Нужно ли при подсчете или измерении количества информации вводить промежуточную величину— энтропию? Этот вопрос был поставлен нами раньше, и настала пора разобраться с ним до конца.Ясно, что применительно к такой системе, как атом, понятие статистического веса не имеет смысла и мы можем вводить понятие энтропии, определив его лишь как логарифм вероятности состояния. Следовательно, вопрос о целесообразности введения энтропии сводится к вопросу о целесообразности введения вероятностных описаний процессов.Надо сказать, что сами физики очень охотно пользуются понятием вероятности. Это происходит потому, что таким образом они получают возможность использовать в своей работе весьма простой и эффективный математический аппарат теории вероятностей. Профессионала физика интересует главным образом количественное описание явлений, а не объяснение, почему то или иное явление происходит. По словам М. Борна, «в классической физике логическая обработка какой-либо области лишь тогда признается законченной, когда она сведена к одной из глав «нормальной» математики». В частности, в учебниках по физике опыты с прохождением электронов через щели также описываются с привлечением понятия вероятности. Предлагаемые математические описания позволяют определить, вероятность для электрона .пройти через ту или иную щель. Давайте, однако, выясним для себя до конца, что это значит. Что означает утверждение, что в описанном выше опыте электрон проходит через верхнюю щель с вероятностью, например, 0,6, а через нижнюю — с вероятностью 0,4? Только то, что если источник испустит, например, миллиард электронов, то почти точно 600 миллионов из них (эта величина от раза к разу, вообще говоря, будет изменяться) пройдут через верхнюю щель, а 400 миллионов, соответственно, через нижнюю. Но мы установили, что интерференционная картина возникает при прохождении одного-единственного электрона. Все остальные электроны лишь увеличивают яркость свечения экрана, ничего не меняя по существу. Применительно же к одному электрону совершенно бессмысленно говорить о вероятности.И наконец, последнее. Привлекая понятие энтропии, мы должны привлекать одновременно связанное с этим понятием второе начало термодинамики. В то же время как раз для таких систем, как атом, совершенно не наблюдается тенденции к увеличению энтропии. Наоборот, если с атомами что и происходило за все время существования нашей вселенной, так это постепенное их усложнение начиная с «первичного взрыва». Усложнение — значит уменьшение энтропии.Удобнее всего определять количество информации той или иной системы непосредственно через тот эффект, который эта информация производит. Пока что во всех наших примерах таким эффектом было совершение механической работы или другие проявления энергии. Именно информация является объективной характеристикой явления. С позиций информации можно объяснить, почему данное явление происходит так, а не иначе. В случаях же, когда по тем или иным соображениям нас будет интересовать вероятностная характеристика явления, соответствующую вероятность можно вычислить на основе известного количества информации.Сказав эту фразу, мы проявили тем самым наше полное согласие с А. Эйнштейном в том, что случайность и вероятность как мера этой случайности есть всего лишь мера незнания, понимаемого в широком смысле.