Cтоял 1889 год, Анри Пуанкаре сравнялось тридцать четыре года, и он был в расцвете творческих сил. Молодой муж и отец, подающий надежды преподаватель в Парижском университете, недавно избранный в престижную Французскую Академию наук, он всего несколько месяцев назад выдвинул гипотезу, которая произвела фурор на торжественном конкурсе: судя по всему, Пуанкаре дал ответ на одну из самых наболевших и трудных задач во всей математической физике. Все в жизни складывалось лучше некуда.
Нам это может показаться немного странным (хотя эта традиция при подходе к самым знаменитым задачам еще сохранилась), однако в конце XIX века нерешенные математические задачи частенько выставляли на конкурсы. Однако здесь был особый случай: патронировал конкурс его величество Оскар II, король Норвегии и Швеции. Мало того, что король Оскар II изучал математику в Упсале, он еще и сохранил тесные связи с академическим миром. Особенно он интересовался недавно основанным журналом «Acta Mathematica», который печатался в Стокгольмском университете (тогда он еще назывался Стокгольмским колледжем). Так что долго ждать не пришлось: кому-то пришла в голову блестящая идея объявить конкурс, которому покровительствовал сам король и результаты которого предстояло опубликовать в этом журнале. О конкурсе объявили в 1885 году и выбрали жюри, состоявшее из самых блестящих математиков Европы и Америки. Участники состязаний должны были дать ответы на четыре знаменитые математические задачи по выбору жюри, однако могли выдвинуть и собственную тему. Эффектным завершающим штрихом было то, что итоги конкурса и вручение призов в начале 1889 года были приурочены к шестидесятилетию Оскара II.
Первый вопрос, с которого начинался список, славился издавна. Называлась задача просто – «Гравитационная задача n тел». У этой задачи богатая история: она была сформулирована еще в конце XVII века, когда Исаак Ньютон опубликовал законы движения и тяготения. Законы Ньютона прекрасно объясняли форму планетных орбит, и на первый взгляд казалось, будто с их помощью можно рассчитать движение любого набора тел, вовлеченных в гравитационное взаимодействие – и трех тел, и четырех, и произвольного числа n. Ведь все тела притягивают друг друга с силой, которую легко вывести из закона всемирного тяготения Ньютона. Знаешь начальные условия – следовательно, имеешь возможность выполнить все подсчеты с какой угодно точностью.
Рассчитать движение двух тел, например, Солнца и какой-нибудь одной планеты, было относительно просто, однако Ньютон быстро понял, что если имеешь дело с более сложной системой, получается совсем другая история. Как видно, великого Исаака очень сердило, что он не может найти способ решить уравнения, и он писал: «Если не ошибаюсь, рассмотреть все случаи движения одновременно и определить их по точным законам и при помощи простых вычислений – задача, которая превосходит возможности человеческого разума».
Ньютон был, как, впрочем, и всегда, совершенно прав. Да, ни несколько строчек алгебраических выкладок, ни даже интегральное исчисление не дают математической кривой, которая описывала бы гравитационное взаимодействие n тел. Как и утверждал великий ученый, задача n тел оставалась нерешенной – к вящей досаде физиков и математиков. Нужно было качественное математическое доказательство его слов – а может быть (все может быть), просто несколько более хитроумный подход к решению.
По правде говоря, за время, прошедшее между Ньютоном и Пуанкаре, был достигнут заметный прогресс и найдены довольно точные способы приближенного расчета орбитального движения планет. К концу XVIII века ученые Пьер-Симон Лаплас и Жозеф-Луи Лагранж разработали по набору математических инструментов, способных как минимум предсказать общую картину движения в системе из множества планет за тысячи, а может быть, и миллионы лет. Отчасти секрет был в сугубо технических методах решения. И Лаплас, и Лагранж понимали, что орбиты в системе из множества тел «квазипериодичны»: влияние одних планет на другие означает, что каждая из них будет описывать полные круги по орбите за не совсем одинаковые промежутки времени. И при помощи определенных математических трюков можно опереться на это качество и предсказать общие тенденции в орбитальном движении в системе.
Рис. 9. Наглядная иллюстрация того, как стремительно возрастает сложность системы из тел, вовлеченных в гравитационное взаимодействие. Вверху слева изображены два тела, которые притягивают друг друга и вращаются по орбитам. Ситуация стабильна и поддается расчетам. Однако если тел уже три (вверху справа), требуются 3 набора координат в трехмерном пространстве, 3 трехмерных вектора скорости и 6 трехмерных векторов силы. Четыре тела (внизу) – 4 набора координат, четыре вектора скорости и 12 векторов силы, и все трехмерное, и все действует одновременно. Неудивительно, что Ньютон оставил попытки искать алгебраическое решение этой задачи.
Главный недостаток этих методов состоял в том, что они не позволяли отслеживать каждый момент в движении системы, а, в сущности, вычисляли средние значения сил, с которыми планеты притягивают друг друга и нарушают орбиты друг друга от оборота к обороту. Это очень хитроумные методы, ими и сегодня пользуются, чтобы получить ответы на вопросы о поведении планетных систем в целом, особенно для краткосрочных прогнозов. В свое время эти методы считались также доказательством детерминистической природы гравитационных систем, которые виделись частью «заводной Вселенной», приводимой в движение законами Ньютона.
Однако, несмотря на внешний лоск, это всего-навсего приближенные вычисления, гениальные математические фокусы, которые дают ответы на некоторые вопросы, но не на все. И к концу XIX века становилось все яснее, что нельзя ни пренебрегать всеми силами, которые участвуют в формировании траектории планеты в будущем, ни упрощать их.
* * *
Так что не приходится удивляться, что уже ставший знаменитым Пуанкаре увидел объявление о конкурсе короля Оскара и с радостью принялся за самую первую задачу, поскольку если бы он решил ее, то навсегда вошел бы в учебники истории. И довольно быстро достиг существенных успехов. Пуанкаре считал, что нашел математическое доказательство того, что можно определить стабильность гравитационной системы из трех тел. А главное, он претендовал на то, что способен рассчитать их движение с произвольной точностью. Казалось бы, что может быть прекраснее, и хотя задача была решена лишь для трех тел, этого хватило, чтобы произвести впечатление на жюри, так что приз оказался у Пуанкаре в кармане.
Но тут-то и начались осложнения. Победоносная статья, как и было обещано, открывала сборник «Acta Mathematica». Однако при редактировании статьи Пуанкаре начал понимать, что кое-что упустил – сделал чудовищную ошибку. Его решение задачи трех тел было неверным, не позволяло получить верный результат, и он был вынужден сообщить об этом редакции журнала. Пуанкаре упустил из виду один частный случай геометрического поведения математических функций, на которых строилось его доказательство.
К сожалению, к тому моменту, когда он сообщил об этом издателям, статья уже была напечатана и разослана по всему миру. Чтобы предотвратить катастрофу, все экземпляры отозвали, а Пуанкаре был вынужден оплатить убытки, счет за которые существенно превышал щедрый приз, совсем недавно полученный от короля Оскара. Бедняга Пуанкаре. Нечасто математические ошибки обходятся так дорого.
Однако в этой бочке дегтя была и ложка меда, хотя к банковскому счету Пуанкаре это не относилось. Когда он пришел в себя после такого унижения и сделал работу над ошибками, проделанный им анализ оказал заметное влияние на дальнейшее развитие математики. Пуанкаре доказал, что прямого ответа на гравитационную задачу n тел получить невозможно. Выражаясь языком математики, не существует аналитически интегрируемого решения общей задачи о движении трех тел, вовлеченных в гравитационное взаимодействие, а следовательно, то же верно и для любого числа тел больше трех.
Согласно Пуанкаре, если у тебя есть звезда, вокруг которой по орбитам вращаются две планеты, нет никакого способа точно рассчитать поведение этой системы в будущем (и прошлом) при помощи пера и бумаги. Если планет больше двух – то есть мы имеем дело с произвольной системой из n тел – задача становится еще более безнадежной. Исключений совсем немного, и это весьма затейливые частные случаи, когда, например, третье тело очень мало и его гравитационным воздействием можно пренебречь.
Это было смелое заявление, и новый математический подход Пуанкаре намекал на ту сторону существования Вселенной, которую мы только-только начали замечать под плотными покровами классической физики, а полностью обнажили лишь в следующем, ХХ столетии. Это свойство мироздания называется хаосом, и к нему я скоро вернусь.
Как выяснилось, когда Пуанкаре доказал, что задача n тел не имеет решения, то сделал огромный шаг вперед на пути прогресса науки, однако ученым еще предстояло обнаружить, что здесь таятся и вовсе диковинные подробности. Подобраться к сути задачи было отнюдь не просто, и прошло почти сто лет, прежде чем результат удалось уточнить. В 1990 годы очень красивая работа китайского математика по имени Кидон (Дон) Ван показала, что задача n тел на самом деле может быть решена алгебраическими методами. Однако с одной оговоркой – правда, очень серьезной: для этого нужно было найти сумму ряда из нескольких миллионов членов. Иначе говоря, на самом деле можно написать алгебраическую формулу, которая расскажет все о поведении n тел, однако на это уйдет вечность. К тому же, пока все сложишь, придется сделать столько округлений, что накопившаяся погрешность лишит ответ всякого смысла.
* * *
Тайная природа планетных систем, которая со времен Пуанкаре стала гораздо более явной, дает нам очень важную подсказку. Уравнения, которые описывают движения планет, не способны учесть и проконтролировать крошечные неопределенности в вычислениях, мелкие погрешности, которые впоследствии, накопившись, подрывают нашу способность что-либо спрогнозировать. Сама природа полна отклонений, и переплетение взаимодействий в планетной системе делает ее крайне чувствительной к подобным переменам. Микроскопическая пылинка там и сям способна в самом буквальном смысле слова повлиять на движение светил – дайте только срок.
Чувствительность системы и уравнений, которые ее описывают, – фундаментальное свойство природы. Ее часто называют нелинейностью, поскольку между любыми переменами в системе и тем, как она на них реагирует, нет простого однозначного соответствия. Это примерно как осторожно тыкать палкой огромного пса: легкий толчок может вызвать как миролюбивое тявканье, так и вполне справедливую ярость – ответ нелинеен. А нелинейные системы занимают в мироздании особое место, поскольку способны реагировать хаотично.
Строго говоря, это не хаос чертей и демонов, не отказ от любого порядка и причинности, а хаос математический, хаос, который не всегда приводит к беспорядку и разрушению (все зависит от мельчайших подробностей). Суть его – непредсказуемость, невозможность выяснить, что таит будущее. Так что та или иная пылинка, то или иное отклонение в структуре планеты или то или иное изменение ее положения на орбите не просто способны привести к радикальным переменам в будущем – эти перемены не всегда можно предсказать. Это относится и ко многим другим сложным системам. Нелинейность относится и к климату и погоде на Земле, и к капризам экономики и фондового рынка. Неопределенность встроена во Вселенную на самом глубинном уровне. Подобного типа хаос вполне может быть укоренен и в планетных системах, и факт остается фактом: любые планетные системы потенциально способны быть хаотическими. Это двойной удар по задаче n тел и по определению орбитальных траекторий на долгий период времени: невозможно решить уравнения движения на практике, вручную, и даже если бы мы могли это сделать, система в любой момент способна впасть в непредсказуемое хаотическое состояние. Такова неприятная правда, которую Пуанкаре имел сомнительное счастье обнаружить.
* * *
Однако нам повезло: за век, прошедший после революционного труда Пуанкаре, появился новый инструмент, который позволяет нам разведывать джунгли динамических вероятностей. Этот инструмент – компьютер: тонкие платы из химически измененного кремния с какой-то давно погасшей звезды, который когда-то входил в геологическую структуру нашей планеты, а потом был добыт, химически очищен и заново кристаллизован людьми, после чего из него были созданы микроскопические машинки, чтобы гонять туда-сюда электроны.
Прелесть компьютера в том, что благодаря его грубой силе, позволяющей перемалывать огромные массивы чисел, мы получаем возможность прямо смоделировать поведение гравитационных систем. Мы можем моделировать притяжение планет в любой момент и рассчитать их траектории секунда за секундой, неделя за неделей, год за годом и эпоху за эпохой. При этом мы с помощью математического анализа, математики бесконечно малых величин, строим виртуальные миры, виртуальные планетные системы, которые ведут себя почти так же, как настоящие, даже с учетом хаоса.
А главное достоинство подобных компьютерных систем – то, что мы не просто в считанные часы и дни симулируем миллиарды лет движения планет, а еще и можем повторять это сколько угодно и рассматривать столько непредсказуемых сценариев будущего, сколько способны переварить. И пусть царствует хаос – зато мы можем по крайней мере приблизиться к пониманию того, сколько возможных сценариев будущего ведут нас в том или ином направлении, и таким образом составить карту сравнительных вероятностей тех или иных результатов.
Исследователи этого виртуального ландшафта сделали много выдающихся открытий. Некоторые первые компьютерные эксперименты по долгосрочным расчетам планетного движения в нашей Солнечной системе провели Жак Ласкар, который тогда работал в парижском Бюро долгот, а также Джеральд Суссман и Джек Уиздом из Массачусетского технологического института, в конце восьмидесятых – начале девяностых годов ХХ века. При помощи самых разных математических подходов эти ученые попытались проследить изменения орбит, которые, вероятно, происходили за миллионы и даже сотни миллионов лет из-за крошечных, но накапливавшихся изменений условий. Исследователи даже изучили, какова была Солнечная система в прошлом, обратили время вспять и подробно изложили историю изменения орбит, причем Ласкар забрался в прошлое на целых 200 миллионов лет нашего гипотетического динамического наследия. В наши дни уже проведено много других экспериментов по моделированию гравитации, в ходе которых было изучено поведение различных подмножеств планет – и внутренних, и внешних, гигантов вроде Юпитера сотоварищи, – и даже капризы одинокой орбиты Плутона. А теперь ученые запустили в движение модель всей системы крупных планет – и получили интересные результаты, подтвердившие давние подозрения. Хаос оказывает мощное воздействие и на саму Солнечную систему.
За период всего в несколько миллионов лет движение планет оказалось подвержено так называемой экспоненциальной дивергенции. Иначе говоря, за такое время накапливается столько отклонений в положении и скорости, что их в принципе невозможно измерить, и из-за этого орбиты планет непредсказуемо искажаются. Причем эти искажения не обязательно катастрофические, просто мы не можем со сколько-нибудь разумной погрешностью спрогнозировать, какими они будут.
Представьте себе, что мы выпустили на волю стаю почтовых голубей. Если это произошло у них дома, они несколько минут полетают, а потом устремятся обратно в голубятню перекусить, и проследить за ними будет довольно просто. Вероятно, вы даже рассчитаете, когда изящные траектории полета приведут их на родной насест: поведение и стиль полета у каждого голубя давно знакомы и предсказуемы.
А вот если вы увезете голубей далеко в поля, а потом выпустите, точно предсказать, когда все они окажутся дома, станет гораздо сложнее. Если птицы хорошо обучены, они устремятся в голубятню. Однако воздушные течения, географические особенности, устройство голубиных мозгов влияют на почтовых голубей так, что заранее нанести перемещения птиц на карту становится очень трудно.
Легкая непредсказуемость голубиного поведения едва ли нас сильно обескуражит, зато непредсказуемое движение планет в нашей Солнечной системе вполне способно лишить нас покоя и сна. Это очень неприятное открытие. Физика Ньютона и ее применение на практике в том виде, в каком это делали ученые вроде Лапласа, описывала словно бы заводную Вселенную, реальность, основанную на ясных фундаментальных законах, которые всегда приводят из точки А в точку В и в пространстве, и во времени. И хотя к тому времени, когда проводились компьютерные эксперименты по расчету движения планет, концепции хаоса и нелинейности уже были прекрасно известны, это открытие стало первым веским подтверждением того, что наша Солнечная система не заводная и не предсказуемая.
За краткий человеческий век – и даже за все то время, которое бродит по Земле наш биологический вид, – мы успели стать свидетелями лишь тончайшего среза орбитальной истории своих соседок-планет. Бесконечное разнообразие их движений не показалось бы нам таким уж зловещим и страшным, будь мы всемогущие существа по миллиарду лет от роду, однако для таких короткоживущих комочков биоматериала, как мы, становится ужасным потрясением узнать, что мы всего-навсего катим на гребне одинокой волны в бурном океане из множества вариантов планетных орбит.
Но что еще, помимо подрыва наших представлений о том, насколько можно рассчитывать, что определяющие качества нашей планеты надежно обеспечивают само наше существование, говорит нам это неприятное открытие о природе нашей – и, если уж на то пошло, любой – Солнечной системы? Довольно многое, поскольку это как раз тот случай, когда хаос вполне может привести к разрушению.
* * *
Наверное, вам интересно, как вообще можно предсказать поведение системы через миллионы лет, если я сам только что сказал, что эта система по сути своей непредсказуема. Отличный вопрос. Это становится понятно, если представлять себе каждую возможную конфигурацию в будущем как бесконечный набор траекторий – примерно как бросать мячик в поле и каждый раз зарисовывать кривую, которую он описывает.
Если бы я мог каждый раз каким-то образом наносить на карту трехмерную траекторию мяча и бросил бы мяч тысячу раз, у вас получился бы толстый пучок нарисованных в пространстве изогнутых линий, похожих на проволоку. По большей части эти линии проходили бы кучно, однако по сторонам торчало бы несколько отдельных «прутьев» – они образовались бы в тех случаях, когда мяч летел более хаотично и сначала отскакивал от какой-нибудь невидимой кочки, а потом уже закатывался в траву. Если изучать только отклоняющиеся траектории и задаваться вопросом, что происходит с мячом потом, после того, как он в первый раз отскочил от земли, можно затем отобрать такие сценарии будущего, в которых мяч ожидают более интересные события.
Рис. 10. Бросаем мяч в поле.
В большинстве случаев он летит в одном и том же направлении, но иногда отскакивает в сторону, отчего закатывается в кусты или, например, разбивает кому-то окно.
Точно так же можно поступать с траекториями будущего в динамике планетной системы. Через несколько миллионов лет мы сможем отбирать те варианты сценариев, в которых орбиты планет будут обладать более экстремальными качествами, с большей вероятностью подтолкнут небесные тела слишком близко друг к другу и таким образом доведут их до беды, вместо того чтобы разнести подальше. Возможно, это будет увеличение эллиптичности орбиты и разницы между ближайшей и самой удаленной точкой орбиты. А может быть, дело в ориентации эллипсов, отчего небесные тела опять же окажутся ближе друг к другу. Мы можем собрать коллекцию подобных сценариев, а потом посмотреть, что произойдет с разными их вариантами в ближайшие несколько миллионов лет, и повторить процесс несколько раз, чтобы отсеять менее интересные варианты. Прогнозировать какой-то конкретный вариант развития событий через четыре-пять миллионов лет мы по-прежнему не способны, однако вправе задаться вопросом, как они в принципе могут развиваться, и до определенной степени разберемся, насколько вероятны или невероятны те или иные сценарии.
На подобные вопросы пытались ответить Константин Батыгин и Грег Лафлин из Калифорнийского университета в Санта-Крус. При помощи компьютерного моделирования гравитационного взаимодействия планет они экспериментировали с отдаленным будущим нашей Солнечной системы и пробились на 20 миллиардов лет вперед, во времена, когда Солнце уже погибнет.
Оказывается, интересные события начинаются гораздо раньше – можно и не заглядывать так далеко. Планеты внешнего края Солнечной системы – Юпитер, Сатурн, Уран и Нептун – имеют хорошие шансы остаться на устойчивых орбитах и через ближайшие несколько миллиардов лет, а вот с внутренними планетами будет совсем иная история. По одному возможному сценарию Меркурий примерно через 1,26 миллиарда лет упадет на Солнце, поскольку его орбита исказится и разладится из-за взаимодействия с другими планетами. А есть и другой вариант – пройдет каких-то 862 миллиона лет, и Меркурий столкнется с Венерой. Еще до этого колебания Меркурия на орбите приведут к тому, что планету Марс вообще вышвырнет из Солнечной системы, и он будет на веки вечные обречен на межзвездные странствия.
Рис. 11. Вероятные сценарии будущего.
Слева – Солнечная система в сегодняшнем виде, орбиты Меркурия, Венеры, Земли и Марса. Справа – то, что произойдет примерно через 3,3 млрд лет с вероятностью 1 %. Орбита Меркурия исказится настолько, что он столкнется с Венерой (Траектория 1). Орбита Марса может пересечься с орбитой Земли (Траектория 2). Дестабилизация может привести к столкновению Земли с Венерой (Траектория 3).
Во всех этих случаях будущее орбиты Земли тоже окажется затронуто, ее орбита примет новую конфигурацию – и это, скорее всего, приведет к полной катастрофе. Подобные эксперименты наряду с основными результатами, которые получили Ласкар и его сотрудники, выявили, что нас ждет целый ряд крайне непривлекательных вариантов развития событий. Через несколько миллиардов лет планеты, которые раньше были от нас далеко, например, Венера и Марс, окажутся вершителями нашей судьбы – столкнутся с Землей, и это приведет к гибели нашего мира, каким мы его знаем.
Однако насколько вероятен подобный исход? Главная проблема, само собой, заключается в предсказуемости, однако мы, несомненно, в состоянии оценить, сколько траекторий будущего из великого множества сценариев способны привести к таким катастрофическим финалам. Шансы на то, чтобы орбита Меркурия обрела еще более вытянутую эллиптическую форму и стала уязвимее, чем ее нынешняя конфигурация, колеблются от 1 до 2 % в ближайшие несколько миллиардов лет. На первый взгляд это совсем мало и не страшно – да и наш биологический вид, само собой, к тому времени давно вымрет и не станет свидетелем подобной катастрофы, – однако эти ничтожные шансы несут в себе гигантский заряд: они в корне меняют наши представления о небесной механике. И в самом деле, какая тут механика? Скорее суровая и неприглядная математическая вероятность, что наша Солнечная система – и орбиты наших планет во всем их якобы незыблемом великолепии – проживут не больший срок, чем тот, что уже миновал с тех пор, как сформировалось Солнце. Как-то это неуютно.
* * *
Думается, в свете этих фактов было бы честно упомянуть и о том, что идея о заводной природе небес считается в наши дни одним из величайших заблуждений в истории науки, которое объяснялось исключительно ограниченностью наших представлений, а также способом, которым мы по стечению обстоятельств предпочитали строить модели мироздания. И в самом деле, даже самые простые системы – вроде звезды с одной-единственной планетой – нельзя считать по-настоящему незыблемыми. Звезда ведь не материальная точка, как обычно предполагают модели, основанные на законах Ньютона. Это огромный динамичный объект, не обязательно идеально сферический и даже не всегда с постоянной массой.
Звезда с течением времени лишается части своего вещества, поскольку испускает в пространство фотоны и массивные частицы, а приливная тяга планеты пусть и совсем слабо, но все же теребит и искажает ее внешнюю газовую оболочку. Да и сама планета тоже не материальная точка, и форма ее хоть и близка к сферической, но тоже редко бывает идеальной. Как и любой крупный каменистый или газовый объект, планета устроена наподобие колоссальной луковицы – состоит из слоев разной плотности и вязкости.
Как я уже писал, планета может источать в космическое пространство существенные объемы своей атмосферы – и тоже испытывает приливное притяжение гравитационного поля звезды. Все эти силы месят ее, словно тесто, и возникающее при этом слабое трение медленно источает энергию, которая излучается в космос, и планета ее больше не получит. В конечном итоге этот отток энергии замедляет вращение планеты и искажает ее орбиту. Со временем меняется даже ориентация оси вращения планеты. В целом, хотим мы этого или нет, даже «простая» система из звезды с одной планетой будет меняться.
Еще один классический пример системы из двух тел – это наша система из Земли и Луны. Даже если мы волшебным образом изолируем эти тела от воздействия гравитации Солнца, то обнаружим, что на самом деле стабильности добиться не удалось. Когда Луна формировалась – мы считаем, что это был результат катастрофического столкновения в столпотворении, царившем в зачаточной Солнечной системе, – она очутилась на орбите вокруг быстро вращавшейся Земли. Сегодня Земля делает оборот вокруг своей оси за двадцать четыре часа, что, конечно, гораздо быстрее, чем орбитальный период Луны в двадцать семь дней, но так будет не всегда.
Гравитация Луны вызывает приливы, которые вздымают не только наши океаны, но и сушу – получаются огромные низкие выпуклости. Однако за время, когда эти выпуклости тянутся к Луне, наша неугомонная планета продолжает вращаться и тащит их за собой, опережая Луну над нами. В результате на Луну оказывается неравномерное гравитационное воздействие. Убегающая выпуклость не столько притягивает Луну к Земле, сколько тащит за собой. В итоге Луну выталкивает на более высокую орбиту, однако одновременно ее тяга замедляет вращение Земли. По скромным человеческим масштабам воздействие это ничтожно мало, однако его все же можно измерить, и такой эксперимент удалось проделать.
Когда астронавты с «Аполлона» высаживались на Луну в конце шестидесятых – начале семидесятых годов прошлого века, они оставили там, помимо всего прочего, зеркала особой формы. Подобные же зеркала оставили на Луне и советские космические аппараты. Зеркала были наклонены к Земле и применялись для того, чтобы отражать пущенные на Луну лазерные лучи, и таким образом расстояние до нее было измерено с очень высокой точностью. Это очень хитроумный способ. Учитывая дистанцию и рассеяние света в атмосфере и при отражении от зеркал на Луне, возвращался обратно и был зарегистрирован нашими приборами лишь один из ста тысяч триллионов фотонов.
Тем не менее точный цвет и время возвращения лазерных импульсов позволили нашим электронным инструментам уловить этот слабенький обратный сигнал и засечь время его прибытия. К тому же мы точно знаем скорость света и знаем, как обращаться со сторонними воздействиями – колебаниями лунной орбиты и эффектами относительности, о которых предупреждал Эйнштейн. В результате мы можем конвертировать общее время, которое свет (фотоны) проводит в пути туда и обратно – приблизительно 2,5 секунды – в расстояние. И тогда мы обнаружим, что с каждым годом Луна удаляется от нас примерно на 4 сантиметра – на 0,0000000008 % своего нынешнего расстояния от нас, – а земной день становится длиннее на 0,0000015 секунды.
Все это очень маленькие величины, однако очевидно, что система не незыблема. Фигуры ее орбитального танца отнюдь не неизменны. И в самом деле, палеонтологические данные о том, как раньше проходили береговые линии и как под воздействием приливов распределялись минералы и ископаемые останки, доказывают, что в прошлом наша планета вращалась иначе. Судя по всему, 600 миллионов лет назад земные сутки длились всего 21 час – с тех пор, как волны бились о те далекие берега, наше вращение замедлилось на целых три часа.
Так что во многих отношениях совершенство законов Ньютона, описывающих движение планет, – следствие весьма значительных приближений и погрешностей. Даже великолепные обобщения этих законов, которые сделал Эйнштейн, не учитывают всех досадных мелочей. Вселенной по-прежнему правит математика, однако прогнозы редко делают непосредственно, поскольку всегда накапливаются эффекты, которые мы поначалу рискуем упустить из виду, – эффекты n тел, способные привести планеты к катастрофе или реорганизовать систему в целом.
Все эти открытия возвращают нас к основному вопросу в поисках нашего вселенского значения, поскольку характеристики орбиты – это очередной показатель, по которому можно сравнивать Солнечную систему с прочими звездными системами. И в самом деле, тот факт, что стабильность планетных путей – лишь иллюзия, позволяет нам встать на новую точку зрения, как было с Кеплером, когда он понял, что орбиты планет имеют форму эллипса, и таким образом открыл путь для колоссального разнообразия конфигураций планетных систем.
Это означает, что у любой планетной системы появляется еще одна жизненно важная черта, еще одна особенность, о которой следует знать. За мгновенным срезом конфигурации орбит, который мы наблюдаем, стоит вопрос, как поведут себя эти орбиты в будущем и что они делали в прошлом. Иными словами, по мгновенному срезу понять устройство планетной системы невозможно. Это живое существо, которое развивается, меняется – и потенциально стремится к хаосу.
Если бы все эти факты сообщили Копернику, он, вероятно, отказался бы от попыток рассчитать небесную механику. Ведь если даже такой колоссальный переворот – смещение Земли из центра мироздания – не позволил описать небесные реалии во всей их полноте, как можем мы рассчитывать на понимание природы вещей?
Однако, к счастью для нас, эта дополнительная характеристика открывает и дополнительные возможности, поскольку позволяет нам сравнивать нашу Солнечную систему с прочими по существенному параметру.
В предыдущей главе я познакомил вас с лигой выдающихся планет и указал на то, как они многочисленны и как разнообразны их свойства, в том числе и практически бесконечное число комбинаций и искажений их орбит. Кроме того, я намекнул на причину некоторых подобных комбинаций – на бурное прошлое, полное перемен и отклонений. А теперь мы практически замкнули цикл. Обнаружив, что наша Солнечная система существует на грани хаоса, мы снарядились в обратный путь и теперь можем вернуться к экзопланетам и спросить, как они дошли до жизни такой.
Ответ подскажет нам еще кое-что о нашем положении среди всего этого планетного хаоса.
* * *
Чтобы изучить сложную классификацию экзопланет, нам придется вспомнить о науке моделирования, о компьютерных расчетах гравитационного взаимодействия в системах из нескольких тел. Признаться, я просто обожаю всякие технические новинки, особенно если они дают уверенные ответы на наболевшие вопросы. Когда сталкиваешься с бытовой проблемой, мало что так утешает, как знание того, какой инструмент достать из кладовки, где он хранится на своем законном месте, поскольку ты предусмотрел, что он может понадобиться. Подобные моменты – причина отметить торжество чашечкой чая и философски похрустеть печеньицем, и не подозревая, что то, что ты не увидел и о чем не подумал, тем временем окончательно разладилось.
Некоторые научные инструменты доставляют такое же удовольствие, даже если они не панацея. Компьютерные системы и программы, подражающие гравитационной динамике, занимают, думается мне, почетное место в этом арсенале. История разработки этих замечательных симуляторов и машин по переработке чисел сама по себе увлекательна, но об этом я расскажу как-нибудь в другой раз, поскольку сегодня мне хочется поговорить о том, как они приводят к совершенно новому представлению об устройстве всех планетных систем, а не только нашей.
Когда я в первый раз играл с одним из таких затейливых компьютерных кодов, который некий талантливый специалист по динамике разместил в открытом доступе, то прямо-таки не мог дождаться следующего утра, когда можно будет посмотреть, что достигнуто за ночь. Мне не терпелось посмотреть, до чего дошли мои воображаемые миры и какие орбитальные фокусы они выкинули за множество виртуальных циклов.
Было страшно интересно прослеживать историю каждой планеты, движение которой за миллионы лет под воздействием гравитации описывалось у меня на экране простыми узорами и линиями. Было в этом что-то порочное, пожалуй, привкус мании величия – ведь я безгранично властвовал над целыми Солнечными системами, повелевал жизнью и смертью планет, созданных моими же руками, играл с ними, словно с песчинкой в капле воды под микроскопом.
Так или иначе, подобные занятия очень притягательны, и вокруг тех, кто посвящает себя задаче укротить бесконечно переменные картины гравитационных взаимодействий, сложилась особая научная культура, очень яркая и оригинальная. Моделирование бесконечного множества реальных и воображаемых планетных систем позволяет ученым исследовать гипотезы, которые без подобных инструментов едва ли удалось бы рассмотреть. А главное – в последние десять лет целый ряд исследователей занимался при помощи моделирования исследованием поведения молодых планетных систем.
Как я уже говорил, мы считаем, что основной механизм формирования планет – срастание или коагуляция вещества из огромных дисков пыли и газа, окружающих новорожденные звезды. Однако живут эти диски относительно мало, примерно как последние вихри пузырьков, когда выпускаешь мыльную воду из ванны, только приканчивает их не тяга из трубы, а мощная энергия излучения звезды. Когда в толще таких дисков образуются планеты, они более или менее застревают на своих орбитах из-за массы окружающего газа и пыли, но когда все это вещество выкипает, планеты ощущают исключительно гравитационное воздействие друг друга и получают возможность нащупать будущую орбиту.
И вот многие ученые поняли, что в такой ситуации планетные системы могут переживать период юношеского хаоса или нестабильности – такой сильной, что она приводит к полной перестановке орбит и даже к разрушению или изгнанию из системы целых планет. Это подобно доисторической экстремальной версии хаоса, в который, вероятно, мало-помалу впадет в будущем наша Солнечная система.
Может показаться, что все это фантазии, которые нельзя ни подтвердить, ни опровергнуть, но чем больше мы строим компьютерных моделей для изучения всего колоссального диапазона возможных результатов неустойчивости в планетных системах, тем заметнее поразительная закономерность. Молодые нестабильные планетные системы в конечном итоге становятся экзопланетными системами тех же разновидностей, какие мы наблюдаем в реальной Вселенной – с надежными эллиптическими орбитами и «горячими юпитерами». Кроме того, именно они вышвыривают планеты в межзвездное пространство, где мы и в реальности замечаем характерные признаки их воздействия.
Компьютерное моделирование подобных процессов – это просто-таки волшебство. Берешь тысячу правдоподобно выдуманных систем, загружаешь в компьютер, словно в шляпу фокусника, даешь их орбитам спокойно развиваться в течение времени, эквивалентного миллиону или ста миллионам лет, а потом смотришь, какие получились конфигурации у оставшихся систем. Этот остаток статистически прекрасно соответствует качествам сотен и даже тысяч уже открытых настоящих экзопланетных систем.
Можно взглянуть на это и с другой точки зрения. Представьте себе, что юная нестабильная планетная система «горячая», словно чашка чаю или кофе. А все горячее впоследствии остывает. В чашке жидкости охлаждение происходит, когда самые горячие, самые быстрые молекулы испаряются, а тепловая энергия излучается в виде инфракрасного света. В нестабильной планетной системе «охлаждение» случается, когда некоторые планеты вылетают в межзвездное пространство, падают на центральную звезду или сталкиваются друг с другом. Тогда «горячая» система, где много планет, превращается в «холодную», где планет уже меньше, и нестабильная толкучка юности успокаивается и превращается в простор и солидность среднего возраста.
Насколько часто такое происходит на самом деле в нашей Галактике? Сколько систем были в юности динамически горячими? Современные исследования единодушно показывают, что ранний эпизод сильной нестабильности переживают примерно 75 % планетных систем, то есть подавляющее большинство. Подобный уровень беспорядка режет глаз, однако, судя по всему, в реальности все так и есть. Ведь мало того что Галактика и вся Вселенная полны планет, которые вращаются вокруг звезд, – многие из этих планет находятся в системах, конфигурация которых с момента их рождения сильно изменилась. Это наталкивает меня на мысль о том, как виделась множественность миров древнегреческим атомистам. Только теперь эти старые идеи пришлось видоизменить, чтобы в них вошла и динамическая эволюция во всем ее разнообразии, от горячего до холодного. У каждой планетной системы своя неповторимая история о том, как планеты терялись или уничтожались, перемежаемая периодами относительного покоя. Однако в нелинейном царстве орбитальной механики, непредсказуемом, будто огромный пес, в которого тычут палкой, ничего нельзя гарантировать, и сегодняшний покой вполне может привести к хаосу в будущем.
Расскажу о самом, пожалуй, потрясающем и неожиданном открытии в науке о планетах за последние двадцать лет. Когда ученые обнаружили, что эпизоды «горячей» нестабильности переживали очень многие системы, никто особенно не удивился, а вот когда оказалось, что такое бывало более чем с двумя третями систем, это привело к подлинному сдвигу в представлениях о характеристиках планет. Отчасти подобное поведение – прямое следствие изобилия планет, которое мы наблюдаем повсюду: их многочисленность предполагает, что они очень легко и хорошо формируются. Чем больше юных планет толпится вокруг новорожденной звезды, тем скорее система впадет в хаос из-за сложнейших гравитационных взаимодействий между планетами-соседками.
Эта картина снова заставляет нас вспомнить о наших личных обстоятельствах. Мы обнаружили, что Солнечная система подернута патиной хаоса. Однако по сравнению со многими другими системами она относительно «холодна». Орбиты всех основных планет в наши дни лишь слегка эллиптичны, порядок планет достаточно строг: мелкие каменистые планеты ближе к центру системы, великаны – снаружи.
Из всего этого не следует, что в юные годы наша система не пережила никаких катаклизмов. Главенствующая теория, разработанная многими учеными, пытается объяснить нынешнюю конфигурацию гигантских планет и распределение мелких небесных тел в поясе астероидов и в далеком поясе Койпера крупными изменениями размеров орбит Урана и Нептуна. Согласно этой теории Уран и Нептун – представьте себе – поменялись местами, когда обе планеты перемещались в сторону внешней границы тогда еще очень тесной системы. Когда произошла эта перестановка, Уран очутился на своей нынешней орбите, а Нептун пересек его дорогу, выдвинулся наружу и стал самой далекой от Солнца планетой.
При этом маневре орбита Сатурна сдвинулась немного наружу по сравнению со своим нынешним положением, а массивный Юпитер – немного внутрь. Как и в любой механической системе, в планетной системе нельзя перемещать тела без взаимодействия сил, без своего рода рычагов. В данном случае роль рычага могло выполнить перераспределение тел значительно меньших размеров – десятков тысяч ледяных глыб и каменных астероидов, каждый из которых мог внести свой вклад в тягу и толчки при гравитационном взаимодействии с более крупными планетами.
Эти орбитальные перестановки, вероятно, имели место примерно 4 миллиарда лет назад, спустя всего несколько сотен миллионов лет после, того, как рассеялся диск из протопланетного газа и пыли. Последние движения при перестановке, возможно, помогли очистить систему от мелких кусков вещества, оставшегося после формирования основных планет. Но если так и было, получается, что на шкале динамической активности мы находимся достаточно низко, и наша Солнечная система подобна скорее воде комнатной температуры, нежели обжигающему кипятку.
Есть и другая гипотеза о том, каковы были первые этапы истории Солнечной системы; ее выдвинул специалист по динамике планет Дэвид Несворны, и в некотором смысле из нее следует, что наша система была более активной – а значит, и менее необычной, менее значительной. Согласно этой картине юная Солнечная система обладала не четырьмя, а пятью гигантскими планетами. Пятая планета была, возможно, ледяным гигантом и по массе, вероятно, занимала промежуточное место между Нептуном и Ураном, а ее орбита пролегала где-то за Сатурном. Формирование подобного небесного тела из смеси газа и пыли вокруг юного Солнца вполне возможно, и это добавляет перцу в историю орбит Солнечной системы. Симуляции Несворны, при помощи которых он рассчитывал дальнейшую эволюцию системы, как правило, приводят к тому, что пятого великана ловким гравитационным приемом вытолкнул в межзвездное пространство Юпитер. Причем в итоге подобного моделирования возникает конфигурация крупных планет, которая статистически вполне соответствует нашей нынешней. Иначе говоря (и, возможно, это противоречит интуиции), присутствие лишней планеты для нашей системы, как говорится, то, что доктор прописал. Если в нашей системе была пятая гигантская планета, а теперь ее нет, это повышает вероятность того, что юная Солнечная система, повзрослев, стала выглядеть именно так, как сейчас.
Это, конечно, интересный поворот – и наглядное напоминание, что мы до сих пор толком не разобрались, что происходило в нашей собственной системе 4 миллиарда лет назад. Быть может, нынешним довольно-таки мирным динамическим состоянием своих планет мы обязаны гораздо более бурному и «горячему» прошлому. Быть может, мы выжили из дома сестру-планету. Выходит, и планеты подвержены жестокому и безразличному естественному отбору.
Однако любые события в прошлом Солнечной системы достаточно мирные по сравнению с событиями в большинстве планетных систем, что доказывают и относительно круглые орбиты и благонравное поведение наших планет на сегодняшний день. Все это подводит нас к кульминации этой главы – и суть ее очень проста: архитектура Солнечной системы обеспечивает нам особые свидетельства, которые позволяют нам впервые в истории с достаточной надежностью оценить степень нашей уникальности.
* * *
Самое простое из этих свидетельств – форма и ориентация орбит, а также местоположение и разнообразие планет Солнечной системы. Уже по одной только конфигурации орбит можно смело утверждать, что Солнечная система принадлежит примерно к 25 % планетных систем, прошлое которых никогда не было особенно хаотичным. Кроме того, в нашей системе нет планет с массой больше земной, но меньше массы ледяных гигантов Урана и Нептуна. А эти гигантские планеты обладают массой в 80 и 100 раз больше массы Земли соответственно. То есть между нашей маленькой каменистой планетой и всеми более крупными небесными телами зияет зазор.
По нашим сегодняшним представлениям как раз планеты в этом промежутке – от супер-Земель до мини-Нептунов – одни из самых многочисленных планет во Вселенной и превосходят планеты-гиганты числом как минимум в четыре раза. Однако вокруг Солнца нет ни одного примера такой планеты, и нам бы в голову не пришло, что такие планеты вообще существуют, если бы мы не обнаружили их вокруг других звезд. По нынешним оценкам более 60 % других солнц обладают хотя бы одной такой средней планетой.
Да, конечно, свести всю эту статистику воедино так, чтобы получилась надежная конструкция, довольно трудно. Например, мы на самом деле не знаем, связана ли динамическая нестабильность систем со склонностью формировать супер-Земли и мини-Нептуны. Это все равно что обнаружить в углу сада особенно пышные заросли цветов. Непонятно, почему их там так много – просто так сложилось или этот угол особенно тщательно возделывал невидимый садовник. Тем не менее вполне очевидно, что с этой точки зрения Солнечная система несколько необычна – возможно, своего рода отщепенец, принадлежащий к меньшинству.
Простоты ради предположим, что форма архитектуры орбит и типы планет в системе прямо не связаны. Скорее всего, на каком-то уровне это предположение неверно, однако оно позволяет обойтись без уточненного анализа, который, вероятно, не повлиял бы на общие выводы. Итак, можно рассмотреть все вероятности совокупно и сделать вывод, что Солнечная система, в которой мы живем, принадлежит к 10 % в своем клубе – не больше. Чтобы убедиться в этом, добавим в наш статистический рецепт еще несколько простых фактов.
Например, я говорил о том, что большинство звезд в нашей Галактике меньше Солнца: примерно 75 % из них менее массивны. Эти звезды также обладают бесчисленным множеством планет, которые, по всей видимости, следуют общим динамическим правилам: горячая юность, холодная зрелость. Так что если бы мы осторожно обобщили статистику, возникло бы искушение заявить, что наша Солнечная система и вовсе принадлежит к 2–3 % звезд определенной разновидности с определенным набором и расположением планет. С математической точки зрения это не очень строго, однако основано на реальных числах – и очень важно для нашего поиска своего вселенского значения. В целом наша Солнечная система необычна.
Еще я упоминал о том, что планета должна обладать достаточно мягкими условиями на поверхности, что на ней должно быть много жидкой воды. Астрономы очень любят на основе этой идеи искать «обитаемые зоны» вокруг звезд, диапазоны орбит, где температура на планете аккуратно вписывается между точкой замерзания и точкой кипения воды. Это само по себе существенно уменьшает численность группы, к которой принадлежит Солнечная система и Земля, поскольку добавляет требование, что планеты должны вращаться на строго определенном расстоянии от звезд-родительниц.
Точно оценить количество таких планет очень трудно, и заниматься этим мне совсем не хочется. По правде говоря, это зависит от великого множества факторов – от состава самих планет, их атмосферы, от стабильности климата, о чем я писал в предыдущей главе. А между тем мы не разобрались во всех хитросплетениях климата на своей собственной планете. Мы считаем, что 4 миллиарда лет назад Солнце было на 30 % тусклее, однако геологические свидетельства показывают, что и тогда на поверхности Земли была жидкая вода. Беда в том, что мы не совсем понимаем, как такое может быть. Даже огромное количество парниковых газов в атмосфере юной Земли едва ли смогло бы, с одной стороны, в достаточной степени согревать поверхность, а с другой – не оказать ни малейшего влияния на состав скальных пород. Некоторые ученые предполагают, что даже фундаментальная форма, размер и оптические характеристики облаков – да-да, облаков! – миллиарды лет назад были не такие, как сейчас. Если бы облака были другими, Земля меньше отражала бы солнечный свет и могла бы поглощать больше его согревающей энергии.
Кроме того, у нас подбирается все больше доказательств, что и на Марсе, находящемся сразу за орбитальной зоной благоприятных температур вокруг Солнца, когда-то было вдоволь жидкой воды. Может быть, такое положение дел по геологическим меркам сохранялось недолго, однако бывали времена, когда условия на Марсе были куда более благоприятнее для жизни, чем сейчас.
Можно сделать вывод, что с точки зрения умеренности климата оценить необычность Солнечной системы не так-то просто. Я бы сказал, что в настоящий момент и при нашем уровне знаний мы не можем сколько-нибудь надежно оценить, в какой доле систем есть планеты в умеренных зонах, поскольку сами эти зоны, похоже, весьма переменчивы. Однако если мы учтем при вычислениях еще и историю планет с умеренным климатом в Солнечной системе, то в результате, вероятно, попадем в клуб, в котором состоит менее 1 % всех возможных планетных систем.
Однако все это статистика. Какие характеристики на самом деле определяют неповторимую детальную структуру каждой отдельной системы? Почему у систем есть именно такие шансы сформироваться динамически холодными и горячими и с теми или иными видами планет или без них? И что запускает цепь событий, в результате которых возникает Солнечная система вроде нашей и планета, очень похожая на Землю?
Отчасти ответ, конечно, лежит в области общей физики гравитационных систем и в притяжении газов и частиц, которые клубятся вокруг новорожденной звезды, пока она собирает саму себя из холодной взвеси межзвездного материала. Однако огромный кусок этой головоломки – поистине колоссальный кусок – судя по всему, просто чистая, слепая, беспримесная воля случая.
Астрономы говорят о формировании планет как о стохастическом процессе: хотя в нем заложены и предсказуемые физические процессы, окончательный результат не детерминирован по сути своей, в нем есть элемент случайности. Я расскажу вам, что происходит в целом: вещество вращается по орбите, сталкивается, слипается, объекты взаимодействуют, рассыпаются, растут, расходятся в разные стороны, однако я не могу предсказать, что произойдет с каждой новой планетой, с каждым сгустком вещества. Точь-в-точь нерешаемая задача n тел.
Один из лучших примеров подобного исхода глядит нам в лицо практически каждую ночь. Луна, как я уже говорил, скорее всего, возникла в результате космического столкновения между более ранней версией Земли и еще каким-то зачаточным планетным телом. Нашему нынешнему пониманию природы Земли и Луны больше всего соответствует теория, согласно которой приблизительно 4,5 миллиарда лет назад с прото-Землей столкнулась другая планета размером с Марс. Эта невезучая планета известна под именем Тейя и, вероятно, сформировалась в той же орбитальной зоне, что и прото-Земля, просто располагалась в другой точке этой орбиты. С течением времени колебания гравитационной тяги, возможно, придвинули эти юные объекты ближе друг к другу, и в итоге они врезались друг в друга, словно пара колоссальных булыжников в лавине. В результате вокруг Земли получилось очень много пыли и обломков, и из них вскоре сгустилась Луна – смесь останков Тейи с содранными и раскиданными в пространстве слоями прото-Земли.
Подобное событие при формировании планетной системы, скорее всего, отнюдь не редкость. Именно чем-то таким и заканчивается толкучка на орбитах, которая, как мы полагаем, играет главную роль в нанесении завершающих штрихов на маленькие каменистые планеты. Однако такой вариант вовсе не обязателен – он входит в череду крайне стохастических событий, то или иное из которых очень трудно предсказать. Вероятно, Земля и Луна – представители относительно распространенного типа конфигурации «планета-спутник», однако гарантировать подобный результат в том или ином конкретном случае нельзя.
Эта черта – очередной аспект нелинейной, хаотической природы планетной системы. С одной оговоркой: мелочи, определяющие конечный результат, чаще имеют отношение не к законам гравитации, а к размерам и составу планет – тоже случайным величинам. Например, физическое столкновение двух объектов зависит не только от того, насколько близко они подойдут друг к другу, но и от их габаритов – заденут ли они друг друга? И если заденут, приведет ли это столкновение к тому, что они сольются воедино, образовав новое небесное тело, или просто разлетятся на обломки?
Получается, что если мы попытаемся проследить всю цепочку причинно-следственных связей, которая ведет от космического газа и пыли к планете, похожей на Землю, нас ждут серьезные трудности – но что поделаешь, такова жизнь. Однако в то же время важно понимать, что если маршрут к точке назначения случаен и непредсказуем, это не обязательно означает, что прибытие в точку назначения маловероятно. Не устаю подчеркивать, как важен этот парадокс, поскольку мы столкнемся с ним еще неоднократно и не только при обсуждении планетных систем.
Чтобы лучше понять эту особенность эволюции естественных систем, представьте себе, что вы стоите на опушке густого леса, через который вам нужно пройти. Троп перед вами множество, и, быть может, 90 % из них приведет вас куда-нибудь по ту сторону деревьев и лишь 10 % заставит вечно кружить в чащобе. То есть из леса вы выйдете с большой вероятностью, однако выбирать один какой-то путь вам все равно придется случайно. И даже если вам повезет, каждая траектория приведет вас в свою точку на противоположной опушке. Примерно таков и процесс создания планет – и, как мы вскоре увидим, вероятно, и процесс возникновения жизни.
* * *
Итак, вы прошли тернистый путь через вступление о динамической природе небесной механики и остались целы и невредимы – и наверняка у вас возник соблазн вздохнуть с облегчением. Однако, к сожалению, у планетных систем есть еще одна особенность, которая выводит их на новый уровень сложности. Мы привыкли представлять себе эти системы замкнутыми, из чего бы они ни состояли – из планет, астероид, комет, пыли, и вокруг чего бы ни вращались – вокруг одной или нескольких звезд. Этакие изолированные экосистемы, если не считать случайного изгнания лишней планеты. Как выяснилось, это не обязательно так.
На первый взгляд кажется, будто внутренние области Солнечной системы достаточно густонаселенны и лишних кусков плотного вещества в себя не допустят. Разве что просочится горстка-другая межзвездной пыли, а так из непрошеных гостей заметных размеров к нам попадают разве что некоторые разновидности комет. Еще когда я описывал общее устройство нашей системы, то упомянул об облаке Оорта – гипотетическом вместилище сотен миллиардов кусков льда, которые медленно вращаются по далеким орбитам, куда их забросило в годы бурной юности нашей Солнечной системы. То и дело какой-нибудь из этих кусков древнего вещества сбивается на траекторию, которая увлекает его вовнутрь, и такие события создают особый вид комет, так называемые долгопериодические кометы. То, что мы видим подобные кометы, – важнейшее доказательство существования облака Оорта, которое простирается на расстоянии почти светового года от нас – это целая четверть расстояния до ближайшей звезды.
Однако с этой гипотезой уже давно возникла некая проблема. Долгопериодических комет так много, что их нельзя списывать на строительный мусор после формирования Солнечной системы. Доморощенное облако Оорта, состоящее исключительно из вещества, вышвырнутого из новорожденной Солнечной системы, не смогло бы породить достаточно кометных тел, чтобы получилась та картина, которую мы наблюдаем.
Это несоответствие уже некоторое время ставит астрономов в тупик, однако недавно ученый Хэл Левисон и его группа выдвинули вполне правдоподобную теорию. Она опирается на одно обстоятельство, о котором мы уже говорили, – на то, что наше Солнце вместе со своими планетами родилось в компании звездных сестер, которых впоследствии разбросало по всей Галактике.
Левисон и его группа применили к решению задачи компьютерное моделирование и проследили не только орбитальные траектории планет вокруг звезд в скоплении звезд-сестер, но и траектории ледяных обломков наподобие облака Оорта. Результаты оказались удивительные. Поскольку при рождении группа звезд располагается очень компактно, возникает настоящая куча-мала, похожая на потасовку в мультфильме.
Множество ледяных обломков из окрестностей каждой отдельной звезды отрывается от нее из-за притяжения других массивных объектов, и в результате вокруг всей звездной семьи образуется огромное облако общего вещества – получается знакомая каждому любителю мультиков картинка: огромный размытый бублик, откуда иногда на миг высовываются то лапы, то хвосты, то восклицательные знаки. Внутри этого облака по-прежнему двигаются звезды, и иногда они алчно загребают вещество обратно. А иногда проходят особенно близко друг к другу – и тогда им удается захватить гравитационными щупальцами и стащить еще больше этих крошечных кусочков.
Итогом всей этой звездной потасовки становится возможность накопить в своих облаках Оорта гораздо больше вещества, чем в случае, если бы они пребывали в гордом одиночестве, – так много, что именно этим мы и можем объяснить то, что наблюдаем в Солнечной системе. Пока что мы не знаем наверняка, так ли все было, однако это очень соблазнительный ответ на загадку, которую мы еще не разгадали.
В рамках нашей основной задачи – поиска своего места во Вселенной – я хотел бы подчеркнуть, что если это правда, то чуть ли не 90 % нашего облака Оорта зародилось вне Солнечной системы. Получается, что окраины Солнечной системы состоят не из вещества, которое она позаимствовала или награбила в лихие годы юности. Подобным же образом ледяной мусор, который был произведен у нас, по большей части разлетелся в разные стороны – или его стащили другие звезды, или он странствует сам по себе в мертвых пучинах межзвездного пространства. Короче говоря, Солнечная система – прохудившаяся лодка, доверху нагруженная чужим барахлом.
А к нашей теме имеет самое непосредственное отношение то обстоятельство, что долгопериодические кометы – ледяные тела из облака Оорта – долетают до самой орбиты Юпитера, а то и до Земли. И при этом ведут себя именно так, как положено кометам: излучение Солнца обращает лед в газ, который рассеивается в межпланетном пространстве, унося с собой и пыль, которая также входит в их состав. Так было миллиарды лет.
Если Хэл Левисон и его коллеги правы, среда нашего обитания постоянно загрязняется химическими веществами из других солнечных систем. Так что мало того что наша Солнечная система так непостоянна – вероятно, что ее нынешний химический состав сильно отличается от первоначального.
* * *
Вообразите на миг, что Аристотель, Птолемей, Коперник, Кеплер или Галилей докопались бы до подобных сведений об окружающем мире. Сколько всего изменилось бы! В частности, если бы мы знали, что наша Солнечная система обладает подобными качествами, это искоренило бы устойчивые представления о том, что мы живем в стабильном или идеально настроенном мире. Может быть, Солнечная система и стоит довольно низко по шкале хаотичности, но и не в самом низу, это точно, она с самого начала постоянно менялась, меняется и сейчас.
С точки зрения орбитальной динамики наше место во Вселенной разительно отличается от представлений ученых и мыслителей прошлого. Просто взять и сместить Землю из центра мироздания – это лишь ничтожный шажок в сторону адекватной оценки нашего значения. Мы обитаем на пылинке, которая мчится по воле волн в бурном океане, в котором бесконечно много различных вариантов траекторий. Однако это не какая-нибудь случайная пылинка. Теперь нам известно, что Солнечную систему нельзя назвать заурядной – по крайней мере, отчасти, – и мы можем подтвердить это расчетами.
Здесь, конечно, можно возразить, что даже если наше место обитания временное или совершенно особое, это, в сущности, неважно. Жизнь отдельного человека идет совсем не по космическим часам. Даже вся история эволюционного развития млекопитающих за последние 200 миллионов лет – всего лишь миг по сравнению со временем жизни звезд и планетных систем.
Однако наш вид появился не в пустыне. Как мы вскоре увидим, история жизни на Земле весьма богата и по продолжительности сопоставима со временем жизни Земли как таковой, которая составляет 4,5 миллиарда лет. Без такого фона мы с вами, возможно, и не существовали бы. Однако химическая и биологическая история тоже нелинейна – время от времени ее уводит в хаос, совсем как орбиты планет, и в конечном итоге она обладает теми же фундаментальными математическими свойствами, которые отъели изрядный кус от банковского счета Анри Пуанкаре.
В основном эта сложная биохимическая история разворачивалась на другом уровне мироздания – на уровне микрокосма. Туда мы и отправимся, поскольку, если нам хочется провести связь между необычностью Солнечной системы и существованием жизни, следует хорошенько разобраться, что такое жизнь, а также какое отношение она имеет к планетам и к дальнему космосу.