Со дня, когда подобный опыт был поставлен впервые, и до сих пор ученых интересует все тот же вопрос: можно ли узнать, через какую из двух щелей прошел этот самый единственный электрон?Поскольку в формулировке этого вопроса присутствует слово «узнать», мы также не можем остаться равнодушными. Усложним еще более конструкцию приора, снабдив его источником света, расположенным точно посередине между двумя щелями и двумя детекторами, способными регистрировать каждый отдельным фотон. Будем предполагать, что, если какой-либо электрон пролетит через верхнюю щель, летящий ему навстречу очередной фотон, излученный источником света, от разится от него и попадет в верхний детектор, которым и зарегистрирует его. Мы будем знать, что через верхнюю щель пролетел электрон. Наоборот, если электрон пролетит через нижнюю щель, отраженный от него фотон попадет в нижний детектор. Таким образом, по сигналам детекторов мы, казалось бы, можем точно знать, через какую именно щель пролетел электрон.К сожалению, на самом деле все обстоит не так просто. Многочисленные опыты, в частности, с конструированием различных микроскопов, неоспоримо свидетельствуют о следующем. Можно «увидеть» предмет в том и только в том случае, если, он «освещается» излучением, длина волны которого во всяком случае не больше, чем размеры предмета. При этом совершенно не важно, освещается ли предмет видимым светом, ультрафиолетовым излучением или потоком любых микрочастиц, имеющих, как мы совсем недавно имели возможность напомнить читателю, волновую природу. Не важно также и то, что имеется в виду под словом «увидеть»: увидеть глазом или зарегистрировать детектором.
Наконец, уместно напомнить здесь, что Длина волны любого излучения обратно пропорциональна энергии его квантов: чем выше энергия, тем короче длина волны, причем в качестве коэффициента пропорциональности выступает все та же постоянная Планка. Отсюда следует, в частности, что определить, через какую щель пролетел электрон, можно лишь в том случае, если длина волны света меньше расстояния между щелями. А теперь самое главное!Предположим, что в нашем приборе (см. рисунок на странице 124) мы выбрали источник света с достаточно короткой длиной волны, уж во всяком случае, во много раз короче расстояния между щелями в маске.Включаем такой прибор — и увы! — убеждаемся в том, в чем уже неоднократно убеждались ученые как в результате экспериментальных исследований, так и в результате теоретического анализа: никакой интерференции! Вместо этого мы видим на экране одну световую полосу со слегка размытыми краями. Такая в точности полоса получается, если просто просуммировать светящиеся точки от попадания в экран электронов, прошедших через обе щели.Проделанный опыт однозначно свидетельствует: мы можем узнать, через какую щель прошел электрон, но тогда мы не получим интерференционной картины. Иными словами, электрон, о котором мы знаем, ведет себя принципиально иначе, чем электрон, о котором мы ничего не знаем.Будем теперь плавно увеличивать длину волны источника света. В тот момент, когда длина волны окажется сравнимой с расстоянием между щелями в маске, на экране восстановится интерференционная картина, однако теперь мы уже не сможем узнать, через какую щель прошел каждый данный электрон. Можно выбрать и такую длину волны, когда интерференционная картина уже начинает прорисовываться. Длина волны света еще достаточно мала, и мы можем приближенно судить о том, через какую щель прошел электрон, и при этом имеем частичную интерференционную картину. Кривая, показывающая зависимость интенсивности свечения экрана от расстояния вдоль оси к, — это кривая Б на рисунке 4.Повторяем еще раз: таковы результаты опыта, который мы проделали мысленно, а многие физики во всем мире проделывали и продолжают проделывать в настоящее время в натуре. Попробуем теперь их осмыслить. Похоже, что одно обстоятельство не должно вызывать сомнений. Количество информации, получаемое нами от электрона, зависит от длины волны источника света, которым мы освещаем электрон и щели. Здесь нужно указать на один очень важный факт. Результаты только что описанного опыта будут оставаться неизменными и в том случае, если убрать детекторы, сохранив лишь источник света.Этот факт свидетельствует в пользу того, что информация, о которой мы говорим, совершенно объективна. Ее необязательно получать, а достаточно иметь. принципиальную возможность ее получения. Количество этой информации зависит от длины волны источника света: чем короче длина световых волн, которыми мы «освещаем» электрон, тем точнее мы можем определить местоположение электрона, тем, соответственно, больше сведений (информации) мы принципиально можем о нем иметь.В. Гейзенберг сформулировал свой знаменитый принцип неточностей в 1927 году. В одной из статей, посвященных этому вопросу, он писал: «Если мы хотим уяснить, что следует понимать под словами «положение объекта», например электрона, необходимо указать определенные эксперименты, при помощи которых намереваются определить «положение электрона» и даже с какой угодно точностью. Например, мы освещаем электрон и рассматриваем его в микроскоп. При таком способе максимально достижимая точность определения положения в основном задается длиной волны используемого света. Но в принципе можно построить, например, гамма-лучевой микроскоп и с его помощью определить положение с желаемой точностью. Однако в этом измерении существенно побочное обстоятельство -эффект Комптона… В мгновение, когда определяется положение, иначе говоря, в мгновение, когда квант света отклоняется электроном, последний прерывно изменяет свой импульс. Это изменение тем сильнее, чем меньше длина волны используемого света, иначе говоря, чем выше точность определения положения. Поэтому в то мгновение, когда известно положение электрона, импульс может быть определен лишь с точностью до величин, соответствующих такому прерывному изменению; итак, чем точнее определяется положение, тем менее точно известен импульс, и наоборот».