Профессиональные советы домашнему электрику

Шмаков С. Б.

Глава 10

СОВРЕМЕННЫЕ ЭЛЕКТРОСЧЕТЧИКИ

 

 

10.1. Назначение, разновидности, характеристики

Электрический счетчик: первое знакомство

Электросчетчик есть во всех квартирах и домах. Он является настолько обыденным прибором, что его привыкли не замечать, не говоря уже о техническом устройстве и принципе работы! Попробуем разобраться, что же такое электросчетчик.

Электрический счетчик — электроизмерительный прибор, предназначенный для учета расхода электрической энергии переменного или постоянного тока, которая измеряется в кВт/ч или А/ч.

Электросчетчики применяются там, где осуществляется легальное потребление электроэнергии и есть возможность экономить деньги, отслеживая ее потребление за определенный промежуток времени. Электросчетчики выпускаются однофазные и трехфазные, однотарифные и многотарифные, прямого включения и через трансформаторы тока. Электросчетчики прямого включения применяются на ток от 5 А (по новым требованиям от 30 А) до 100 А.

Первый электронный счетчик был выпущен на Западе в 1980 году, а в России — в 1996 г. Тогда же вступил в силу ГОСТ 6570-96, сделавший в России счетчики с классом точности 2,5 и током менее 30 А вне закона. Ведь в наших квартирах появилось множество техники с большим током потребления (кондиционеры, стиральные и посудомоечные машины, тепловентиляторы, водонагреватели и т. д.).

На Западе столкнулись с проблемой замены старого парка счетчиков раньше нас. Сначала они тоже с энтузиазмом бросились заменять индукционные счетчики электронными, которых стало 95 %, но столкнувшись с проблемой более низкой надежности, необходимостью быстрого сервиса, несколько изменили свои взгляды. Теперь соотношение индукционных и электронных счетчиков, например, в Англии составляет примерно 40/60 ().

У нас в магазинах тоже присутствуют оба типа счетчиков. Как организации, так и частные лица покупают и те, и другие. По поводу надежности можно сказать следующее: в паспорте на электронный счетчик нередко дается ресурс в 15 лет непрерывной работы, но не один реально столько еще не отработал. Пятнадцать лет назад их еще не выпускали. Ресурс индукционного счетчика таков, что даже через 50 лет многие образцы укладываются в заданный класс точности!

Разновидности электросчетчиков

Конструктивно все электросчетчики можно разделить на группы:

♦ индукционные (механические);

♦ электронные (цифровые);

♦ гибридные электросчетчики.

Свои прямые обязанности, т. е. учет потребления электроэнергии, все они выполняют совершенно одинаково, однако электронные счетчики стоят значительно дороже.

В индукционных счетчиках (рис. 10.1) имеются две катушки: катушка тока и катушка напряжения. Магнитное поле этих катушек заставляет вращаться диск, приводящий в движение механизм счета потребляемой энергии. Чем больше ток и выше напряжение в электросети, тем быстрее вращается диск, и растут показания счетчика.

Рис. 10.1. Так выглядит современный индукционный счетчик

Проблема такого типа счетчиков в том, что очень трудно и дорого обеспечить с их помощью класс точности выше 2,0. Их основное достоинство — высочайшая надежность и срок службы более 15 лет. На сегодняшний день только в РФ работает около 50 миллионов индукционных счетчиков.

Электронные счетчики (рис. 10.2) работают за счет прямого измерения тока и напряжения и передачи данных в цифровом виде на индикатор и в память счетчика.

Рис. 10.2. Так выглядит электронный однофазный счетчик

Электронные счетчики имеют множество достоинств:

♦ компактные размеры;

♦ возможность многотарифного учета;

♦ способность встраивания в автоматизированные системы коммерческого учета за счет наличия стандартных интерфейсов;

♦ легкий переход на более высокий класс точности за счет применения специализированных микросхем;

♦ простота считывания за счет применения цифрового индикатора;

♦ повышенная устойчивость к попыткам воровства электроэнергии за счет коррекции показаний счетчика и т. д.

Основные недостатки электронных счетчиков — это более высокая цена и более низкая надежность.

Электронные счетчики могут похвастать тем, что они могут работать при температуре ниже нуля градусов, в отличие от индукционных счетчиков, которые не могут работать в условиях пониженной температуры. Поэтому для квартиры вполне подойдет индукционный электросчетчик, ведь температура в ней вряд ли понизиться ниже нуля градусов, а стоит он, как уже отмечалось, дешевле.

Гибридные электросчетчики, объединяющие в себе элементы двух указанных выше групп, используются достаточно редко.

Все электросчетчики различаются по количеству фаз: однофазные и трехфазные. Для выбора нужно исходить от характера сети в конкретном помещении. Чаще всего трехфазные счетчики рекомендуют устанавливать в коттеджах, больших загородных домах и в больших квартирах. В небольших же квартирах вполне подойдет и однофазный электросчетчик.

Чаще всего из-за простоты и дешевизны выбираются индукционные (механические) счетчики. Кроме того, за счет своей простоты они отличаются высоким качеством и надежностью. Это опробованная десятилетиями схема, которая отлично работает. Однако есть и минусы. Механические (индукционные) счетчики не обладают системой дистанционного автоматического снятия показаний, то есть они являются только однотарифными. Кроме того, у них высока вероятность возникновения существенной погрешности учета, именно поэтому они подлежат частой поверке.

Характеристики электросчетчиков

Основными техническими характеристиками: электросчетчиков являются:

♦ класс точности;

♦ величина номинального напряжения;

♦ величина номинального тока;

♦ чувствительность электросчетчика;

♦ интервал рабочих температур как правило от -40 до + 55 °C;

♦ средний срок службы современных электросчетчиков составляет: 15 лет у электронных и 30 лет у индукционных;

♦ средняя наработка на отказ: у индукционных— 71000 часов, у электронных — 90000 часов;

♦ межповерочный интервал: у индукционных — 6 лет, у электронных — 10 лет;

♦ габаритные размеры;

♦ вес.

Одним из основных параметров электросчетчика является его класс точности — это процентное выражение наибольшей допустимой относительной погрешности : 0,5; 1,0 и 2,0 %.

Класс точности определен для нормальных условий работы:

♦ правильное подключение;

♦ равномерное распределение нагрузок по фазам;

♦ синусоидальная характеристика напряжения и тока (величина коэффициента линейных искажений не должна превышать 5 %);

♦ номинальная величина промышленной частоты (50 Гц±0,5 %);

♦ величина отклонения значения номинального напряжения не более 1 %;

♦ величина нагрузки в номинальных пределах;

♦ отсутствие влияния внешних магнитных полей;

♦ вертикальное положение электросчетчика.

Величина номинального напряжения счетчиков прямого и с использованием трансформаторов тока должна соответствовать номинальному напряжению сети, а счетчиков, включённых с применением трансформаторов напряжения — вторичному номинальному напряжению трансформаторов напряжения. Номинальное напряжение — у трехфазных счетчиков указываются в виде произведения числа фаз на номинальные значения напряжения, у четырехпроводных счетчиков указываются линейные и фазные напряжения: 3x380/220 В.

Величина номинального тока так же указывается в виде произведения числа фаз на номинальные значения тока — 3/5 А.

Величина номинального тока счетчика косвенного или полукосвенного включения должен соответствовать вторичному номинальному току трансформатора тока (5 или 1 А). Токовые обмотки электросчетчика, как правило, допускают длительную перегрузку по току без нарушения правильности учета:

♦ безтрансформаторные и трансформаторные универсальные —120 %;

♦ счетчики прямого включения — 200 % и более (в зависимости от типа).

Значение чувствительности счетчика выражается в процентах, а определяется как наименьшее значение тока (в нормальных условиях), который определяет нормальный отсчет. Величина порога чувствительности не должна быть больше:

♦ 0,4 % — для счетчиков класса точности 0,5;

♦ 0,5 % — для счетчиков классов точности 1,0; 1,5; 2,0.

Передаточное число указывается на лицевой панели электросчетчика:

♦ для индукционного — это число оборотов диска;

♦ для цифрового — количество импульсов, соответствующее единице измеряемой энергии.

Например, 450 оборотов диска определяют расход в 1 кВт-ч или 500 импульсов так же определяют расход в 1 кВт-ч.

Применение электронных счетчиков дает возможность применения многотарифногого учета — это выгодно потребителям и удобно для энергосистемы.

Габаритные размеры и вес отражены в паспорте на изделие и имеют значение в момент определения места расположения, способа крепления изделия. Как правило, под каждый типоразмер предлагаются уже готовые контейнеры, где все продумано и предусмотрено.

 

10.2. Выбор электросчетчика

Сравнение электронных и индукционных счетчиков электроэнергии

Достоинства индукционных счетчиков:

♦ индукционные счетчики более надежны в эксплуатации;

♦ они более приспособлены к плохому качеству наших электросетей;

♦ срок «жизни» индукционного счетчика более долгий, чем у электронного;

♦ более низкая цена.

Недостатки индукционных счетчиков:

♦ низкий класс точности (2,0);

♦ рост погрешности при снижении нагрузки;

♦ нарушение метрологических характеристик при быстропеременной нагрузке;

♦ слабая защита от хищения электроэнергии;

♦ повышенное собственное потребление по цепям тока и напряжения;

♦ необходимость использования в точке учета нескольких счетчиков по различным видам энергии.

Достоинства электронных счетчиков:

♦ высокий класс точности (до 0,2);

♦ высокий класс точности сохраняется в условиях низких и быстропеременных нагрузок;

♦ возможность работать по различным тарифам;

♦ возможность учета разных видов энергии одним прибором;

♦ возможность измерений показателей количества и качества энергии и мощности;

♦ возможность длительного хранения данных учета и доступа к ним;

♦ возможность фиксации несанкционированного доступа и случаев хищения электроэнергии;

♦ возможность дистанционного съема показателей по различным цифровым интерфейсам;

♦ возможность расчета потерь;

♦ возможность создания современных АСКУЭ (автоматических систем учета электроэнергии);

♦ возможность учета одним прибором разных видов энергии в двух направлениях.

Недостатки электронных счетчиков:

♦ практически беззащитны от коммутационных и грозовых перепадов напряжения;

♦ имеют более высокую цену;

♦ менее ремонтоспособны.

Какой электросчетчик выбрать

Альтернатива индукционных и электронных счетчиков должна решаться покупателем исходя из необходимых потребительских свойств счетчика. Прежде чем выбирать электросчетчик, нужно определить, есть ли возможность и необходимость воспользоваться всеми преимуществами электронных счетчиков и не обращать внимания на их недостатки. Совершенно ясно, что не везде преимущества электронных счетчиков так важны и часто недостатки индукционных абсолютно некритичны.

#s.jpg_31   Полезный совет.

Для квартиры и частного дома покупайте индукционный электросчетчик с классом точности 2,0 и рабочим током не менее 50 А известного производителя. Он даст лучшее соотношение качество/цена. И у вас все будет в порядке.

Попробую это обосновать. Стоимость счетчиков с классом точности 1–0,5 существенно выше, чем счетчиков с классом 2,0. Для квартирного счетчика класса 2,0 вполне достаточно. Многотарифность, реализованная в электронных счетчиках, — это хорошее дополнение к функциям обычного счетчика. Но далеко не во всех городах и даже областях такая услуга реализована. Плановая замена счетчика в 90 % случаев проводится на однотарифные.

Возможность автоматизированного учета, также реализованная в электронных счетчиках, это очень хорошая функция, но помогает она энергокомпаниям, а переплачивать за счетчик будете вы.

Нельзя покупать электронный счетчик неизвестного производителя. Для снижения себестоимости и обеспечения конкурентного преимущества, некоторые производители ставят в электронные счетчики самые дешевые комплектующие, поэтому срок годности таких счетчиков не определен. Как такой счетчик может работать 15 лет?

При выходе из строя такой счетчик придется снимать и искать для него сервис-центр, квартира при этом будет обесточена.

И еще несколько практических советов для грамотной покупке счетчика от Школы электрика А. Повного () и лучшего сайта об электросчетчиках .

Совет 1. Узнать, какой электрический счетчик вам нужен, можно из технических условий на электроснабжение вашей квартиры или дома. В них непосредственно указаны параметры электросчетчика, по которым вам его и следует приобрести. Если технические условия на электроснабжение у вас отсутствуют, то для начала вы должны знать, на какое напряжение будет использоваться ваш электросчетчик — 380 либо 220 В. Узнать это можно на табло прежнего счетчика. Если на табло указана только цифра 220, значит, вам нужен однофазный электросчетчик. Если стоит 220/380, значит трехфазный.

#p.jpg_77   Примечание.

При желании заменить однофазный счетчик на трехфазный можно, но для этого необходимо оформить технические условия в местной энергоснабжающей организации.

Совет 2. Если вы собираетесь установить электросчетчик в помещении, где температура воздуха может опускаться ниже нуля градусов, то при покупке следует прочитать в паспорте электросчетчика условия его эксплуатации. Лучше приобрести электросчетчик с температурой эксплуатации до -40 градусов или даже более. Таким условиям обычно соответствуют электронные счетчики.

Совет 3. Согласно требованиям правил устройств электроустановок: «на вновь устанавливаемых однофазных счетчиках должны быть пломбы государственной поверки с давностью не более 2 лет, а на трехфазных счетчиках — с давностью не более 12 месяцев».

Это, прежде всего, говорит о том, что на приобретаемом вами электросчетчике уже должны стоять две пломбы (на электронном счетчике может устанавливаться одна пломба). Наличие этих пломб вы й должны проверить. Ставятся они чаще на винтах, крепящих кожух электросчетчика, и бывают двух видов:

♦ наружные (выполняются из свинца, реже из пластика, зажаты на

проволоке, продетой через винт либо проушину);

♦ внутренние (представляют собой залитую в винтовое углубление мастику черного или красного цвета, иногда покрытую серебрянкой).

#o.jpg_44   Внимание.

Все пломбы должны иметь четкий оттиск и не иметь механических повреждений, на что следует обратить особое внимание при покупке. Дубликат оттиска госповерителя в виде печати обычно проставляется на последних страницах паспорта электросчетчика.

На оттиске пломб указаны две последние цифры года и атрибуты госповерителя в мелком масштабе между цифрами. На пломбах наружного исполнения, ко всему этому, с обратной стороны добавляется квартал года поверки, напечатанный римскими цифрами. Поэтому, посмотрев год поверки счетчика на пломбах, вам нужно убедиться, что он не просрочен, то есть прошло не более двух лет для однофазного счетчика и не более 12 месяцев для трехфазного.

Также часто бывает, что на счетчике установлены две пломбы, но одна имеет оттиск госповерителя, а другая оттиск ОТК завода-изготовителя, что считается вполне допустимым.

#o.jpg_44   Внимание.

Если же обе пломбы имеют оттиск ОТК, либо вообще не понятно какой, то такой электросчетчик покупать не следует, так как прежде чем его установить, вам придется предъявить его в центр стандартизации и метрологии для поверки и соответственно заплатить дополнительные деньги. То же самое вам придется сделать, если вы купите счетчик с просроченными пломбами госповерителя. Это все, что касается пломб.

Совет 4. Следует обратить внимание на межповерочный интервал (МПИ) электрического счетчика, указанный в его паспорте. То есть нужно узнать, через сколько лет вам придется снимать счетчик и нести его на очередную госповерку. Как правило, срок поверки однофазного индукционного счетчика составляет 16 лет, а электронного от 8 до 16 лет. Меньший срок госповерки говорит о соответствующем низком качестве прибора. Сроки поверки трехфазных счетчиков обычно меньше чем у однофазных и составляют 6–8 лет. Хотя новые электронные модели трехфазных счетчиков уже имеют срок межповерочного интервала 16 лет.

#p.jpg_78   Примечание.

Отсчет времени производится от года поверки указанного на пломбах электросчетчика.

Совет 5. Рекомендуется посмотреть класс точности электрического счетчика. Указывается он на табло прибора. Цифровое обозначение класса точности заключается в кружок. Это число показывает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы электрического счетчика.

#p.jpg_78   Примечание.

До 1996 года однофазные электрические счетчики выпускались с классом точности до 2,5. Но после выхода ГОСТа 6570-96 счетчики стали выпускать с более высоким классом точности — 2,0.

Сегодня счетчики с классом точности 2,5 на очередную госповерку уже не принимают, даже если у них не истек срок эксплуатации, который составляет не менее 32 лет. В ближайшее время планируется перевести расчетные электросчетчики еще на более высокий класс точности — 1,0. Это говорит о том, что если вы приобрели счетчик с классом точности 2,0, то на очередную госповерку через 16 лет его возможно не возьмут. Хотя и 16 лет все-таки не малый срок.

Совет 6. Обратите внимание на способ крепления электросчетчика. Счетчики изготавливают с возможностью крепления либо на трех винтах (для обычных электрощитов), либо на DIN-рейке. С возможностью крепления на DIN-рейке выпускают только электронные счетчики. Если выбираете последний способ крепления, то необходимо еще купить отдельно DIN-рейку или специальный бокс под электросчетчик. DIN-рейка может идти в комплектации со счетчиком.

Совет 7. Рекомендуется покупать электросчетчики с зажимной крышкой закрывающей клеммный ряд еще и под счетчиком, во избежание лишних вопросов со стороны энергосбыта.

Совет 8. Проверьте, чтобы в клеммном ряду не было отсутствующих винтов, а также наличие пломбировочных винтов (винт с отверстием) для крепления зажимной крышки.

Совет 9. При покупке индукционного счетчика (электросчетчик с вращающимся диском) слегка повертите его в руках, диск должен задвигаться. Если движений диска не наблюдается, возможно, счетчик стряхнули при транспортировке, и он неисправен.

Совет 10. Обращать внимание на величину тока однофазных счетчиков при отсутствии у вас технических условий практически не имеет смысла, поскольку все современные электросчетчики выпускаются достаточно мощными.

А теперь рассмотрим устройство и принцип действия основных видов счетчиков, которые используются сегодня.

 

10.3. Принцип действия и работа электросчетчиков

Устройство и принцип действия однофазного индукционного счетчика

Однофазный индукционный счетчик представляет собой измерительную ваттметровую систему. Он является интегрирующим (суммирующим) электроизмерительным прибором. Принцип действия индукционных приборов основан на взаимодействии переменных магнитных потоков с токами, индуктированными ими в подвижной части прибора (в диске). Блок-схема однофазного индукционного счетчика приведена на рис. 10.3.

Рис. 10.3. Блок-схема однофазного индукционного счетчика

Электромеханические силы взаимодействия вызывают движение подвижной части. Алюминиевый диск может вращаться на оси 0, с которой через червячную и зубчатую передачи связан счетный механизм с цифрами, указывающими расход электроэнергии (рис. 10.4).

Рис. 10.4. Однофазный индукционный счетчик

Так как счетчик должен учитывать расход электроэнергии, а он пропорционален произведению тока нагрузки I напряжения U, подведенного к нагрузке, и времени t, в течение которого нагрузка включена, то конструкция счетчика должна иметь элементы, автоматически перемножающие I, U и t. В общих чертах это достигается следующим образом. Диск счетчика в конечном итоге вращается за счет электромагнитных сил, которые создаются катушками.

Первая катушка включается в сеть последовательно и создает силу, пропорциональную току I. Вторая включается параллельно и создает силу, пропорциональную напряжению U. Поэтому частота вращения алюминиевого диска, расположенного между катушками, пропорциональна произведению U x I.

Если нагрузка равна нулю, диск неподвижен и показания, счетчика не изменяются. При нагрузке диск вращается, причем тем быстрее, чем больше нагрузка. Время t автоматически учитывается, потому что чем дольше вращается диск, тем больший путь совершается обоймами счетного механизма, а на них написаны цифры, которые видны в окошечке на крышке счетчика.

На обоймах написаны цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Обоймы закрыты щитком, и мы в его окошечках видим только по одной цифре на каждой из них. Допустим, что алюминиевый диск счетчика начинает вращаться по стрелке, когда во всех окошечках видны нули.

Наблюдая за счетчиком, мы увидим, как самый правый нуль поднимется и исчезнет, уступая место единице. Ее сменит двойка и т. д. А когда вместо девятки в окошечке снова появится нуль, то в соседнем окошечке слева окажется единица. Таким образом, полному обороту первого диска, считая справа, соответствует 1/10 оборота второго диска, полному обороту второго — 1/10 оборота третьего и т. д.

Число зубьев червячной и зубчатой передач подобрано таким образом, что счетчик отсчитывает, как правило, киловатт-часы (цифры в черных окошечках) и их доли (цифры в красном окошечке).

Принцип работы индукционного трехфазного электросчетчика

Индукционный трехфазный электросчетчик работает по тому же принципу, что и однофазный. В индукционной системе подвижная часть (диск) вращается во время потребления электроэнергии. Диск вращается за счет вихревых токов, наводимых в нем магнитным полем катушек счетчика. Магнитное поле вихревых токов взаимодействует с магнитными полями катушек счетчика.

Один из трех элементов счетчика содержит два электромагнита:

♦ токовая обмотка включена в сеть последовательно;

♦ обмотка напряжения включена в сеть параллельно.

Между этими электромагнитами расположен вращающийся алюминиевый диск. Его ось соединена:

♦ со счетным механизмом счетчика;

♦ со вторым диском, на котором установлено еще два (на две фазы) элемента.

Третий диск отсутствует, ради экономии. Протекающие по обмоткам электромагнитов токи создают магнитные потоки, под действием которых у диска появляется вращающий момент. Чем больше расходуется электроэнергии, тем больший ток в контролируемой цепи и в токовой обмотке счетчика и тем больше момент и скорость вращения диска. Трехфазные электросчетчики на напряжение 380 В применяются в основном для учета электроэнергии как на подстанциях, предприятиях, так и в индивидуальных домах и больших квартирах.

Принцип действия гибридного электронно-механического счетчика

Гибридные электронно-механические счетчики являются «помесью» механических и электрических счетчиков: цифровой интерфейс, измерительная часть электронного или индукционного типа. Они включают в себя несколько узлов:

♦ схема счетчика;

♦ блок питания;

♦ корректирующие цепи и т. д.

Блок питания преобразует переменное входное напряжение в низкое постоянное и обеспечивает питание электронных цепей счетчика. Схема счетчика измеряет ток, который потребляется нагрузкой, с помощью трансформатора тока (датчика), через который и протекает измеряемый ток. Другие блоки счетчика электроэнергии выполняют ряд различных функций: вывод показаний и управление через Ethernet, WiMax, Wi-Fi, ZeegBee сети, управление дисплеем, термокомпенсация счетчика, коррекция точности и т. п.

Счетчик состоит из микросхемы обработки, трех трансформаторов тока, цепи питания, электромеханического счетного устройства и дополнительных цепей.

В качестве регистра электроэнергии используется простое электромеханическое отсчетное устройство, в котором применен двухфазный шаговый двигатель. Электропитание счетчика обеспечивает источник, построенный на токовом трансформаторе и двухполупериодном выпрямителе.

Структура и принцип действия электронных электросчетчиков

В простейшем случае электросчетчик может быть построен на базе простейшего микроконтроллера. От простейшего электронного счетчика требуется лишь измерение импульсов, вывод информации на дисплей и защита при аварийных сбоях.

#p.jpg_79   Примечание.

Получается, фактически, цифровой аналог индукционных (механический) счетчиков, рассмотренных выше.

Блок-схема простого электронного счетчика электроэнергии представлена на рис. 10.5.

Рис. 10.5. Блок-схема простого электронного однофазного счетчика электроэнергии

Сигналы поступают через соответствующие трансформаторные датчики на входы микросхемы-преобразователя. С ее выхода снимается частотный сигнал, поступающий на вход микроконтроллера. Микроконтроллер складывает количество пришедших импульсов, преобразовывая его для получения количества энергии в Вт∙ч.

По мере накопления каждой единицы, значение накопленной энергии выводится на монитор и записывается во FLASH-память. Если происходит сбой, исчезновение напряжения сети, информация о накопленной энергии сохраняется в памяти.

После восстановления напряжения эта информация считывается микроконтроллером и выводится на индикатор, счет продолжается с этой величины. Этот алгоритм потребовал менее 1 Кб памяти микроконтроллера. В качестве дисплея может использоваться простейший 6-…8-разрядный 7-сегментный ЖКИ, управляемый контроллером.

В случае реализации многотарифного электросчетчика, устройство должно обеспечивать обмен информацией с внешним миром по последовательному интерфейсу. Интерфейс может использоваться для задания тарифов, включения и установки таймера времени, получения информации о накопленных значениях электроэнергии и так далее. Блок-схема многотарифного электронного электросчетчика, реализованного на микроконтроллере фирмы Motorola, представлена на рис. 10.6.

Рис 10.6. Блок-схема многотарифного электронного однофазного электросчетчика

Рассмотрим алгоритм работы многотарифного электросчетчика. Память энергонезависимого ОЗУ разбита на 13 банков, в каждом хранится информация о накопленной электроэнергии по четырем тарифам: общем, льготном, пиковом, штрафном.

В первом банке учет производятся с момента начала эксплуатации электросчетчика, следующие 12 банков соответствуют накоплениям за 11 предыдущих и за текущий месяцы. Учет за текущий месяц записываются в соответствующий банк, таким образом, имеется возможность узнать, сколько было накоплено энергии за любой из 11 последних месяцев. Перед началом работы счетчика на заводе-изготовителе обнуляют содержимое банков памяти, и накопление начинается с нулевых значений.

Смена тарифов осуществляется по временным условиям: для каждого дня недели свое тарифное расписание, то есть времена начала основного и льготного тарифов — для пикового тарифа. Шестнадцать произвольных дней в году могут быть определены как праздничные, в эти дни работает тарифное расписание как для воскресенья.

В электросчетчике может быть установлен режим ограничения по количеству израсходованной за месяц энергии и по мощности. В тех режимах счетчик фиксирует количество электроэнергии, израсходованной выше лимита. При превышении установленного лимита электроэнергии производится или переход на накопление по штрафному тарифу, или отключение пользователя от энергосети. Штрафной тариф может быть установлен принудительно (по интерфейсу связи) в случае, например, задолженности.

При включении счетчика в сеть (например, после очередного пропадания напряжения в сети) фиксируется время и дата момента для возможности контроля. Также предусмотрена запись даты несанкционированного снятия крышки счетчика.

Через особый разъем к счетчику можно подключить ридер для считывания информации с индивидуальной электронной карточки об объеме энергии, оплаченном потребителем. При исчерпании лимита счетчик может отключить потребителя от электросети.

Электросчетчик трехфазный электронный многотарифный имеет встроенный цифровой интерфейс, встроенный тарификатор.

Обеспечивает счетчик учет активной и реактивной электроэнергии в одно или многотарифном режимах суммарно по всем фазам или может осуществлять учет активной энергии по каждой фазе отдельно.

На жидко-кристаллическом дисплее индицируются:

♦ значения активной и реактивной электрической энергии;

♦ измерение мгновенных значений активной, реактивной и полной мощности по каждой фазе и по сумме фаз;

♦ измерение по каждой фазе — тока, напряжения, частоты, cos φ, углов между фазными напряжениями.

Такой электросчетчик поддерживает передачу данных измерений по силовой сети, по интерфейсам — CAN, RS-485. Может передаваться вся доступная информация. Имеется возможность программировать счетчик в режим суммирования фаз «по модулю» для предотвращения хищения электроэнергии при нарушении фазировки подключения, имеется возможность корректировать внутренние часы электросчетчика.

Такой счетчик предназначен для эксплуатации в электроустановках административных, жилых и общественных зданий, производственных помещений, коттеджей, дач, магазинов, гаражных кооперативов и т. п. при снабжении потребителей электроэнергии от трехфазной электросети.

 

10.4. Установка счетчика

Способы установки

По способу установки счетчики можно разделить на классические, крепящиеся с помощью трех винтов, и счетчики, предназначенные для крепления на DIN-рейку (рис. 10.7). Такое крепление сейчас получает большее признание из-за удобства монтажа счетчиков и меньших габаритов.

Рис. 10.7. Варианты крепления электросчетчиков:

а — крепление на три шурупа; б — крепление на DIN-рейку 

Место для размещения электросчетчика следует выбирать с особой тщательностью, ведь условия окружающей среды могут повлиять на точность показаний. В самом общем виде требования к месту для размещения электросчетчика таковы: помещение должно быть отапливаемое, но температура не выше 40 °C, сухое, без агрессивных примесей в воздухе. Электросчетчик может быть установлен и в неотапливаемом помещении. Допускается размещение в шкафах наружной установки. Но в этом случае придется побеспокоиться об утеплении счетчика.

Крепление электросчетчика должно быть выполнено таким образом, чтобы его возможно было демонтировать с лицевой стороны панели (помним принцип максимального удобства для проведения различных работ).

Использование трансформатора тока

В некоторых случаях необходима установка трансформаторов тока: если сила тока, проходящего через счетчик, выше максимально допустимого значения для данного прибора. Если производится установка трансформаторов тока, то показания счетчика должны умножаться на коэффициент трансформации (к примеру, установка трансформатора тока 100/5 А означает, что коэффициент трансформации равен 20 и показания счетчика нужно будет умножать на 20).

Трансформатор тока ТОП, представленный на рис. 10.8, предназначен для понижения изначального тока до величины, используемой в цепях измерения, охраны, управления и сигнализации. Такое номинальное значение тока вторичной обмотки 2 А, 5 А. Изначальные обмотки трансформатора тока и напряжения включаются в цепь с измеряемым переменным и постоянным током, а во вторичную цепь включаются не измерительные приборы.

Рис. 10.8. Так выглядят трансформаторы тока

Ток, протекающий сообразно вторичной обмотке трансформатора тока, равен определенному току первичной обмотки, деленному на другой коэффициент модификации. Вторичная такая обмотка токового трансформатора должна быть солидно замкнута на низкоомную нагрузку измерительного устройства либо накоротко. При случайном либо умышленном разрыве цепи появляется прыжок напряжения, страшный для изоляции, находящихся вокруг электроприборов и жизни техперсонала!

Электромонтаж при установке трансформаторов тока осуществляется медным проводом или кабелем с минимальным сечением (не более 10 мм2). Марки могут быть различными. Следует только соблюдать условия, касающиеся механической прочности провода или кабеля.

При электромонтажных работах не допускается использовать такие соединения проводов и кабелей, которые невозможно осмотреть (к примеру, болтовое соединение, скрутка).

После того как проведены все электромонтажные работы счетчик, клеммную и испытательную колодки, трансформаторы тока и напряжения (если они имеются) следует опломбировать.

Особенности включения счетчиков и измерительных трансформаторов

#p.jpg_80  Примечание.

Схемы включения индукционных и электронных электросчетчиков (рис. 10.9) абсолютно идентичны. Посадочные отверстия для крепления обоих видов электросчетчиков тоже должны быть абсолютно одинаковы.

Однако некоторые производители не всегда придерживаются этого требования, поэтому иногда могут возникнуть проблемы с установкой электронного электросчетчика вместо индукционного именно в плане крепления на панели.

Зажимы токовых обмоток электросчетчиков обозначаются буквами Г (генератор) и Н (нагрузка). При этом генераторный зажим соответствует началу обмотки, а нагрузочный — ее концу.

Рис. 10.9. Принципиальные схемы включения счетчиков:

а — однофазного; б — трехфазного 

При подключении счетчика необходимо следить за тем, чтобы ток через токовые обмотки проходил от их начал к концам. Для этого провода со стороны источника питания должны подключаться к генераторным зажимам (зажимам Г) обмоток, а провода, отходящие от счетчика в сторону нагрузки, должны быть подключены к нагрузочным зажимам (зажимам Н).

Для счетчиков, включаемых с измерительными трансформаторами, должна учитываться полярность как трансформаторов тока (ТТ), так и трансформаторов напряжения (ТН). Это особенно важно для трехфазных счетчиков, имеющих сложные схемы включения, когда неправильная полярность измерительных трансформаторов не всегда сразу обнаруживается на работающем счетчике.

Если счетчик включается через трансформатор тока, то к началу токовой обмотки подключается провод от того зажима вторичной обмотки трансформаторов тока, который однополярен с выводом первичной обмотки, подключенным со стороны источника питания. При этом включении направление тока в токовой обмотке будет таким же, как и при непосредственном включении.

Для трехфазных счетчиков входные зажимы цепей напряжения, однополярные с генераторными зажимами токовых обмоток, обозначаются цифрами 1, 2, 3. Тем самым определяется заданный порядок следования фаз 1-2-3 при подключении счетчиков.

 

10.5. Схемы включения электросчетчиков

Прямые схемы подключения электросчетчика

Прямая схема является наиболее простой и довольно распространенной (источник: ). Схемы представлены на стр. 4 цв. вклейки.

#p.jpg_81   Примечание.

Если ток счетчика лежит в нормальных приделах реально потребляемого тока, то подключают в этом случае счетчики прямым способом (без дополнительных трансформаторов тока).

Несмотря на огромное разнообразие выпускаемых электросчетчиков, расположение клемм подключения у них у всех одинаковое. На самой крышке закрытия клемм (с внутренней стороны) имеется нарисованная схема подключения (на всякий случай, если забыли, как подключать электросчетчик).

После одобрения правильности и соответствия всем нормам, на электросчетчике производится опломбировка. Она исключает возможность самопроизвольной доделки или переделки как самого подключения, так и изменения общей работы устройства учета.

#p.jpg_82   Примечание.

Те электросчетчики, что устанавливаются самими хозяевами для своих нужд и определенных целей (к примеру, в одной квартире живут несколько семей и есть необходимость учитывать потребленную электроэнергию каждой из них) не подвергаются контролю организаций.

Они расцениваются как обычные электротехнические устройства, которые установлены в электрический щиток и работают на стороне самого потребителя.

В многоэтажных жилых домах через кабель (провод) соответствующего сечения идет подсоединение фазы (фаз) к входным клеммам электросчетчика. Между основной магистралью и счетчиком устанавливается рубильник или автомат. Он позволяет производить замену устаревших либо не исправных электросчетчиков без напряжения на вводе.

С выходных клемм электросчетчика электропитание ввода подается на защитные и распределительные устройства. Фаза идет на УЗО, автоматы, предохранители, а ноль обычно садится на общий клеммник.

Однофазный счетчик устроен таким образом, что все потребители электроэнергии в доме питаются от одного провода (фазы). В трехфазных схемах потребители электричества разведены на группы, что более безопасно. Для примера разберемся, как подключить электросчетчик однофазный и трехфазный.

Схема подключения однофазного счетчика

Переходим сначала к подключению электрического однофазного счетчика. Под защитной крышкой, в нижней части прибора расположены четыре клеммы (см. левый рисунок на стр. 5 цв. вклейки). К крайней левой клемме, присоединяется приходящий фазный провод, к клемме следующей по порядку слева на право, присоединяется отходящий фазный провод. Далее, к третей слева клемме присоединяется приходящий нулевой провод, а к последней, оставшейся — отходящий нулевой.

На однофазном аппарате имеются четыре клеммы (на рисунке отмечены номерами). Через эти четыре клеммы осуществляется подача электроэнергии в дом и связь общей электросетью. Для замены прибора обесточьте квартиру и снимите старый счетчик. Закрепите в подготовленное место новый прибор. К клемме № 1 присоедините фазный провод (чаще всего он красного цвета, однако если есть сомнения, проверьте его индикаторной отверткой — индикатор должен загореться на фазном проводе). К клемме № 2 подключите фазный провод от сети помещения, первая цепь готова.

Аналогично подключаем к клеммам № 3, 4 нулевой провод от общей и квартирной сети. Чтобы не ошибиться в монтаже сверяйтесь со схемой подключения электросчетчика (см. левый рисунок на стр. 5 цв. вклейки).

Схема подключения трехфазного счетчика

Переходим теперь к подключению электрического трехфазного счетчика.

#p.jpg_83   Примечание.

Для питания квартир и индивидуальных домов с потреблением электроэнергии свыше 12 кВт, целесообразней использовать трехфазную сеть вместо однофазной.

Для учета электроэнергии, в трехфазной цепи используются, соответственно, трехфазные счетчики.

Под защитной крышкой снизу у трехфазного счетчика находятся четыре пары клемм. В каждой паре левая клемма является входной, а правая — выходной. Три фазных провода и рабочий нулевой подключаются к входным клеммам счетчика. С выходных клемм, фазные и нулевой провода отводятся на распределительный щит.

Трехфазный электросчетчик подключить немного сложнее, хотя принцип тот же. Действуя по аналогии с подключением однофазного счетчика, подключаем провода. К клеммам №№ 1, 3, 5, 7 присоединяем провода одного цвета из внешней сети, а к следующим клеммам, т. е. к №№ 2, 4, 6, 8 провода одного цвета из домашней сети (см. правый рисунок на стр. 5 цв. вклейки).

Таким образом, получится, что если к контакту № 1 подсоединен красный провод (фаза) из внешней цепи, то к контакту № 2 нужно будет подключить фазный провод из домашних коммуникаций.

#s.jpg_32   Полезный совет .

Для безопасности входные провода лучше подключить через четырехполюсный вводной автомат, а также поставить однополюсные автоматы для каждой группы потребителей.

 

10.6. Организационные вопросы замены счетчика

Надеюсь, что вы приобрели отечественный, сертифицированный электросчетчик, сделанный на заводе. Это облегчит решение возможных проблем, связанных с ремонтом и заменой счетчика по гарантии. Счетчик можно самостоятельно приобрести, но его заменой обязательно должен заниматься квалифицированный специалист из энергоснабжающей организации — штатный электрик.

Для замены счетчика электрической энергии требуется 3 группа по электробезопасности, которая присваивается электрику только после обучения и проверки знаний в центрах аттестации.

При монтаже электрик запрограммирует тарифы, если выбран электронный многотарифный вариант.

#p.jpg_84  Примечание.

При замене старого счетчика нельзя трогать, его верхних пломб (крепящие кожух электросчетчика пломбы с клеймом госповерителя — заводские или с метрологии). Можно снимать только нижнюю — на зажимной крышке распределительной клемм ной коробки (пломба энергоснабжающей организации).

#s.jpg_33  Полезный совет.

Не выбрасывайте сразу и не разбирайте старый прибор (в ближайшие месяцы он может понадобиться для сверки показаний).