— Знаешь ли ты, что такое натуральные числа и что такое ряд натуральных чисел, или просто натуральный ряд?

Федя любил сок и знал, что сок бывает натуральный и ненатуральный. Натуральный лучше. «Наверное, натуральные числа те, которые лучше, — подумал он. — Но какие именно?»

— А это как раз те числа, с которыми ты имел до сих пор дело. Мы их используем для счета предметов. Других чисел ты просто не знаешь. Или почти не знаешь. Числа 1, 2, 3, 4…. называются натуральными, что они образуют натуральный ряд. Число 0 (нуль) мы не считаем натуральным. В дальнейшем ты узнаешь, что кроме натуральных существуют и другие виды чисел. Но все они получаются из натуральных.

С глубокой древности человек изучает таинственный мир чисел. Но до сих пор многие тайны так и не разгаданы.

Каждое число в натуральном ряду по-своему интересно. Понятно, что 1 (единица) — замечательное число. Ведь с ее помощью и образуется сам натуральный ряд. Каждое следующее получается прибавлением 1 к предыдущему.

А сейчас я дам тебе две задачи. На первый взгляд, они никакого отношения к тому, о чем я говорил, не имеют. А на самом деле. суди сам.

134.  В турнире по теннису участвуют 43 человека. Встречи проходят по кубковой системе: сначала встречаются два теннисиста, проигравший выбывает из турнира. Победитель играет со следующим участником. Проигравший в новой встрече выбывает, а победитель играет со следующим и т. д. Чемпионом становится тот, кто выиграет самый последний матч. Итак, сколько же всего будет игр в таком турнире?

135.  Плитка шоколада состоит из 8 рядов по 5 кусочков в ряду. Сколько раз надо разломать плитку, чтобы в результате получить 5 • 8 = 40 отдельных кусочков? (Каждый раз можно отламывать только один кусок.)

Видишь! Совершенно разные задачи. Давай займемся первой. Как надо поступать, когда не представляешь пути решения? Один из способов состоит в решении похожих, но более простых задач. Сколько игр надо провести, если в турнире лишь 2 участника? Очевидно, одну. А если в турнире 3 участника?

— Две игры!

— Верно! А если 4 участника?

— Три игры!

— Ну что? Догадался, каков будет ответ для любого числа участников? После каждой игры число игроков уменьшается на одного. В начале было 43 игрока, а в конце остался 1 — победитель. Значит, сколько игр было сыграно?

— 42!

— Похоже решается и другая задача. Вначале был один кусок. После каждого раза, когда разламывается плитка, число кусков увеличивается на…

— 1!

— Верно! А сколько всего кусков должно получиться в конце?

— 40! Ведь 5 • 8 = 40.

— Значит, нам надо 39 раз разломить шоколад. Предлагаю тебе внимательно подумать над этими задачами. Они не такие уж простые. Не всякий взрослый самостоятельно их решит. Ну, а чем замечательно число 2?

136.  Какое число при сложении с самим собой и умножении само на себя дает одинаковый результат?

— 2!

— Ответ совершенно правильный. Но здесь важно объяснить, почему других чисел с таким свойством нет. Проверим число три: 3 + 3 = 6, а 3 • 3 = 9. При умножении получилось большее число. Тем более так будет для четырех: 4 + 4 = 8, а 4 • 4 = 16. Ведь сложение двух одинаковых чисел — все равно, что умножение этого числа на 2.

Так что 2 — действительно, замечательное число. И не только по этой причине. Можно указать еще много удивительных свойств, которыми обладает число 2. «С точки зрения» двойки числа делятся на две группы: четные и нечетные («хорошие» и «плохие»). Четные делятся на 2, а нечетные — не делятся. Если тебе придется служить в армии, то ты наверняка познакомишься с командой: «На первый-второй р-рас-считайсь!» Понятие «четности» и «нечетности» может быть полезно и при решении задач, и в практической жизни.

137.  Представь себе, что приходишь в магазин и хочешь купить 4 тетради в клетку, 2 — в линейку и 8 карандашей. А тебе говорят: «С вас столько-то рублей и 37 копеек». Может ли твоя покупка столько стоить?

138.  У некоего школьника имеется несколько карточек, на которых написаны числа 2, 4 и 8, и по одной карточке с числами 1, 3 и 7. Он пытается разложить все карточки на две кучки с равными суммами. Сумеет ли он это сделать?

Но не только 1 и 2 — замечательные числа. Верно утверждение (можно даже сказать, верна теорема): любое число является замечательным. Теперь реши простенькую задачу.

139.  Рассмотри два числа — 91 и 97. Для каждого из этих чисел найди все натуральные числа, на которые они делятся. Можно сформулировать так: найди все делители каждого из чисел.

После небольшой работы Федя пришел к выводу, что 91 делится на 7 и 13, а 97 ни на что не делится.

— Тут ты не совсем прав, — возразил дедушка. — 97 делится на 1 и на 97 (на само себя). Числа, которые делятся только на 1 и на само себя, называются простыми.

140.  Найди все простые числа меньше 100.

( Д —49, 50.)

Теперь у числа 2 появились еще два свойства. Во-первых, 2 — самое меньшее простое число. А во-вторых, 2 — единственное четное среди простых чисел.

141.  Рассмотрим числа 1, 2, 4, 8, 16, …. Каждое следующее в 2 раза больше предыдущего. Оказывается, любое число можно представить в виде суммы нескольких чисел из этой последовательности и притом единственным образом. Представь числа 11, 31, 65, 156, 649 в виде суммы каких-то чисел указанного вида.

Здесь следует дать совет. Сначала надо найти наибольшее число из нашей последовательности, которое не превосходит данное число. Например, для числа 649 таким является число 512. Имеем 649 = 512 + 137. С числом 137 поступаем также: 137 = 128 + 9. Затем 9 = 8 + 1. В результате получаем 649 = 512 + 128 + 8 + 1.

Понятно, что 3 — также простое число. 3 делит все числа уже не на две, а на три группы. В первую группу входят числа 3, 6, 9, …. Это числа, которые делятся на 3. Во вторую — числа 1, 4, 7, 10, …. Эти числа при делении на 3 дают в остатке 1. И наконец, в третью группу входят числа 2, 5, 8, 11, …. Эти числа при делении на 3 дают в остатке 2.

Да, а ты понимаешь, что означает выражение «деление с остатком»? Тогда выполни несколько простых упражнений.

142.  Раздели с остатком 117 на 5, 231 на 29, 19 на 23, 288 на 143.

Полезно запомнить, что любое число, если оно не является простым, можно представить в виде произведения простых множителей. Например, 36 = 2 • 2 • 3 • 3, 189 = 3 • 3 • 3 • 7, 1001 = 7 • 11 • 13.

143.  Представь в виде произведения простых чисел:

288, 343, 275, 1024, 899.

Хочу дать тебе совет. При нахождении простых чисел, входящих в нужное произведение, следует проверять простые числа в порядке возрастания. Сначала делим на 2. Если разделилось, снова делим на 2. И так, пока все 2 не закончатся (их может вообще не быть ни одной). Потом делим на 3, затем на 5 и так далее. Правда, в последнем случае такой путь может оказаться очень длинным. Здесь полезно заметить, что 899 = 30 • 30 — 1, и вспомнить одну формулу, которой пользовался Нави.

С простыми числами человек знаком издавна. До сих пор самые серьезные математики занимаются изучением свойств простых чисел. И до сих пор еще многое скрыто завесой тайны. Например, математики убеждены, что любое четное число может быть представлено в виде суммы двух простых чисел. Но полного доказательства этого утверждения они не знают. А вот то, что любое нечетное число можно представить в виде суммы трех простых чисел, было доказано в первой половине XX столетия великим русским математиком Иваном Матвеевичем Виноградовым. Я даже могу похвастаться: мне приходилось с ним встречаться. Ну а ты реши задачу.

144.  Представь числа 38, 96, 118, 128 в виде суммы двух простых.

То, что самого большого числа не бывает, знает любой школьник. Оказывается, не бывает и самого большого простого числа. Простых чисел бесконечно много. Это ученые знали с глубокой древности. Понятно, что все простые числа интересны уже тем, что они простые.

А чем интересно число 6? Как и у любого числа, у него много различных свойств. Я хочу обратить внимание на одну особенность. Выпишем все делители числа 6, которые меньше 6. Это числа 1, 2 и 3. А теперь заметим, что 1 + 2 + 3 = 6. То есть число 6 равно сумме всех своих делителей, меньших его самого. Древние ученые назвали такие числа совершенными, и им приписывались различные магические свойства. А существуют ли еще совершенные числа?

145.  Найди два совершенных числа. Одно из них меньше 30, а другое представляется в виде произведения простого числа 31 и нескольких 2.

Теперь ты без особого труда должен найти эти два совершенных числа. Можешь воспользоваться известным тебе методом перебора.

Но несмотря на то что математики смогли найти очень много совершенных чисел, до сих пор неизвестно, существует ли наибольшее совершенное число или нет.