Первая состояла в том, чтобы узнать, сколько раз надо метать две кости, чтобы надеяться получить наибольшее число очков, то есть двенадцать. Как мы скоро увидим, эта задача весьма простая.Вторая задача много сложнее. Страстный игрок, де Мере чрезвычайно интересовался следующим вопросом: каким образом разделить ставку между игроками в случае, если игра не была окончена?Пытаясь решить, задачи де Мере (главным образом вторую из них), Б. Паскаль в 1654 году начал переписываться с другим крупнейшим французским математиком — П. Ферма. Не будучи знакомы лично, благодаря переписке они стали близкими друзьями. П. Ферма решил обе задачи с помощью придуманной им «теории сочетаний». Решение Б. Паскаля было значительно проще. Он исходил из чисто арифметических соображений. Нисколько не завидуя П. Ферма, Б. Паскаль, наоборот, радовался совпадению результатов и писал ему: «С этих пор я желал бы раскрыть перед вами свою душу, так я рад тому, что наши мысли встретились. Я вижу, что истина одна и та же в Тулузе и в Париже».Приведем вкратце решение Б. Паскаля для второй задачи кавалера де Мере. Предположим, говорит Б. Паскаль, что играют два игрока и что выигрыш считается окончательным после выигрыша одним из них трех партий. Пусть ставка каждого игрока составляет 32 луидора, и предположим, что первый уже выиграл две партии (ему не хватает одной), второй выиграл одну (ему не хватает двух). Им предстоит сыграть еще партию. Если ее выиграет первый, он получит всю сумму, то есть 64 луидора; если второй, у каждого будет по две выигранные партии, шансы обеих будут равны, и в случае прекращения игры каждому, очевидно, надо дать поровну.Итак, если выиграет первый, он получит 64 луидора. Если выиграет второй, то первый получит лишь 32 луидора. Поэтому, если оба согласны не играть предстоящей партии, то первый вправе сказать:— Тридцать два луидора я получу во всяком случае, даже если я проиграю предстоящую партию, которую мы согласились признать последней. Стало быть, 32 луидора мои. Что касается остальных 32, может быть, их выиграю, я, может быть, вы. Поэтому разделим сомнительную сумму пополам!Значит, если игроки разойдутся, не сыграв последней партии, то первому надо дать 48 луидоров, или же три четверти всей суммы, второму 16 луидоров, или одну четверть, из чего видно, что шансы первого из них на выигрыш втрое больше, чем второго (а не вдвое, как можно было бы подумать при поверхностном рассуждении).Конечно, все это пока еще не математика, а скорее рассуждения, основанные на здравом смысле. Но вот что главное — здесь делается попытка оценить количественно то, что, казалось бы, по самой своей сути никакой количественной оценке не подлежит. И до Б. Паскаля ничего подобного никому и в голову не приходило. Математики всегда гордились (да и сейчас гордятся) именно тем, что выводы их науки справедливы всегда, при любых условиях. Дважды два, говорят они; всегда четыре —- и сегодня, и через миллион лет, и на Земле, и на любой другой планете. А тут – на тебе! Спрашиваете вы, допустим, у некоего специалиста: будет ли завтра дождь? Специалист отвечает, мол, девяносто шансов из ста за то, что дождя не будет, а десять шансов за то, что дождь пойдет. Как это понимать? Особенно в том случае, если дождь все-таки пойдет. Куда тогда подеваются эти самые девяносто шансов?И вот оказывается, что человеческому гению под силу даже такая задача: применить точные количественные меры именно там, где по самой сути ничего точного, казалось бы, быть не может. Конечно, большую роль здесь сыграло и то, что к этому времени человечеству уж очень нужны были такие методы.И здесь невозможно удержаться, чтобы не поудивляться еще раз, до чего же все-таки везет дуракам! Ведь кавалер де Мере, формулируя свои задачи, явно ни о чем, кроме игры в кости, не думал. А что получилось? .Возьмем хотя бы первую задачу: сколько раз надо метать кости, чтобы надеяться получить наибольшее число очков? Заметьте, что, например, вопрос, сколько надо бросить в землю семян, чтобы надеяться получить столько-то растений, или вопрос, сколько надо выпустить снарядов, чтобы надеяться поразить цель, это та же самая первая задача кавалера де Мере. Вряд ли нужно добавлять еще что-нибудь для доказательства важности подобных задач. Обратите также внимание на словечко «надеяться». Оно имеет очень большое значение, так как входит в терминологию науки теории вероятностей.