Профессиональные советы домашнему электрику

Шмаков С. Б.

Глава 3

ЭЛЕКТРОСЕТЬ МНОГОКВАРТИРНОГО ДОМА

 

 

3.1. Ввод и распределение электроэнергии в многоквартирном доме

Особенности распределения электроэнергии в многоквартирном доме с системой TN-C

TN-C — это старая система заземления, характерная для домов прошлого века постройки. Она на входе в дом — четырехпроводная (три фазных провода L1, L2, L3 и совмещенный нулевой проводник PEN). PEN проводник в этой системе так и идет до потребителя в таком объединенном виде PEN.

В итоге к потребителю в этой системе проложено:

♦ 2 проводника при однофазном включении (L, PEN);

♦ 4 проводника — при трехфазном включении (L1, L2, L3, PEN).

#p.jpg_8  Примечание.

Иногда на схемах фазные провода обозначают латинскими буквами (А, В, С).

Питающий кабель, идущий под землей от трансформаторной подстанции, входит во вводной ящик, который соединен кабелем с распределительным щитом (рис. 3.1). От него отходят стояки, прокладываемые вертикально, например, по лестничным клеткам.

Рис. 3.1. Кабельный ввод в многоэтажный дом с системой заземления TN-C

К стоякам на каждом этаже присоединены этажные щитки, от которых провода расходятся по квартирам.

В зависимости от размеров дома и его этажности, а также системы прокладки кабелей (в земле или коллекторе) вводы выполняются тем или иным способом. Почему? Потому что, во-первых, нагрузка 100-квартирного дома значительно меньше нагрузки 500-квартирного. Во-вторых, требования к электроснабжению пятиэтажного дома относительно невелики: в таких домах нет лифтов, хватает напора водопроводной сети. Оставлять же без электропитания лифты и водоснабжение 30-этажного дома совершенно недопустимо.

По этим причинам в большие дома нередко вводится не один, а два и даже три кабеля со взаимным резервированием. Распределение электроэнергии между квартирами и общедомовыми нагрузками (лифты, насосы, общее освещение) довольно сложно. Его выполняют с помощью комплектных электротехнических устройств. Их размеры, места установки и способы крепления строго согласованы с конструкциями домов.

Рассмотрим варианты присоединения квартир к стоякам в многоквартирном доме с системой TN-C. Стояк имеет четыре провода: три фазы, обозначаемые буквами А, В, С, как показано на рис. 3.2, а, и совмещенный нулевой проводник PEN.

Рис. 3.2. Распределение нагрузки между фазами:

а — структура электроснабжения стояка; б — ток в нейтральном проводе

Между каждой парой фаз (А-В, В-С и С-А) напряжение в 1,73 раза выше, чем между любой фазой и нейтралью (A-PEN, B-PEN). Значит, если между фазами 380 В, то между каждой фазой и нейтралью 380/1,73 = 220 В. В каждую квартиру вводят два провода: фазу и нейтральный провод. В этих проводах ток одинаков. Иначе и быть не может, так как проводов всего два, поэтому в любой момент времени один из них прямой, а другой — обратный.

Квартиры к разным фазам присоединяют по возможности равномерно. Так, на рис. 3.2, а из шести квартир к каждой фазе присоединено по две. Равномерное распределение нагрузки исключает перегрузку отдельных проводов стояка и обмоток трансформатора и, кроме того, дает возможность уменьшить ток в нейтральном проводе. Этот вопрос требует пояснений.

Из схемы видно, что все квартиры присоединены к нейтральному проводу PEN. Он для всех квартир является обратным, поэтому через него должна проходить сумма всех токов. Но какая сумма? Не арифметическая, а геометрическая. Чтобы ее найти, нужно изобразить нагрузки каждой фазы векторами, приняв их длины пропорциональными нагрузкам фаз; затем эти векторы следует расположить под углами 120° и по правилу параллелограмма сложить сперва нагрузку двух фаз, а затем, опять-таки по правилу параллелограмма, сложить найденную нагрузку двух фаз с нагрузкой третьей фазы. Пример такого сложения дан на рис. 3.2, б. Из него видно, что ток в нейтральном проводе получился меньшим, чем ток любого провода фазы А, В или С. При совершенно равномерной нагрузке фаз тока в нейтральном проводе нет, поэтому его часто упрощенно называют нулевым.

Нередко в домах постройки прошлого века вместо этажных щитков применяли совмещенные электрошкафы. Пример такого электрошкафа дан на рис. 3.3.

Рис. 3.3. Пример исполнения электрошкафа

Шкаф имеет отсеки с отдельными дверцами. В одном отсеке расположены автоматические выключатели и выключатели, таблички с номерами квартир, в другом, запертом, — счетчики; третий отсек предназначен для слаботочных устройств: телефонов, радиотрансляционной сети, сети телевизионных антенн, витых пар домофона, Интернета и др.

К каждой квартире в таком этажном щитке относятся один выключатель и два автоматических выключателя:

♦ один — для линии общего освещения;

♦ другой — для линии штепсельных розеток.

В некоторых шкафах имеется штепсельная розетка с защитным контактом, к которой присоединяют уборочные машины.

Особенности распределения электроэнергии в современном многоквартирном доме с системой TN-C-S

Электрическая проводка в жилом помещении состоит из электрического ввода, электрощитка и групповой электрической сети, которая распределяет электропитание от щитка по всему помещению. Электропроводка каждой группы выполняется электрическим кабелем определенного сечения и автоматом защиты с заранее рассчитанном номиналом.

Вводные распределительные устройства

Входная линия от трансформаторной подстанции попадает на ВУ или ВРУ. Устройство ВРУ для многоквартирного дома, в принципе, отличается от ВУ лишь наличием оснащения для распределения электроэнергии по зданию.

Вводное распределительное устройство — это совокупность аппаратов защиты (автоматические выключатели, предохранители и др.), приборов учета электроэнергии (амперметры, вольтметры, электросчетчики), электрооборудования (рубильники, разъединители, трансформаторы тока, шины и т. п.) и строительных конструкций, которые устанавливаются на вводе в жилое помещение, либо здание, включающие, в том числе, в себя аппараты защиты и приборы учета электроэнергии отходящих линий электропроводки.

#p.jpg_9  Примечание.

Главное, что и к ВУ, и ВРУ подводится линия повторного заземления. Это значит, что создавать деление совмещенного нулевого проводника PEN можно только здесь!

Итак, во вводном распределительном устройстве дома нулевой проводник PEN расщепляется на нулевой и защитный, этим в доме будет осуществлена система TN-C-S. Система TN-C-S имеет место только после точки расщепления, считая со стороны от трансформаторной подстанции. В современных этажных щитках обычно стоят электросчетчики и трехфазные вводные автоматы на квартирные электрощитки, УЗО, дифавтоматы.

После ВУ или ВРУ электроэнергия попадает на этажные щитки в многоквартирном доме. К современным этажным щиткам идет 5 проводов (L1, L2, L3, N, РЕ).

 

3.2. Современные этажные электрощитки

Назначение

Щитки предназначены для распределения и учета электрической энергии, защиты электрических сетей квартир от перегрузок и коротких замыканий, токов утечки на «землю» вследствие повреждений изоляции сетей. А щитки со слаботочным отделением предназначены также для установки кабелей и аппаратуры телевизионной, радиотрансляционной, телефонной, Интернет сетей.

Современные щитки этажные ЩЭм разработаны с учетом:

♦ новых требований по увеличению их нагрузочной способности;

♦ количеству групповых линий на квартиру;

♦ дизайну и обеспечению безопасности при эксплуатации.

Типовые комбинации аппаратуры для щитков представлены в табл. 3.1, а внешний вид представлен на рис. 3.4.

Устройство щитков позволяет осуществлять их подключение к сетям с системами заземления TN-S и TN-C-S без разрезания магистральных проводов сечением до 90 мм.

Рис 3.4. Внешний вид этажного щитка ЩЭмЗ :

а — так щиток выглядит при поставке; б — щиток, установленный в нишу в рабочем состоянии

Обозначение электрощитков

Структура обозначения щитков представлена ниже:

Приведу примеры обозначения щитков.

Щиток этажный ЩЭмЗ-3001 — щиток на 3 квартиры, без автоматического выключателя магистральной линии (стояка), имеется отделение для размещения слаботочных устройств. В щитке, на каждую квартиру, установлены:

♦ 1 двухполюсный выключатель нагрузки на 40 А (ввод в квартиру);

♦ 2 автоматических выключателя на 16 А;

♦ 1 автоматический выключатель с УЗО на 16 А.

Щиток этажный ЩЭм4-5211

Щиток этажный ЩЭм4-5211 — щиток на 4 квартиры, установлен автоматический выключатель магистральной линии (стояка) с расцепителем 125 А, имеется отделением для размещения слаботочных устройств. В щитке, на каждую квартиру, установлены:

♦ 1 двухполюсный выключатель нагрузки на 63 А (ввод в квартиру);

♦ 3 автоматических выключателя на 16 А;

♦ 1 автоматический выключатель с УЗО на 16 А;

♦ 1 автоматический выключатель с УЗО на 40 А.

Принципиальные схемы щитков представлены на рис. 3.5 и 3.6.

Рис. 3.5. Принципиальная схема щитков ЩЭмЗ-4210 и ЩЭмЗ-4211

Рис. 3.6. Принципиальная схема щитков ЩЭмЗ-4200 и ЩЭмЗ-4201

#p.jpg_10  Примечание.

Счетчиками электрической энергии изготовитель щитки не комплектует, но возможна их установка (рис. 3.4). При этом необходимо исходить из того, что количество модулей, устанавливаемых в щитке, включая вводные аппараты квартир, не должно превышать 60 единиц (один модуль соответствует однополюсному выключателю шириной 18 мм).

Щиток этажный типа ЩЭ1409

Щиток этажный типа ЩЭ1409 является дополнением к номенклатуре щитков этажных ЩЭм и предназначен для приема и распределения электрической энергии, защиты сетей от токов перегрузок и коротких замыканий.

Номинальные токи автоматических выключателей, устанавливаемых в щитке ЩЭ1409 — 40…63 А. Щиток ЩЭ1409 устанавливается в нише стены размерами 300х290х130 мм. Схема электрическая принципиальная щитка ЩЭ1409 представлена на рис. 3.7.

Далее на квартирный щиток идет пять проводов (L1, L2, L3, N, РЕ).

Рис. 3.7. Принципиальная схема щитка ЩЭ1409

 

3.3. Квартирные щитки

Назначение

В многоэтажных домах прошлого века постройки на лестничных клетках изначально установлен электрощит (этажный щиток). В нем расположены электросчетчики и автоматические выключатели для всех квартир, расположенных на данной лестничной площадке.

Однако сейчас приходится обустраивать электрощитки и в квартирах по следующим причинам:

♦ нехватка места в этажном щитке для размещения электросчетчиков, УЗО, автоматов и диф. автоматов;

♦ сохранность достаточно дорогого оборудования от воровства и вандализма.

Существуют щитки как для наружной установки, так и для скрытой. Например, мой квартирный щиток представлен на рис. 3.8. Он встроенный.

Рис. 3.8. Внешний вид квартирного щитка для скрытой установки

Деление квартирной электросети на группы

Большое количество энергоемких электрических приборов заставляет пересмотреть электрическую схему квартиры, разделив потребителей на группы. Наибольшее распространение получили два способа деления квартирной электросети на группы:

♦ по видам потребителей — чаще всего удобно применять для малогабаритных квартир (на освещение, на розетки кухни, на кондиционеры, розетка на стиральную машину, на бойлер, на остальные розетки в квартире);

♦ по помещениям — целесообразно использовать в энергонасыщенных крупногабаритных квартирах: зал, комнаты, кухня, коридор, технические помещения;

♦ комбинированный вариант первого и второго способа.

Квартирный щиток предназначен для индивидуального отключения питающих напряжений для отдельных групп квартиры, индикации наличия фаз, учета электроэнергии и пр.

Обычно прибегают к двум вариантам схем защиты и отключения электричества по квартире.

Вариант 1. Все розетки на один автомат (защищены УЗО), все осветительные приборы на другой автомат (без УЗО) и третий автомат на электрическую плиту (или другие мощные потребители).

Достоинства:

♦ простая схема;

♦ нет дополнительных распределительных коробок;

♦ низкая стоимость.

Недостатки:

♦ при аварии вся квартира остается без электроснабжения или освещения.

Вариант 2. Автомат на каждое помещение, совмещающий в себе питание электророзеток и освещения, с распределением полномочий в распределительных коробках. В этом случае удобно снабдить особо опасные помещения отдельным устройством автоматического отключения и УЗО.

Достоинства:

♦ отличное управление, каждая зона под контролем;

♦ максимальная защита;

♦ при аварии почти вся квартира остается с электроснабжением.

Недостатки:

♦ большой щиток;

♦ высокая цена проекта.

Электрическая схема щитка

На рис. 3.9 приведена принципиальная схема квартирного щитка. Схема щитка выполнена для трехпроводной электрической сети при однофазном электрическом вводе (система заземления TN-C-S).

В трехпроводной сети один провод выполняет функцию фазы, второй — функцию рабочего нулевого проводника, третий — провод заземления. На электрических схемах условно они обозначаются латинскими буквами: фаза — L (line), рабочий ноль — N (neutral), провод защитного заземления — РЕ.

Условные обозначения на электрической схеме щитка прокомментированы на рис. 3.10.

Рис. 3.9. Принципиальная схема квартирного щитка

Рис. 3.10. Принципиальная схема квартирного щитка с комментариями

Вводной автомат защиты. Устройство, предназначенное для защиты всей электросети от, токов короткого замыкания, а также для общего принудительного отключения помещения от электропитания.

Электрический счетчик. Устройство для контроля расхода электроэнергии. Значение расхода показывает в кВт-час. По показаниям электрического счетчика производится оплата за электричество. Электросчетчики могут быть электромеханические и электронные. Последние могут, в ряде случаев, программироваться.

Дифференциальный автомат защиты. Это электромеханическое устройство, объединяющее в себе автомат защиты от короткого замыкания и УЗО (устройство защитного отключения) для защиты человека от поражения электрическим током, реагирует на ток утечки.

Шины подсоединения проводов. Каждый электрический щит комплектуется как минимум двумя шинами. Одна — для нулевых проводов, вторая — для проводов заземления. В приведенном примере электрической схемы щитка таких шин четыре (N; N1; N3; N4).

В щитке предусмотрены две отдельные функциональные группы (справа на схеме). Одна группа — на два ответвления, вторая — на три. Например, этот вариант подойдет для отдельных функциональных групп ванной и кухни.

Примеры схем квартирных щитков

Электромонтаж квартирного щитка производится на основе электрической схемы. Если вы приобретаете щиток в сборе, то электрическая схема щитка должна прилагаться. Если вы предполагаете монтировать щиток самостоятельно, то нужно позаботиться, чтобы схема щитка делалась вместе с электропроектом. А если вы имеете техническое образование, можно сделать схему электрощита самостоятельно.

Пример наглядной схемы простого квартирного щитка с применением УЗО приведен на стр. 1 цв. вклейки слева. Для наглядности показаны марки кабелей и сечения проводов, которые можно применить для отдельных кабельных линий.

Схема небольшого квартирного щитка для многокомнатной квартиры представлена на стр. 3 цв. вклейки слева. В данной схеме дифференциальный автоматический выключатель АД63 устанавливается для защиты розеток кухни, где используется большое количество бытовой техники, и гидромассажной ванны. Дифференциальный выключатель нагрузки ВД63 защищает другие объекты: розетки и выключатели комнат, бытовую технику, освещение санузлов.

Пример комплектации щитка стандартной квартиры представлен на стр. 1 цв. вклейки справа. На вводе в квартиру устанавливается УЗО ВД63 с дифференциальным током 30 мА последовательно с автоматическим выключателем ВА63 или дифференциальный автоматический выключатель АД63. Всего могут быть несколько групп потребителей.

В данном случае это группы освещения и розеток, защищенных двумя автоматическими выключателями ВА63 с номинальным током 16 А и электрическая плита, которую защищает автоматический выключатель с номинальным током 25 А.

Иногда в отдельную группу выделяются стиральная машина или кондиционер. В этом случае устанавливается автоматический выключатель ВА63 с номинальным током 16 А.

Рассмотрим более сложную схему группового распределительного щита для многокомнатной квартиры (см. стр. 2 цв. вклейки). В этом случае на вводе установлено УЗО ВД63 с дифференциальным током 300 мА, так как естественный (фоновый) ток утечки электрооборудования может быть достаточно высоким (вследствие большой протяженности электропроводки при установке УЗО с меньшим током утечки возможны ложные срабатывания).

Первые три автоматических выключателя предназначены для защиты осветительных цепей. Дифференциальный автоматический выключатель АД63 с дифференциальным током 10 мА используется для защиты электрооборудования ванной комнаты, так как во влажном помещении особенно опасен контакт с токоведущими частями электроустановки. Группа из УЗО ВД63 и трех автоматических выключателей ВА63 предназначена для защиты розеток. Трехфазный автоматический выключатель ВА63 и УЗО ВД63 защищают мощных потребителей, например, электроплиту или сауну. Последняя линия из одного УЗО ВД63 и двух автоматических выключателей ВА63 предназначена для защиты цепей, например, подсобного помещения.

Установка квартирного электрощитка

Монтаж электрощита — процесс ответственный, и важную роль в нем играет выбор места его установки. Рассмотрим основные этапы установки квартирного электрощитка.

Шаг 1. Выбирается место установки щитка . С точки зрения удобства пользования квартирный электрощит стараются размещать ближе ко входу в помещение. Обычно его размещают возле входной двери, что позволяет смонтировать щиток вблизи электроввода в квартиру. По правилам электромонтажа щиток устанавливается на высоте 1,5–1,6 метра. После расстановки мебели к щитку должен быть свободный доступ. И хоть хочется его спрятать куда-нибудь в шкаф, следует помнить, о пожарной безопасности. А с экономической точки зрения идеальным местом является средина помещения. При таком расположении квартирного электрощитка расходуется минимальное количество кабеля для электропроводки.

Шаг 2. Выбор размеров щитка в соответствии с количеством автоматов, которые планируется разместить в щитке. Решается, будет ли стоять в данном щитке электросчетчик и другое необходимое оборудование. Чем больше «начинки» планируется, тем больше должен быть размер щитка.

Шаг 3. Выбирается вид щитка : для скрытой или наружной установки. При скрытой установке выбивают в стене нишу и вмуровывают щит в стену. При наружной установке закрепляют щит на поверхности стены.

Шаг 4 . Выбирается материал щитка : пластмасса или металл.

Шаг 5. Приобретается щиток, качественные автоматы (в свой щиток я поставил Moeller), монтажный провод, шины.

Шаг 6. Производится монтаж корпуса. Так, в корпусе нужно открыть перфорированные отверстия для ввода электрических кабелей. Если вы монтируете открытый электрощиток можно его полностью собрать. Установить DIN-рейки для монтажа автоматов защиты, контактные шины для рабочих проводов. Если нужно, установить электросчетчик. Полностью сделать электромонтаж всех соединений в щитке.

Шаг 7. Сборка электрощита начинается с разделки кабелей. С помощью ножа аккуратно снимаем наружную изоляцию с кабеля и маркируем отдельные его жилы.

Шаг 8. Электрощиток для скрытой установки помещается в заранее подготовленную нишу. Затем щиток закрепляется в выбранном месте. Его электромонтаж связан со штукатурными работами, а это достаточно грязные работы. Поэтому скрытый электрощиток лучше собирать по месту. Подключаем «нулевые» и «земляные» проводники к соответствующим шинам.

Шаг 9. Производим установку автоматов на DIN-рейку (рис. 3.11). Если в квартирном электрощите будут установлены дифреле либо дифавтоматы, нулевые и фазные проводники защищаемых цепей подводим к этим приборам. Способ крепления автомата на DIN-рейке (вид со стороны рейки) представлен на рис. 3.12, в вид установленного автомата — на рис. 3.13.

Рис. 3.11. Методика установки автомата на DIN-рейку

Рис. 3.12. Способ крепления автомата на DIN-рейке (вид со стороны рейки)

Рис. 3.13. УЗО, установленное на DIN-рейке

К автоматам подключаем только фазные проводники соответствующих потребителей.

#s.jpg_3  Полезный совет.

При монтаже квартирного электрощита рекомендую использовать 10 А автоматы для защиты цепей освещения и 16 А для розеточных групп.

#s.jpg_3  Полезный совет.

Еще желательно установить устройство защиты от перенапряжений . Этот прибор проверяет качество электропитания вашей квартиры или дома и отключает его в случае сильного отклонения его от заданных параметров.

Шаг 10. И в завершении процесса сборки электрощитка устанавливаем внутреннюю крышу, производим на ней маркировку автоматов и рисуем схему электрощита. Данную информацию размещаем на внутренней стороне двери щитка.

 

3.4. Расчеты квартирной электросети

Расчет токовой нагрузки для одиночного потребителя

Для того чтобы выбрать сечение кабеля и номинал автомата защиты необходимо рассчитать предполагаемую нагрузку этой сети.

При расчете нагрузки электросети нужно помнить, что расчет токовой нагрузки отдельного бытового прибора и группы из нескольких потребителей отличаются друг от друга.

Расчет токовой нагрузки и выбор автомата защиты в однофазной электросети, 220 вольт для одиночного потребителя достаточно прост.

Для этого нужно вспомнить основной закон электротехники (закон Ома), посмотреть в паспорте на прибор его потребляемую мощность и рассчитать токовую нагрузку.

Например: проточный водонагреватель на 220 В. Потребляемая мощность 5 кВт.

Ток нагрузки можно рассчитать по закону Ома.

I нагузки = 3000 Вт/220 В = 13,6 А.

Вывод: на линию для электропитания проточного водонагревателя нужно установить автомат защиты не менее 14 А. Таких автоматов в продаже нет, поэтому выбираем автомат с большим ближайшим номиналом в 16 А.

Расчет токовой нагрузки группы потребителей

Рассмотрим расчет токовой нагрузки и выбор автомата защиты в однофазной электросети, 220 вольт для электропроводки квартиры или группы в этой квартире.

Под группой электропроводки понимается несколько потребителей, подключенных параллельно к одному питающему кабелю от электрощитка. Для группы устанавливается общий автомат защиты. Автомат защиты устанавливается в квартирном электрощите или этажном щитке. Расчет сети электрогруппы отличается от расчета сети одиночного потребителя.

Для расчета токовой нагрузки электрогруппы потребителей вводится так называемый коэффициент спроса (Кс), который определяет вероятность одновременного включения всех потребителей в группе в течение длительного промежутка времени.

Кс = 1 соответствует одновременной работе всех электроприборов группы. Понятно, что включения и работы всех электроприборов в квартире одновременно практически не бывает. Есть целые системы расчета коэффициента спроса для домов, подъездов. Для каждой квартиры коэффициент спроса различается для отдельных комнат, отдельных потребителей и даже для различного стиля жизни жильцов. Например, коэффициент спроса для телевизора обычно равен 1, а коэффициент спроса пылесоса равен 0,1.

Поэтому для расчета токовой нагрузки и выбора автомата защиты в группе электропроводки коэффициент спроса влияет на результат.

Расчетная мощность группы электропроводки рассчитывается по формуле:

Ррасчетная = Кспроса ∙ Рустановочная

Iнагрузки = Ррасчетная/220 В

В табл. 3.2 приведены электроприборы одной небольшой квартиры. Рассчитаем токовую нагрузку для нее и выберем входной автомат защиты с учетом коэффициента спроса.

Приведенная мощность в сети рассчитывается как сумма мощностей всех потребителей, умноженная на их коэффициент спроса (правая колонка в табл. 3.2).

А коэффициент спроса квартиры равен соотношению мощностей: приведенной и полной.

К с квартиры = 2842/8770 = 0,32.

Ток нагрузки рассчитывается из Приведенной мощности:

I н = 2843 Вт/220 В = 12,92 А.

Соответственно, выбираем автомат защиты на шаг больше: 16 А.

Теперь определимся, как выбрать сечения кабелей для различных групп электропроводки.

По приведенным выше формулам можно рассчитать мощность электросети и значение рабочего тока в сети.

Останется по полученным значениям выбрать сечение электрического кабеля, который можно использовать для рассчитываемой проводки в квартире.

Правила устройства электроустановок ПУЭ такую таблицу приводят (табл. 3.3). По таблице ниже ищем значение:

♦ расчетного тока нагрузки;

♦ расчетную мощность сети.

Затем выбираем сечение электрического кабеля.

#p.jpg_11   Примечание.

Таблица приводится для медных жил кабелей, потому что использование кабелей с алюминиевыми жилами в электропроводке жилых помещений уже запрещено.

Табл. 3.4 может пригодиться для правильного выбора сечения кабеля и автоматов защиты. Это номенклатура мощностей электробытовых приборов и машин для расчета в электросетях жилых помещений (из нормативов для определения расчетных электрических нагрузок зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети).

Типовой вариант выбора сечений проводов и номиналов средств защиты

Номиналы автоматических выключателей применяют в соответствии с сечением примененного кабеля. Чаще всего поддерживается классический принцип:

♦ провод сечением 1,5 мм2 для освещения;

♦ провод сечением 2,5 мм2 на розетки;

♦ для электроплиты, водонагревателя, кондиционера — 4 мм2.

На входе в квартиру можно выбрать с приличным запасом сечение 10 мм2. В большинстве случаев бывает достаточно 6 мм2. На входе на всю квартиру применяется УЗО, назначение такого УЗО — пожарное, так как величина дифференциального тока 300 мА. Выпускаются также дифференциальные выключатели на токи 100 мА и меньшие номиналы.

Для защиты людей применяют УЗО с меньшими дифференциальными токами 10 или 30 мА непосредственно в потенциально опасные помещения. УЗО обычно защищают все розетки: на кухне, в санузле, а в комнатах — по необходимости.

Осветительная сеть может быть разделена на зоны и не снабжена УЗО. Разделение на зоны — очень удобное решение, а дополнительная защита осветительной сети не требуется. Во-первых, отсутствует случайное соприкосновение с электроприборами, а, во-вторых, подразумевается, что корпуса светильников вы соедините с РЕ проводом, со всеми вытекающими плюсами такого подключения.