфиксии, скорее всего, в попытке пересечь илистую реку. Они изучили младенческие бивни Любы, поискали клещей в ее шерсти и выяснили, что, подобно слонам, детеныши мамонтов поедали фекалии своих матерей, чтобы их пищеварительная система заселилась микроорганизмами, расщепляющими клетчатку растений. Кроме того, ученые поняли, почему Люба так хорошо сохранилась, и это имеет большое значение для всякого, кто интересуется клонированием мамонта.

Дэн Фишер, один из участников нашей экспедиции на полуостров Таймыр в то неурожайное лето, стал ключом к разгадке этой тайны. Дэн – любезнейший человек, очень много знающий о мамонтах. Однако его интерес к мамонтам не ограничивается животными самими по себе. Его также сильно заботит, как складывались взаимоотношения мамонтов и людей в прошлом. К примеру, мамонты определенно были слишком крупными, чтобы съесть их в один присест. Один из вопросов, на которые Дэн ищет ответ, заключается в том, как охотники на мамонтов сохраняли их мясо, когда не существовало холодильников.

Пока мы работали в поле, Дэн рассказал нам о серии экспериментов, которую он провел неподалеку от своего дома в Мичигане, чтобы узнать, как долго мясо остается пригодным в пищу, если хранить его в мелком пруду. Вначале он разделал ягненка и оленя и привязал мясо к якорю на дне неглубокого пруда в парке, примыкающем к его университету. В течение двух лет он время от времени доставал мясо и проверял, разлагается ли оно. Затем однажды, в середине февраля 1993 года, коллега отдал ему труп лошади-тяжеловоза, только что умершей естественной смертью. Это натолкнуло Дэна на новую идею. С помощью каменных инструментов, которые он изобрел сам, подражая, насколько возможно, охотникам на мамонтов, жившим когда-то в районе Великих озер, Дэн разделал тушу лошади. Стояла зима, и пруды были покрыты слоем льда. Поэтому он проделал во льду дыру и погрузил лошадиное мясо в холодную воду. Каждые две недели он доставал мясо и отрезал кусочек, чтобы проверить, как изменились его вкусовые качества и появились ли признаки разложения. К июню Дэн заметил, что мясо, хотя и сохранило в существенной мере питательные свойства, приобрело кислый вкус и сильный кислый запах. Во время вскрытия мамонтенка Любы в Санкт-Петербурге Дэн заметил тот же запах, исходящий от трупа.

Кислый запах вызвали микробы, называемыми молочнокислыми бактериями (или лактобактериями). Лактобактерии превращают лактозу и другие сахара в молочную кислоту и в норме присутствуют в кишечнике множества животных. Нарастание количества молочной кислоты в теле Любы эффективно «замариновало» его, что помогло мамонтенку сохраниться в похоронившей его вечной мерзлоте и защитило тело от распада даже после того, как его вытащили на поверхность.

К сожалению, хотя высокая кислотность способствует консервации мумий, она плохо влияет на сохранность ДНК. Такие мумии могут хорошо выглядеть, но кислая среда вызывает серьезные повреждения клеток и разрушает ничем не защищенную ДНК. Так что хотя на поверхностный взгляд эти мумии могут казаться наиболее вероятным источником нетронутых клеток, подходящих для клонирования, на самом деле все наоборот.

Однако не все ученые поддались отчаянию, и гонка за клонированным мамонтом продолжается в полную силу. Все так же каждое лето группы ученых разыскивают мумии мамонтов в надежде, что однажды им удастся найти в сибирской тундре исключительно хорошо сохранившийся и не замаринованный экземпляр.

 

Поднимаются ставки, и в дело вступает новый участник

В 2008 году Терухико Вакаяма из Центра биологии развития при институте RIKEN (Кобэ, Япония) клонировал мышей, которые были заморожены при температуре –20 ˚C в течение 16 лет. Это стало огромным и важным шагом на пути к возрождению вымерших видов – по двум причинам. Во-первых, клетки, которые использовал Вакаяма и его группа, были мертвы на момент, когда их ядра перенесли в подготовленные мышиные яйцеклетки. Это означает, что охотникам на мамонтов может не понадобиться искать непременно живые клетки, чтобы сработал ядерный перенос, поскольку иногда даже мертвые клетки содержат геном, достаточно сохранный для клонирования. Во-вторых, ученые обнаружили, что можно повысить шансы на успех ядерного переноса, добавив еще один шаг к протоколу клонирования. Полученные результаты свидетельствуют о том, что некоторым клеткам, в частности тем, чей геном имеет небольшие повреждения, может просто понадобиться дополнительный толчок, чтобы они смогли дедифференцироваться до конца.

Изначально группа Вакаямы следовала стандартному протоколу ядерного переноса: они извлекли ядра из замороженных клеток мышей и перенесли их в подготовленные мышиные яйцеклетки. Хотя не многие яйцеклетки начали развиваться, некоторые сделали это, а значит, яйцеклеткам удалось «перезапустить» отдельные соматические клетки. Однако ни одна из них не развилась до конца в полноценную мышь. Процесс застопорился после нескольких делений клеток, указывая на то, что дедифференцировка была успешной не до конца.

Затем у исследователей возникла идея. Они повторили весь процесс, но в этот раз остановили развитие эмбриона после нескольких циклов деления клеток. Затем они взяли эти начавшие развиваться клетки и создали из них так называемые клеточные линии – большие колонии идентичных клеток, выращенных в лаборатории. Затем они удалили из этих клеток ядра и поместили их в новые, только что подготовленные яйцеклетки. Таким образом, у яйцеклетки было два шанса вместо одного, чтобы перепрограммировать эти клетки, превратив их в полностью дедифференцированные стволовые. К изумлению научного сообщества, два эмбриона из полученных таким образом выросли в здоровых, взрослых мышей.

Именно этот эксперимент вдохновил Иритани и его группу попробовать клонировать клетки из ноги Юкагирского мамонта. Хотя группа Иритани не добилась успеха (ни одна из клеток мамонта не развилась до той стадии, на которой было бы возможно создать клеточную линию), он не отчаивается. Все же его группе удалось выделить ядро из клетки мамонта, что само по себе можно назвать большим успехом.

В августе 2011 года в Республике Саха была найдена бедренная кость мамонта, настолько хорошо сохранившаяся, что в ней все еще присутствовал жировой костный мозг. В уверенности, что перед ним ключ к клонированию мамонта, Иритани решил возобновить свои эксперименты. В декабре того же года он объявил, что клонирует мамонта к 2016 году. Установленный им срок подразумевал, что

1) они найдут идеально сохранившегося мамонта во время следующего сезона полевых работ;

2) им сразу же удастся создать клеточные линии этого мамонта.

С учетом того, что беременность у слонов длится 600 дней, в его плане не оставалось места для ошибки.

Мировые СМИ с радостью растиражировали заявление Иритани, наслаждаясь возможностью опубликовать еще один цикл статей о том, что клонирование мамонта неизбежно. Однако наиболее интригующий ответ пришел из Южной Кореи, где наметился еще один участник гонки за клонированным мамонтом.

В марте 2012 года Хван У Сок из фонда биотехнологических исследований Sooam Biotech с большой помпой объявил о том, что фонд организовал новое сотрудничество в Северо-Восточном федеральном университете Республики Саха (в ведении которого находится Музей мамонта и с которым Иритани работает с 1997 года) и что он собирается клонировать мамонта. Эта новость распространилась со скоростью эпидемии, в комплекте с фотографией улыбающегося Хвана, обменивающегося рукопожатием с Василием Васильевым, вице-ректором Северо-Восточного федерального университета, на фоне официально выглядящих документов. Почти сразу же в «Московских новостях» было напечатано пояснение. Без ссылки на источник, «Московские новости» строго и недвусмысленно заявили, что хотя Российская академия наук определенно планирует заняться клонированием мамонта, она будет делать это в сотрудничестве с Иритани и его группой из Университета Кинки, а не с Хваном.

То, что известие об участии Хвана в резонансном проекте по клонированию должно было вызвать смешанные чувства, неудивительно. Я упоминала о нем ранее в этой главе, коротко сославшись на его работу по созданию первого клона собаки, Снуппи. Однако Хван в большей степени известен своей работой в области клонирования человека. В начале двухтысячных Хван руководил исследовательской группой, находящейся на самой передовой линии исследований стволовых клеток человека, в Сеульском национальном университете. Его группа опубликовала две революционные научные работы в 2004 и 2005 годах. В одной говорилось о первой успешной попытке клонировать человеческие эмбрионы, а вторая указывала на то, что ученые создали стволовые клетки, генетически соответствующие конкретным людям. Это были два невероятных прорыва в биомедицинских исследованиях. В Корее Хвана чествовали как национального героя. А затем все рухнуло. В 2006 году Хван отрекся от обеих работ после того, как выяснилось, что данные в них сфальсифицированы. Он потерял работу в университете, и его лишили лицензии на исследования стволовых клеток. Его также обвинили в мошенничестве, растрате и нарушении правил биоэтики и в итоге признали виновным по двум последним статьям.

Суд над Хваном длился три года, с 2006-го по 2009-й. В этот период он присоединился к фонду Sooam Biotech и продолжил свои исследования, теперь сосредоточившись на клонировании животных. Первое официальное упоминание о планах фонда Sooam Biotech клонировать мамонта появилось в 2012 году, вместе с объявлением о сотрудничестве с Северо-Восточным федеральным университетом. Однако заинтересованность Хвана в этом деле к тому моменту уже была ясна. В ходе судебного процесса в 2006 году Хван объяснил, почему в его архиве недоставало такого большого количества стандартных отчетов о расходах на исследования – ему нужно было заплатить русской мафии за доступ к самым лучшим тушам мамонтов.

Осенью 2012 года, сразу после своего грандиозного заявления, Хван У Сок и его студент Хван Инсунг присоединились к Семену Григорьеву из Северо-Восточного федерального университета в ходе трехнедельной экспедиции вверх по течению реки Яны, в поисках мамонта, которого можно было бы клонировать. Путешествие снимал лондонский создатель документальных фильмов для канала National Geographic, намереваясь рассказать историю проекта фонда Sooam от начала до… хм… начала. Хотя экспедиции не удалось найти мумию мамонта, сразу после того, как они вернулись с полевых работ, появились отчеты об обнаружении исключительно хорошо сохранившегося кусочка шкуры, погребенного в замерзшей земле. Самое главное, что в этом кусочке, как утверждалось, сохранились клетки с нетронутыми ядрами.

За несколько недель до поездки автор будущего фильма связался со мной, предложив присоединиться к экспедиции в качестве эксперта в области генетики. К сожалению, мне пришлось остаться (приближалось рождение моего второго сына), но я порекомендовала им своего друга и коллегу Лове Далена, который руководит лабораторией исследования древней ДНК в Шведском музее естественной истории. Лове предлагает несколько менее фантастическую трактовку истории, показанной в документальном фильме. По версии Лове, группа знала, где искать мамонта, еще до начала экспедиции. Якутские охотники на мамонтов провели первую часть сезона в поисках бивней на берегах рек и за это время пробили ряд длинных туннелей в вечной мерзлоте вдоль берегов с помощью воды, выпущенной под большим напором. В конце одного из таких туннелей кто-то обнаружил прекрасно сохранившегося мамонтенка. Этот мамонт – без бивней, разумеется, поскольку их уже забрали люди, первыми наткнувшиеся на мумию, – все еще был на месте, и план фильма заключался в том, чтобы извлечь его оттуда. К сожалению, к моменту, когда экспедиция прибыла на место и приступила к съемкам, поздние сезонные дожди и начавшееся наводнение обрушили туннель, и экспедиции со съемочной группой только и оставалось, что в отчаянии обыскивать туннели, которые еще не обвалились, на предмет чего-нибудь пригодного для их фильма. Кусочек шкуры, о котором идет речь, был найден Хваном Инсунгом после того, как он пробрался по одному такому туннелю, несмотря на предостережения специалиста по технике безопасности. Хван обнаружил кусочек шкуры далеко в глубине туннеля и сразу после этого получил предупреждение от людей, оставшихся снаружи, что он вот-вот обрушится. Через несколько минут отчаянной паники несколько человек, осмелившихся войти в туннель, вышли наружу, едва избежав участи быть раздавленными несколькими тоннами замерзшей земли.

Содержал ли найденный ими кусочек шкуры клетки с неповрежденными ядрами? Возможно. Обнаружение целой на вид клеточной структуры в останках, извлеченных из вечной мерзлоты, не редкость. Будет ли геном внутри этих клеток в достаточной степени целым, чтобы его можно было клонировать? Сомнительно. Лове удалось взять образец от этого кусочка шкуры и отвезти в Стокгольм, где он выделил и амплифицировал его ДНК. Лове подтвердил, что шкура на самом деле принадлежала мамонту. Но самый длинный фрагмент ДНК, который ему удалось амплифицировать, состоял примерно из 800 нуклеотидов. Это исключительно длинный участок для древней ДНК (средняя длина фрагмента ДНК в образце, извлеченном из вечной мерзлоты, составляет около 70 нуклеотидов), то есть образец действительно хорошо сохранился. Но 800 нуклеотидов – это все еще очень далеко от длины неповрежденной хромосомы.

Летом 2013 года в озере на острове Малый Ляховский, входящем в архипелаг Новосибирские острова, удалось обнаружить еще одну замороженную, частично сохранившуюся туша мамонта. Это была совершенно ошеломительная находка. Часть мамонта, вышедшая на поверхность, начала разлагаться, однако остальные части так хорошо сохранились, что, по описанию, выглядели как свежее мясо. Особенно интригующим было то, что в вечной мерзлоте под телом мамонта обнаружилась темно-красная субстанция, подозрительно напоминающая кровь. Хотя большинство экспертов (и я в том числе) в высшей степени скептически относятся к этому предположению: не существует животного, чья кровь не замерзла бы в таких условиях, – до сих пор исследователи не пришли к единому выводу о том, что это на самом деле такое. Образец хранится в замороженном состоянии, и сейчас его изучают в Якутске ученые со всего мира.

Станет ли этот последний мамонт «лучше всего сохранившимся мамонтом в истории палеонтологии», как, согласно цитате, сказал Семен Григорьев, руководивший экспедицией по извлечению останков? Дэн Фишер одним из первых изучил этот образец, и он подтверждает, что некоторые его части действительно отменно сохранились. Сохранился ли он достаточно хорошо, чтобы в его клетках содержались неповрежденные ядра, – ответ на этот вопрос мы еще нескоро получим. Я смотрю на эту идею по-прежнему скептически.

 

Итак, поиски продолжаются

Случилось так, что два человека, внезапно появившихся у нашего укрытия на третий день злосчастной экспедиции на Таймыр, состояли в родстве с Жарковым, который обнаружил мамонта Жаркова и сообщил об этом Бернару в 1997 году. Они были долганами, коренным народом той части Таймыра. В то время как все остальные пытались делать вид, что внезапное появление незнакомцев с ружьями не привело их в состояние, опасно близкое к инфаркту, Бернар пригласил гостей в наше укрытие и обменялся с ними сердечными рукопожатиями и поцелуями. Похоже, Бернар знает в Сибири всех.

Долганы – кочевое племя оленеводов. В летние месяцы они перемещаются по тундре, пася свои огромные стада. Они останавливаются на одном месте на несколько недель, пока стадо не съест всю траву в пределах видимости, и затем собирают вещи и переезжают на следующее место. В процессе у них есть возможность осмотреть практически всю эту область. Если бы кости, бивни или мумифицированные мамонты показались на поверхности во время весеннего таяния почвы, долганы знали бы об этом. Те двое, что присоединились к нам, увидели наш вертолет несколькими днями ранее, и им стало интересно узнать, что происходит. Так что пока остальные их родственники собирали вещи, чтобы отправиться на новое место стоянки, эта пара ушла искать нас.

Когда первоначальный шок прошел, тяжесть, навалившаяся на участников нашей экспедиции, стала пропадать, и ее сменило знакомое чувство ожидания будущих находок. Мы дали гостям столько риса и рыбы, сколько они смогли съесть, и извинились за отсутствие водки. Когда пара французов открыла свой холодильник и вытащила оттуда два гигантских куска сыра – это был сыр гауда размером с человеческую голову и три килограмма сыра бри, – все разразились смехом. Разумеется, французская семья, работающая в безлюдном уголке Сибири, должна иметь с собой холодильник, забитый сыром. Даже Паша, которому удалось немного просунуть морду в укрытие в отчаянной попытке спасти нос от комариных укусов, сопел и бил хвостом по земле. Вся эта сцена выглядела совершенно абсурдно, а ведь шел только третий день.

Мы пригласили долганов остаться в нашем лагере на ночь, а на следующий день отвезли их назад к их семьям в своих надувных лодках с подвесными моторами. Они немного развлекли нас: мы поговорили о погоде, поделились французскими сырами и съели немного приготовленной сушеной рыбы. Мы спросили, знает ли кто-то из долганов о местах, где появляется много костей. У них были некоторые соображения, но четких указаний нам не дали. Затем они закончили сборы, привязали свои дома и снаряжение к оленьим упряжкам и отправились на следующую стоянку в тундре.

За остаток лета мы нашли только несколько обломков мамонтовых костей, а также нетронутые, но плохо сохранившиеся кости лошадей, степных бизонов и шерстистых носорогов. Позже мы узнали, что область нашего поиска была покрыта льдом на протяжении большей части плейстоцена, что объясняет нашу неудачу. К счастью, прежде чем покинуть Сибирь, нам с Иэном удалось взять образцы нескольких исключительно хорошо сохранившихся костей, собранных во время экспедиций прошлых лет и хранившихся в коллекции Бернара в Хатанге, так что поездка прошла не совсем впустую.

Эти кости не содержали клеток с неповрежденными геномами. Но, к счастью, наличие идеально сохранившегося генома не критично для возрождения вымерших видов.