Девять цветов радуги

Штейнгауз Александр Израилевич

ГЛАЗ И ЗРЕНИЕ

 

 

Изучение природы должно включать в себя также изучение чувств человека. Чтобы добиться точности в наших наблюдениях света и цвета, мы должны прежде всего ознакомиться с инструментом, которым нам постоянно приходится пользоваться, а именно — глазом.
М. Миннарт

 

Вместо вступления

Если вдуматься, каждый орган чувств высших животных, и особенно человека, представляет собой подлинное чудо. Способность слышать и анализировать звуки, ощущать и различать самые разнообразнейшие запахи и определять их значение — столь сложные и тонкие процессы, что, несмотря на огромный прогресс, наука и техника пока не в состоянии воссоздать их, воплотить в каких-либо искусственных приборах и аппаратах. Но ни слух, ни обоняние не могут сравниться со зрением. Оно — самое совершенное, самое богатое по своим возможностям средство познания мира. Недаром же пословица говорит, что «лучше один раз увидеть, чем сто раз услышать».

Возможности зрения зависят не только от свойств самого глаза — они во многом определяются мозгом, с которым глаз связан.

К сожалению, науке еще очень мало известно о зрительных процессах, происходящих в мозгу. В этой области человечество ожидают такие важные открытия, последствия которых невозможно сейчас предвидеть.

Уже с очень давних пор люди стремились усовершенствовать свое зрение, приспособить его для работы в новых и непрерывно усложняющихся условиях. За те века, как родилась и развивалась оптика, было создано очень много простых и сложных приборов, позволивших видеть и наблюдать в тех случаях, когда невооруженный глаз оказывается совершенно бессильным.

В наши дни человеческому взору открыты космос и ничтожные по величине вирусные частицы; он проникает через толщу металлов, ему не страшны расстояния и глубины. Теперь почти весь спектр электромагнитных колебаний, от гамма-излучений до самых длинных радиоволн, в той или иной степени обслуживает потребности человеческого зрения. Для этого созданы и непрерывно совершенствуются рентгеновские аппараты, разнообразнейшие микроскопы, бинокли и телескопы, преобразователи и усилители света, радиолокаторы, радиотелескопы и множество других интереснейших приборов.

Но все эти новые возможности зрения могли и могут быть открыты лишь на основе знаний о природе и законах света и о свойствах первоисточника зрения — нашего глаза. И чем глубже постигаем мы их, тем больше ранее недоступных для наблюдения областей раскрывается перед нами.

 

Наши глаза

Часто говорят, что природа самый лучший изобретатель. Это правда. Но стоит добавить, что она любит повторять самое себя и не стремится решать сходные задачи каждый раз по-новому. Зато решение всегда оказывается наилучшим, потому что оно неизменно подчиняется закону естественного отбора.

В самом деле, как ни разнообразны виды высших животных, населяющих сушу, глаза их имеют очень большое сходство между собой. В быту мы чаще всего различаем глаза людей по цвету: зеленые, серые, карие, голубые, черные. Но это лишь внешнее несходство: голубоглазый не видит мира в голубом свете, а черноглазый — в черном. Глаза всех людей независимо от расы, пола устроены совершенно одинаково и видят тоже одинаково. Более того, они имеют очень много общего с глазами других млекопитающих и даже птиц, ибо органы зрения построены из очень сходных между собой основных элементов.

Глаз человека, надежно укрытый в глазной впадине черепа, представляет собой близкое к шарообразному тело с диаметром примерно 24 миллиметра. Его твердая наружная оболочка — склера. Видимую часть ее, похожую на нежнейший глазурованный фарфор, расписанный тончайшими узорами кровеносных сосудов, мы называем глазным белком. В передней части глаза склера изменяется по форме, приобретая большую выпуклость, большую кривизну. Одновременно меняется и другое ее свойство: из белой, не проницаемой для света, она превращается в прозрачную роговицу; именно через нее лучи света проникают в глаз.

Внутреннюю поверхность склеры (за исключением роговицы) выстилает второй слой глазной оболочки — разветвленная сеть мельчайших кровеносных сосудов. В области роговицы этот слой переходит в радужную оболочку, в центре которой находится черное круглое отверстие — зрачок.

Разрез глаза человека.

Разглядите в зеркале радужную оболочку своих глаз, посмотрите в глаза своих друзей, и вы увидите, какими они бывают красивыми. Вы увидите в радужной оболочке нежнейшие переливы разнообразных оттенков. Недаром же эта часть глаза носит такое поэтическое название — «радужка».

Однако (хотя, быть может, природа не упускала из виду и такой цели) назначение радужной оболочки состоит вовсе не в украшении глаз человеческих. Она играет очень важную роль, помогая глазу приспосабливаться к различным условиям освещения. Каждый знает (и это легко наблюдать, имея зеркало), что в темноте зрачок становится очень большим и любые глаза кажутся совсем черными, потому что радужная оболочка стягивается в узенькое, незаметное издали колечко. На ярком свету, наоборот, зрачок сильно уменьшается. Ученые измерили эти изменения зрачка: в темноте его диаметр достигает 8 миллиметров, а в яркий солнечный день уменьшается до 2 миллиметров.

Те, кто занимается фотографией, знают, что в объективах существует устройство, очень напоминающее радужную оболочку. Это диафрагма. Действительно, их назначение совершенно тождественно: и та и другая нужны для того, чтобы регулировать количество света, попадающего в глаз или на светочувствительный слой фотопленки. Но между ними есть и большая разница. В подавляющем большинстве фото- и киноаппаратов диафрагму регулируют вручную, руководствуясь либо оценкой «на глазок», либо показаниями специальных приборов — фотоэкспонометров. Размеры же зрачка меняются автоматически, с помощью специальной группы мышц, прикрепленных к радужной оболочке.

Регулированием отверстия зрачка управляет мозг, но происходит это подсознательно, благодаря особому рефлексу. Мы не замечаем и не чувствуем этого процесса, хотя совершается он непрерывно. Интересно отметить, что некоторое сокращение и расширение зрачка происходит даже тогда, когда человек долгое время остается в комнате, где есть только искусственный свет. В те часы, когда «на воле» день, зрачок обследуемого сокращается, а в ночные часы — расширяется, хотя условия освещения на протяжении всего опыта остаются неизменными.

За радужной оболочкой помещается хрусталик — упругое прозрачное двояковыпуклое тело, представляющее собой собирающую линзу. Он находится в особой прозрачной капсуле, которую со всех сторон охватывает кольцеобразная мышца, называемая реснитчатым телом. Если она расслаблена, поверхности хрусталика имеют наименьшую кривизну. Сокращение реснитчатого тела заставляет хрусталик изменять свою форму; при этом выпуклость поверхностей хрусталика увеличивается.

Пространство между роговицей и передней поверхностью хрусталика заполнено прозрачной жидкостью, так называемой камерной влагой. Предполагают, что она образуется в результате особо тонкой фильтрации крови.

Строение хрусталика довольно сложно. Он состоит из нескольких вложенных одна в другую чечевичек. Оптические свойства каждой из них неодинаковы: внутренние преломляют свет сильнее, чем внешние. Роговица и хрусталик совместно представляют собой оптическую систему глаза; они выполняют ту же роль, что и объектив фотоаппарата. Изображение в глазу, даваемое хрусталиком совместно с роговицей, перевернуто вверх ногами так же, как и в фотоаппарате. Этот «недостаток» глаза исправляет мозг. Отделы мозга, ведающие зрением, еще в раннем детстве перестраиваются таким образом, что видимый мир занимает правильное положение.

Чтобы получить хорошую фотографию, нужно обязательно навести на резкость, то есть добиться четкого, нерасплывчатого изображения на фотоэмульсии. Этого мы достигаем, перемещая объектив вдоль продольной оси. Если объект съемки находится очень далеко (практически дальше 50—250 метров), расстояние между объективом и эмульсией должно быть наименьшим. Если же ведется съемка очень близкого предмета, объектив следует дополнительно отодвинуть от пленки.

Так, если объектив имеет фокусное расстояние, равное 5 сантиметрам, то, для того чтобы получить четкий снимок предмета, отстоящего от камеры на 25 сантиметров, необходимо выдвигать объектив вперед. Если вначале он был установлен в положение, соответствующее наводке на бесконечность, его придется выдвинуть на 1,25 сантиметра, то есть ровно на 1/4 фокусного расстояния.

Продевая нитку в игольное ушко, мы держим руки на расстоянии примерно 10–15 сантиметров от глаз. И тогда маленькое отверстие и конец нитки видны ясно и четко. Зато, когда мы любуемся луной или заходящим солнцем, объекты наблюдения находятся от нас на громадных расстояниях. Но воспринимаются они так же четко и ясно, как и игольное ушко. Это происходит потому, что глаз тоже осуществляет наводку на резкость. Только происходит это автоматически. Способность глаза наводиться на резкость различна у разных животных. Наиболее развита она у человека и человекообразных обезьян.

К слову сказать, техника до последних лет не знала, как осуществить автоматическую наводку на резкость в различных фото- и киноустройствах. Сейчас делаются самые первые шаги в этом направлении, и оказывается, что автоматическая наводка на резкость совсем не простая задача.

Способность глаза давать резкое изображение объектов, находящихся на разных расстояниях, называется аккомодацией. Аккомодация, или наводка на резкость, осуществляется с помощью хрусталика. Только происходит она не путем перемещения хрусталика в глазу вдоль оптической оси, а путем изменения кривизны его поверхностей или, иными словами, путем изменения фокусного расстояния оптической системы глаза. Когда мы смотрим вдаль, хрусталик делается наименее выпуклым, а фокусное расстояние наибольшим; когда разглядываем ближние предметы, хрусталик становится более выпуклым.

К сожалению, с возрастом аккомодация глаза ухудшается, так как хрусталик теряет свои упругие свойства. Уже к сорока годам аккомодация значительно падает, а к семидесяти пяти годам глаз почти полностью теряет способность одинаково резко видеть (без помощи очков) как близкие, так и далекие предметы.

Хрусталик послужил когда-то образцом для первых стеклянных линз. С тех пор прошло много веков, и искусство варки и обработки стекла достигло высокой степени совершенства. Оптические предприятия многих развитых стран изготавливают из оптического стекла линзы и зеркала самой различной формы и размеров. Одни можно разглядеть только в лупу, другие — огромных размеров. Например, для Крымской обсерватории было сделано стеклянное зеркало для телескопа-рефлектора весом 4 тонны и рабочим диаметром 2,6 метра. Его обработка велась при строго постоянной температуре и длилась 15 месяцев.

Изменение выпуклости хрусталика позволяет людям четко видеть предметы и людей, находящихся на различных расстояниях. При правильной аккомодации изображение фокусируется точно на сетчатке и воспринимается нами четко. У близорукого человека изображение фокусируется не на сетчатке, а ближе к хрусталику; у дальнозоркого, наоборот, четко сфокусированное изображение должно находиться за сетчаткой, вне пределов глаза. Чтобы видеть четко, близорукому или дальнозоркому человеку необходимо носить очки.

В самые последние годы ученые и инженеры сумели создать новые типы объективов, обладающих очень ценными свойствами. Это так называемые варифокальные объективы, фокусное расстояние которых может плавно изменяться в широких пределах по желанию оператора. Иногда такие объективы называют резиновыми. Они представляют собой весьма сложные оптико-механические системы, состоящие из нескольких стеклянных линз, каждая из которых сама по себе имеет неизменное фокусное расстояние.

Но одиночную линзу с переменным фокусным расстоянием пока еще изобрести никому не удалось. Создать линзу по типу хрусталика, используя неупругое стекло, невозможно. Для этого следует искать новые оптические материалы. Теперь, когда промышленность пластиков бурно развивается, можно надеяться, что будет найден и такой пластик, который окажется пригодным для создания искусственного хрусталика. А он очень нужен в медицине для лечения грозной болезни: катаракты — помутнения хрусталика. Но в нем нуждаются не только больные. Можно смело сказать, что изобретение линз с переменным фокусным расстоянием привело бы к революции в ряде областей оптической промышленности.

Сосудистая оболочка глаза, о которой уже говорилось, не является последней. За ней следует слой особых клеток, содержащих в себе фусцин — черный пигмент. Их назначение станет ясным несколько позже.

И, наконец, последняя, самая важная и наиболее интересная для нас оболочка — сетчатка, или ретина. Именно она делает наш глаз зрячим. Сетчатка имеет очень сложное строение, и сама состоит из многих слоев. Здесь не стоит говорить о каждом из них, тем более, что назначение некоторых слоев до сих пор неясно науке. Зато следует подробно рассказать о тех клетках, которые воспринимают свет и преобразуют в сигналы, идущие в мозг. Эти клетки изучены относительно подробно.

Оказывается, в сетчатке глаза есть два типа светочувствительных клеток. Это— палочки и колбочки, получившие такие названия благодаря своей форме.

Палочка (слева) и колбочка.

Глядя на их изображение, вы сможете убедиться, что сходство со своими прообразами у них крайне отдаленное. Это лишний пример того, как тщательно следует выбирать научные термины и как осторожно приходится толковать даже самые простые слова, если они одновременно употребляются языком науки.

Внутреннее пространство глаза между хрусталиком и сетчаткой заполнено особым прозрачным веществом, называемым стекловидным телом.

Размеры светочувствительных клеток очень малы. Диаметр палочки примерно равен 0,002 миллиметра (2 микронам), ее длина около 0,06 миллиметра (60 микронов). Диаметр колбочки несколько больше, в среднем 0,005 миллиметра (5 микронов), а длина — 0,07 миллиметра (70 микронов).

В процессе эволюционного развития глаза, который впервые зародился у живых существ, населявших океан, первыми светочувствительными клетками были палочки. Они давали возможность морским животным видеть в глубинах вод, где есть лишь рассеянный солнечный свет, проникающий сквозь толщу воды. Колбочки появились гораздо позже, лишь после того, как живые существа стали приспосабливаться к жизни на суше.

В палочках содержится особое вещество розового цвета — зрительный пурпур, или родопсин. Под воздействием света зрительный пурпур разлагается, выцветает. Этот процесс идет тем быстрее, чем больше света попадает в палочку. Когда же свет прекращает действие, родопсин снова восстанавливает свои первоначальные свойства. Разложение родопсина представляет собой сложную фотохимическую реакцию, суть которой пока не очень ясна ученым. Для нас это несущественно. Важно лишь то, что эта реакция сопровождается возникновением электрохимических потенциалов в палочке или колбочке, которые по зрительному нерву передаются в мозг. Именно эти электрические сигналы переносят в мозг информацию о свете, цвете и форме предметов. В мозгу они расшифровываются особыми органами и воспринимаются как изображение окружающего.

Совсем недавно (всего лишь в 1940 году) в колбочках было открыто светочувствительное вещество фиолетового цвета, названное иодопсином. Его назначение то же, что и у зрительного пурпура. Однако роль колбочек отличается от роли палочек.

Палочки гораздо чувствительнее колбочек. Палочки позволяют нам видеть в сумерках, при слабом освещении, но зато не дают возможности ощущать и различать цвета. Пословица недаром говорит, что «ночью все кошки серы». Это не шутка. В темноте мы действительно не различаем цветов, а можем лишь определить разницу в освещенностях: дорога светлее растущих по ее обочинам кустов, дальний лес темнее неба, однако ни зелени листьев, ни синевы небес, ни цвета дорожной пыли мы не различаем. Но стоит лишь наступить дню, как все вокруг меняется, весь мир становится ярким и красочным; вместо смутных расплывчатых контуров мы видим окружающее во всем его великолепном разнообразии. Этим мы обязаны колбочкам, именно они обеспечивают цветное зрение.

Палочек в глазу человека очень много — около 130 миллионов, приблизительно в полтора раза меньше, чем населения в СССР; колбочек значительно меньше — 7 миллионов, примерно столько же, сколько жителей в Москве. Палочки располагаются по всей поверхности сетчатки, а колбочки группируются в ее центральной части, особенно в «столице» сетчатки, в так называемом желтом пятне.

Конечно, это сравнение не стоит понимать буквально. Колбочки имеются и в других частях сетчатки, а палочки содержатся и в желтом пятне. Но если в желтом пятне преобладают колбочки, то вне его господствуют палочки. Тем не менее желтое пятно не зря сравнивалось со столицей. Оно действительно чрезвычайно важный участок ретины. Потому что только те объекты, которые проектируются на желтое пятно, видны в деталях; особенно же четко мы видим те предметы, изображение которых попадает на центральный участок желтого пятна, где расположена центральная ямка. На поверхности центральной ямки имеются только колбочки (от 30 тысяч до 50 тысяч). Что же касается участков изображения, попадающих на остальную часть сетчатки — вне желтого пятна и, особенно, центральной ямки, — то они видны значительно менее четко.

Палочки и колбочки соединяются с волокнами зрительных нервов. По ним в мозг передаются сигналы, вырабатываемые палочками и колбочками. Светочувствительных клеток в глазу 137 миллионов, волокон же в зрительном нерве всего миллион. Поэтому можно предположить, что каждое из нервных окончаний «подключено» не к одной, а к нескольким клеткам. Это — правильное предположение. В периферических частях сетчатки одно нервное волокно соединяется со многими (от 100 до 400) палочками и с несколькими находящимися в этом же месте колбочками. Зато в центральной ямке каждая колбочка соединена с отдельным нервным волокном.

Все нервные волокна сходятся в глазу к одному месту и здесь образуют миллионожильный «кабель» — ствол зрительного нерва, который «подключается» к мозгу. То место сетчатки, где нервные волокна собираются в единый пучок и откуда выходит ствол зрительного нерва, не содержит светочувствительных клеток. Здесь находится слепое пятно сетчатки. Человек не воспринимает изображений, попадающих на него. Слепое пятно довольно велико, практически не меньше желтого пятна. На его поверхности могло бы разместиться изображение 11 полных лун или пятиэтажного дома, находящегося на расстоянии в несколько сотен метров.

Интересно отметить, что мы почти никогда не ощущаем наличия в глазу такой большой слепой зоны. Только иногда, глядя в небо, мы вдруг замечаем быстро перемещающуюся черную точку. Это не самолет, не птица и вообще не какой-либо отдаленный предмет, потому что, как бы мы ни старались вглядеться в эту точку, она тотчас ускользает, что не свойственно ни одному из внешних объектов.

В наличии слепого пятна читатели могут убедиться, посмотрев на рисунок крестика и черного кружка. Надо закрыть левый глаз, а правым, не отрывая взгляда, смотреть на крестик. Затем книгу с рисунком плавно отодвигают на расстояние 20–30 сантиметров. В какой-то момент вы перестанете видеть кружок, потому что изображение его в это время попадет в область слепого пятна.

Зажмурьте левый глаз и, глядя на крестик, придвигайте и отодвигайте книгу до тех пор, пока изображение кружка не исчезнет. Это будет означать, что изображение кружка попало на слепое пятно.

Для того чтобы добиться результата, необходимы воля и некоторая тренировка.

Почему трудно провести этот опыт и почему мы не замечаем мешающего действия слепого пятна, узнаем несколько позже.

Нередко приходится слышать утверждение, что многие животные (например, собаки, коровы) не различают цветов, что мир-де представляется им бесцветным, как нам в обычном кино. Это неправильно. Колбочки не являются привилегией только человека. Все животные, в глазах которых содержатся колбочки, различают цвета.

Более того, у животных, ведущих дневной образ жизни, в сетчатке содержатся почти одни колбочки. Таковы многие птицы, в том числе куры и голуби. В сетчатке птиц желтых пятен не одно, а больше: два или даже три. Недавно ученые провели опыты и выяснили, что голубь различает цвета даже лучше, чем человек.

Этот голубь был приучен реагировать на свет только строго определенного цвета. Когда в круглом окошечке (вверху) вспыхивал световой сигнал заданного цвета, в кормушке появлялся корм. При сигналах другого цвета кормушка оставалась пустой. Голубь научился разбираться в оттенках, и оказалось, что он разбирается в них даже лучше, чем человек.

Как известно, куры устраиваются на ночлег очень рано. Если же их разбудить ночью, их поведение крайне суматошно и глупо. Часто во время ночных пожаров они даже кидаются в огонь. Теперь мы можем легко объяснить и их ранний сон, и даже противоестественную тягу к ночному огню. Это происходит потому, что глаза их содержат почти одни колбочки и поэтому слепнут с наступлением сумерек. Если же ночью испуганную курицу снять с нашеста, она будет совершенно слепа, и единственно, что она будет видеть, это огонь и наиболее ярко освещенные места. Вполне понятно, что она будет стремиться туда, где отступит ее слепота и где она не будет чувствовать себя столь беззащитной, где самый главный орган чувства, спасавший ее ранее от всех опасностей, окажется работоспособным.

Зато глаза сов, летучих мышей, которым нужно хорошо видеть в темноте, почти не содержат колбочек — все они действительно плохо различают цвета.

Правда, летучая мышь вообще мало полагается на свои глаза, и поэтому уши ей часто заменяют глаза. Во время полета летучая мышь издает очень громкий, отрывистый писк. Мы его не услышим, потому что это чрезвычайно тонкий, ультразвуковой писк, но сама мышь слышит его эхо, отражающееся от всякого рода препятствий (даже протянутой проволоки), и отлично ориентируется при полете.

 

Свойства человеческого глаза

Чудо чудное, диво дивное.

Свойства глаза столь поразительны, что их следовало бы воспевать поэтам. Трудно сказать, как это можно сделать, потому что хорошо понять свойства глаза можно, лишь познакомившись с числами, их характеризующими. Но это один из тех немногих случаев, когда цифры поистине поэтичны.

Человеческий глаз реагирует на световые излучения, лежащие в диапазоне волн от 380 до 770 миллимикронов. Как видно из этих цифр, самая короткая длина волны всего лишь в два раза меньше самой длинной. По аналогии со звуком, можно сказать, что диапазон воспринимаемых световых волн занимает всего лишь одну октаву (диапазон воспринимаемых звуков составляет примерно десять октав).

На краях диапазона чувствительность глаза равна нулю и плавно возрастает примерно к его центру. В дневные часы максимум чувствительности приходится на волну в 555 миллимикронов. И поэтому днем мы лучше всего видим лучи желто-зеленого цвета. Примерно на этой длине волны оказывается и максимум излучения солнца. Лучи с такой же длиной волны наиболее сильно отражаются зелеными листьями растений и травой, придавая им желто-зеленый цвет. Можно предположить, что такое совпадение не случайно и что наибольшую чувствительность на волне в 555 миллимикронов глаз приобрел в процессе эволюционного развития.

В вечерние часы, когда наступают сумерки, колбочки отключаются и зрительные процессы в глазу происходят несколько иначе. Максимум чувствительности глаза при этом сдвигается в область голубых лучей, на волну 507 миллимикронов. Именно поэтому в сумерки все окружающее кажется нам синеватым.

Кривые чувствительности человеческого глаза. Днем глаз наиболее чувствителен к лучам желто-зеленого цвета. В сумерки, когда действуют в основном палочки, — к лучам синего цвета.

Теперь следует рассказать о диапазоне освещенностей, в котором нормально работает глаз.

Оказывается, он чрезвычайно велик. Мы можем ощущать свет даже в том случае, когда на сетчатку попадает несколько десятков фотонов. Если бы ночью на земле было абсолютно темно, то в ясную, сухую погоду горящую стеариновую свечу было бы видно на расстоянии 30 километров!

Однако полной темноты на земной поверхности не бывает. Даже в безлунную ночь звезды (как видимые, так и не видимые глазом), свет, рассеиваемый атмосферой, и собственное свечение атмосферы, отблески северных сияний, зодиакальный свет в сумме создают освещенность, не меньшую 0,0003 люкса. Такую же освещенность создает свеча на расстоянии примерно 60 метров. И все-таки в таких условиях, когда можно, не укрываясь, перезарядить кассеты пленкой, наш глаз еще оказывается работоспособным. Мы еще в состоянии различать крупные предметы и передвигаться, не натыкаясь на них.

Зато в солнечный день, когда солнце близко к зениту, даже в наших широтах освещенность достигает многих десятков тысяч люксов; так, цифра в 50 тысяч люксов является далеко не пределом. А ведь такую освещенность могла бы создать лампа с силой света 50 тысяч свечей, да и то только на расстоянии 1 метра. Но и при таком ярком свете глаз человека продолжает хорошо работать: окружающее воспринимается им предельно четко и ясно.

Для того чтобы лучше представить себе диапазон освещенностей, с которыми приходится иметь дело, читателю стоит просмотреть приводимую здесь таблицу.

Солнце — 100 тысяч люксов.

Полнолуние, ясное небо — 0,2 люкса — Освещенность от свечи при расстоянии 2,2 метра.

Венера в максимальной фазе — 1,1·10-4 люкса — То же, при расстоянии 100 метров.

Сириус — 9·10-6 люкса — То же при расстоянии 300–330 метров.

Звезда первой величины- 8·10-7 люкса — То же, при расстоянии 1100 метров.

Звезда шестой величины (граница видимости невооруженным глазом) — 5·10-16 люкса) — 8·10-9 люкса — То же, при расстоянии 11 километров.

Звезда 24-й величины (граница обнаружения при фотографировании с помощью самого мощного телескопа) — То же, при расстоянии 44 тысяч километров.

Ученые установили пределы максимальной и минимальной освещенности, в которых глаз не ослепляется. Отношение этих пределов (большего к меньшему) дает фантастически большое число: 1012, или миллион миллионов. Еще не создан прибор, способный без дополнительных специальных устройств работать в таком широком диапазоне. Правда, в глазу также имеются особые устройства, помогающие ему приспосабливаться к работе в столь различных условиях. Такое приспособление носит название адаптации глаза.

Во время адаптации в глазу имеет место несколько процессов. Один из них — изменение диаметра зрачка — нам уже известен. Другой процесс обеспечивается клетками с черным пигментом. Под воздействием яркого света этот пигмент, который часто называют фусцином, выделяется клетками и проникает в слои сетчатки. Здесь он обволакивает светочувствительные клетки и тем самым уменьшает доступ света к ним. При малой освещенности фусцин покидает сетчатку, открывая доступ свету. О третьем процессе также нетрудно догадаться. Он связан с различием чувствительности клеток — колбочек и палочек. При ярком свете работают и палочки и колбочки. В сумерки же энергии света уже не хватает, для того чтобы в колбочках возникала реакция распада родопсина, и они полностью «выключаются». Зато родопсин, содержащийся в палочках, распадается под воздействием даже очень малых количеств света, и сигналы из палочек по нервным волокнам продолжают поступать в мозг.

Адаптация глаза не происходит мгновенно. Для того чтобы глаз привык к новым условиям, требуется некоторое время. При переходе от темноты к яркому свету (например, при выходе из темной фотолаборатории в освещенную солнцем комнату) мы жмуримся от яркого света и даже ощущаем болезненное раздражение глаз. К счастью, уже через 30–40 секунд наш глаз полностью приспосабливается, адаптируется, к новым условиям. Если же происходит обратный переход (от более светлого к более темному), то процесс адаптации длится значительно большее время. Цветовое зрение адаптируется за 5–8 минут, а палочки приобретают необходимую чувствительность за гораздо большее время — оно может достигать 30–80 минут.

Другим чрезвычайно важным свойством зрения человека является его острота, то есть способность видеть раздельно два объекта, находящиеся очень близко друг к другу.

Вы можете проверить остроту своего зрения довольно простым путем. Для этого в ясный (лучше безлунный) вечер попробуйте различить в некоторых созвездиях близко расположенные друг к другу звезды.

Угловым размером тела мы называем угол, под которым видит это тело наблюдатель. Угловым расстоянием — угол между двумя интересующими нас объектами.

Проще всего разглядеть Мицар и Алькор в созвездии Большой Медведицы. Угловое расстояние между ними довольно велико — оно равно 12', и человек с нормальным зрением хорошо видит маленькую звездочку подле второй по счету звезды в ручке ковша. Те, кто хорошо знает звездную карту, могут и далее проверять свое зрение по звездам. Так, в созвездии Козерога тоже есть сдвоенная звезда, называемая альфой Козерога (а Козерога). Здесь можно различить две звездочки с величинами 3,5 и 4,5. Угловое расстояние между ними 6'. Подобным образом альфа Весов (а Весов) состоит из звезд с величинами 2,8 и 5,3; они разделены углом в 4'. В созвездии Лиры есть еще более близкие звезды. Их величины 5,3 и 6,3 (то есть по яркости они находятся на границе видимости), а угловое расстояние между ними равно 3'. Тот, кто сумеет разделить эпсилон Лиры (ε Лиры) на две звезды, обладает исключительно хорошим феноменальным зрением. Профессор Миннарт в книге «Свет и цвет в природе» пишет: «Особенно хорошие наблюдатели — а таких очень мало — при ясном небе и спокойной атмосфере могут различать невероятное количество подробностей. Один из них утверждал, что видит альфу Весов как двойную звезду, Сатурн казался ему сплющенным, а Венера — полумесяцем; в благоприятные моменты, когда он глядел на нее сквозь закопченное стекло или облако дыма, это выступало с особой ясностью. Он мог увидеть даже двух спутников Юпитера, впрочем, только в сумерки, когда начинают появляться звезды первой и второй величины».

Эти звездные карты помогут вам отыскать созвездия Большой Медведицы, Лиры, Козерога и Весов.

Большинству из нас остается только позавидовать такому великолепному, поистине орлиному зрению. Ведь оно позволяет видеть множество интереснейших вещей, обычно сокрытых от нас. Но, хотя не всем суждено видеть столь хорошо, каждый может повысить остроту своего зрения, Для этого следует тренировать глаза, развивать наблюдательность. Только делать это надо крайне осторожно и ни в коем случае не перегружать глаза.

Острота зрения исследовалась учеными и в условиях лабораторий. Оказалось, что даже для обычного наблюдателя она очень высока. Нам удается различать два объекта, даже если они разделяются промежутками с угловым расстоянием, равным примерно 1'. Но это еще не предел. Некоторые наблюдатели различают промежутки до 10'. Для того чтобы яснее представить себе подобные величины, стоит запомнить, что угловой размер человека, находящегося от наблюдателя примерно в 6,5 километра, будет равен 1'.

Угловой размер человека. Невооруженным глазом при благоприятных условиях человека можно увидеть на расстоянии в несколько километров. Особенно хорошо наблюдать в ясный день за парашютистами.

Наиболее четко видны те объекты, изображение которых попадает на центральную ямку. Приведенные значения для остроты зрения как раз и относятся к такому случаю, когда мы рассматриваем объекты с помощью этой ямки. Вы, вероятно, уже догадались, почему видение с помощью центральной ямки оказывается наиболее острым. Ведь именно в этой области сетчатки каждая светочувствительная клетка соединена с отдельным нервным волокном, и, следовательно, в мозг поступают раздельные сигналы от каждой клетки.

Считается, что два объекта видны раздельно, если их проекции на сетчатке расположены так, что между ними находится хотя бы одна «незанятая» светочувствительная клетка. Такое предположение, по-видимому, недалеко от истины: объект с угловым размером в 1' дает изображение на сетчатке, равное примерно 0,004 миллиметра, то есть близкое по величине к среднему диаметру светочувствительной клетки.

Вы видите расположение изображений мелких объектов на сетчатке глаза. Если предметы проектируются на одну и ту же светочувствительную клетку или на две смежные, они не воспринимаются раздельно. Если изображения предметов разделены хотя бы одной незанятой клеткой, они воспринимаются раздельно. Изломы линии воспринимаются даже и при таком изломе, который изображен на рисунке.

Но, с другой стороны, известно, что зрение некоторых людей гораздо острее. Чем же объяснить такой факт?

Ученые в числе нескольких причин указывают, что повышенной остротой зрения обладают люди, у которых размер светочувствительных клеток гораздо меньше, чем он бывает в среднем. Особенно часто повышенная острота зрения наблюдается у жителей степей и пустынь, у моряков. Бывают целые народности с необыкновенно острым зрением. Таковы, например, жители наших киргизских степей, таковы и патагонцы в Южной Америке.

О справедливости такого предположения говорят исследования размеров светочувствительных клеток у птиц. Оказывается, у разных пород они различны. У тех, которым не требуется очень острое зрение, эти клетки довольно велики. Зато у орлов диаметр колбочек достигает 0,0003-0,0004 миллиметра, то есть примерно в 10–15 раз меньше, чем у человека со средним зрением.

До сих пор речь шла о различении объектов, разделенных малым промежутком. Другим удивительным свойством глаза является его способность различать даже очень малые изломы на стыке двух прямых линий. Чувствительность к таким изломам необыкновенно велика: она в 10 и даже в 20 раз превышает чувствительность к различению раздельных объектов. Хотя наука еще не объяснила этого факта, им уже давно пользуются в практике; многие весьма точные мерительные приборы выполнены с учетом этой особенности зрения. Таковы, например, все нониусные устройства, все шкалы стрелочных измерительных приборов.

Благодаря способности глаза различать изломы прямой линии, удается сравнительно просто делать шкалы различных приборов и мерительных устройств. Именно на этом свойстве глаза основана шкала штангенциркуля.

Всегда ли одинакова острота зрения? Конечно, нет. Наш глаз видит четко только при ярком свете, днем. В сумерки и особенно ночью острота зрения значительно падает. Помимо этого, в темноте даже у человека с очень хорошим зрением развивается ночная близорукость: отдаленные предметы теряют четкие контуры, расплываются. Этот факт особенно следует запомнить всем, кто любит читать в сумерки, не зажигая огня. Такое чтение очень утомляет и при частом повторении может испортить глаза.

Теперь, когда мы узнали о строении глаза и об остроте зрения, необходимо сказать о поле зрения. Полем зрения называется все пространство, в котором возможно различение объектов при неподвижном глазе. Величина поля зрения обычно выражается в угловых единицах. Границы его несколько отличаются у разных людей и, кроме того, зависят от размеров и даже цвета объектов. Для белого цвета границы поля зрения следующие: вниз 70°, вверх 60°, к носу 60°, к виску 100°.

Внутри этого поля имеется слепое пятно с угловым размером порядка 7°, желтое пятно примерно такого же размера и центральная ямка, имеющая угловые размеры 1–1,5°.

Наиболее четко мы видим с помощью центральной ямки. Здесь острота зрения максимальная. Но уже на расстоянии 3–5° от нее острота зрения падает почти в 4 раза, а вблизи границ поля зрения она совсем мала, приблизительно в тридцать раз меньше, чем в области центральной ямки и даже желтого пятна.

Внимательный читатель наверняка удивится приведенным цифрам. В самом деле, зачем человеку столь широкое поле зрения, если четко он может видеть только в пределах очень маленького угла — в 1,5°? Более того, правильна ли вообще эта последняя цифра, не чересчур ли она мала? Она противоречит нашему повседневному опыту, который говорит о том, что мы почти одинаково четко видим все окружающее, а не только какую-то малую его часть.

Наука уже может ответить на эти вопросы, хотя и не очень полно. Исчерпывающее объяснение станет возможным только после того, как будут изучены все процессы, протекающие не только в самом глазу, но и в зрительных центрах мозга. В наши дни ученые едва лишь приступают к этой проблеме. Она столь сложна и многообразна, что решить ее удастся только объединенными усилиями физиологов, биофизиков, биохимиков, специалистов в области электроники и многих других. Даже при современных возможностях и стремительных темпах развития науки на исследование и решение этой проблемы, вероятно, уйдет много лет. И возможно, что некоторым читателям этой книги доведется приложить свои силы в этой области. Хотелось бы пожелать им успехов в столь важном и интересном деле…

Зачем же нужно столь широкое поле неотчетливого зрения?

Дать ответ на этот вопрос позволяет одно весьма интересное свойство глаза. Оказывается, периферические части сетчатки, которые обычно различают только крупные объекты, необыкновенно чувствительны к перемещению мелких объектов. Так, если на периферию сетчатки проектируется малый неподвижный предмет, мы не в состоянии его заметить. Но стоит ему начать передвигаться, как в мозг начинают поступать сигналы. На основании этих сигналов мы не в состоянии судить о форме предмета, но их вполне достаточно, для того чтобы определить направление на него и направление его перемещения.

Поле зрения неподвижного глаза. Только очень в малой зоне глаз видит четко (кружок в центре), в остальной же части поля зрения изображение воспринимается значительно менее четко.

Если по каким-то причинам предмет привлекает наше внимание (ожидание, опасность и т. п.), мы практически мгновенно и чаще всего автоматически переводим на него наш взгляд или, иными словами, поворачиваем наши глаза таким образом, чтобы изображение этого предмета попало в область четкого видения. Такое свойство периферического, или бокового, зрения очень важно. Оно помогало нашим прародителям выслеживать добычу и самим спасаться от внезапного нападения.

Периферическое зрение необходимо человеку и сейчас. Не будучи четким, оно все же достаточно хорошо, для того чтобы мы могли иметь представление об окружающем (оно во много раз лучше, чем зрение насекомых, в частности стрекоз). Благодаря ему мы можем быстро и правильно ориентироваться и выбирать направление передвижения. Оно жизненно необходимо пилоту, шоферу; без него не существовало бы ни труда, ни спорта.

Но разве было бы хуже, если бы наши глаза были устроены так, что мы могли бы видеть равно четко во всем поле зрения?

Прежде чем ответить на этот вопрос, напомним, что в области наиболее четкого видения от каждой из 50 тысяч светочувствительных клеток отходит отдельное волокно зрительного нерва. Именно благодаря такой связи клеток с мозгом зрение с помощью центральной ямки оказывается столь острым. Для того чтобы периферические части сетчатки обеспечивали столь же острое зрение, необходимо, чтобы и здесь с каждой светочувствительной клеткой связывалось отдельное нервное волокно. В таком случае ствол зрительного нерва вместо миллиона должен был бы иметь 137 миллионов волокон. Его толщина оказалась бы в 10–12 раз большей. Он был бы похож на довольно толстый канат. Но это даже не самое главное. Куда важнее то, что зрительные центры мозга заняли бы неоправданно большое место. Им пришлось бы развиваться за счет каких-то других важных мозговых центров, либо за счет увеличения общего объема мозга. И то и другое невозможно, да и ненужно. Природа — этот величайший изобретатель! — нашла более правильный и экономный путь. Она дала человеку способность видеть очень четко, но только в нужных пределах, в сравнительно узком телесном угле, именно таком, какой действительно необходим в жизни. А для того чтобы человек мог быстро и хорошо ориентироваться и избегать опасности, она одарила его боковым зрением и способностью замечать малые (не говоря уже о крупных) перемещающиеся объекты даже тогда, когда они находятся вне поля четкого зрения.

Но, помимо этого, у зрения есть еще одна замечательная способность. Она-то и позволяет с помощью очень маленькой центральной ямки и несколько большего по размерам желтого пятна видеть весьма четко в широком поле зрения. Именно благодаря этой особенности нам кажется, что мы одновременно, сразу и в равной степени четко воспринимаем окружающее.

Представим себе, что мы находимся в одной из зал Третьяковской галереи. Например, в той, где развешаны полотна знаменитого пейзажиста Шишкина. Остановимся перед одним из них, хотя бы перед тем, которое носит название «В лесу Мордвиновой». Эта картина, а вернее — этюд, была написана художником с натуры под Ораниенбаумом. На ней изображен густой и мрачный еловый лес; прогалина на переднем плане; кочки, поросшие мхом и молодыми деревцами; а чуть в глубине, левее центра картины, — старик, опершийся на палку. Все части картины воспринимаются нами одинаково четко. Более того, мы уверены, что видим ее всю сразу, всю одновременно.

Фактически это не так. На самом деле в каждый отдельный момент нами воспринимается лишь один, сравнительно небольшой участок картины. Это происходит потому, что наши глаза не остаются в покое, когда мы рассматриваем что-либо. Они непрерывно движутся, «обшаривая» объект наблюдения. Цельное изображение возникает в мозгу, который запоминает каждый из последовательно осмотренных кусочков и складывает их, словно детские кубики, в единое изображение. В этом можно убедиться, посмотрев на иллюстрацию, помещенную здесь. Одна ее часть представляет фотографию картины Шишкина «В лесу Мордвиновой». А другая…

Фотография картины художника Шишкина «В лесу Мордвиновой» и «фотография» движений глаза человека, рассматривающего картину.

Другая — тоже фотография. Если внимательно вглядеться в линии и точки, можно заметить, что вместе они составляют нечто напоминающее шишкинское полотно. Что же это за фотография? Оказывается, на ней запечатлены движения глаза человека, рассматривающего картину.

Ее очень остроумным методом получил советский ученый А. Л. Ярбус. На одном из глаз наблюдателя было укреплено очень маленькое, легкое зеркальце. На него был направлен луч света. Световой зайчик, отбрасываемый зеркальцем, падал на лист фотобумаги и вычерчивал на ней следы. Поворачивались глаза (а у человека оба глаза поворачиваются одинаково) — перемещался и зайчик по фотобумаге, точно следуя за всеми движениями глаза, рассматривавшего картину.

По окончании опыта фотобумагу проявили. И получилась «копия» картины Шишкина, нарисованная глазом. Жирные точки на этой копии соответствуют тем моментам времени, когда глаза оставались неподвижными, а тонкие линии, соединяющие точки, прочерчивались во время быстрых скачкообразных изменений направления взгляда.

Ученые установили, что зрительный процесс всегда протекает подобным образом: глаза замирают на некоторое время, затем совершают быстрый, но небольшой скачок, снова замирают и опять совершают скачок. Именно таким образом мы во всех случаях осматриваем окружающее или следим взглядом за каким-либо одним объектом.

В минуту глаза совершают до 120 скачков и остановок. Величина скачка не превышает 0,5°, а его длительность раз в тридцать меньше того времени, когда глаз находится в покое и направлен на одну из частей объекта. Время, в течение которого глаза остаются неподвижными, лежит в пределах от 0,2 до 0,8 секунды. За эти доли секунды глаза успевают разглядеть, а мозг запомнить увиденное. Если участок рассматриваемого пространства имеет не слишком большие угловые размеры, мы воспринимаем его как единое целое и совершенно не ощущаем, что в действительности видим его лишь по частям.

Такой скачкообразный процесс обзора пространства (сканирование пространства, как часто говорят в технике) имеет принципиальное значение. Без него зрение оказалось бы вообще невозможным. Ученые посредством особых опытов установили, что если на один и тот же участок сетчатки проектируется неизменное изображение, оно видно в течение лишь нескольких первых секунд. Далее происходит как бы насыщение этого участка — он перестает воспринимать изображение и ослепляется. Подобные опыты ясно показывают, что глаз может хорошо наблюдать только те предметы, изображение которых движется по сетчатке либо вследствие движения самого объекта, либо благодаря скачкообразному перемещению направления взгляда.

Зная, как происходит обзор пространства, можно легко объяснить, почему мы не замечаем слепого пятна. Именно потому, что наш взор никогда не остается подолгу на одном и том же месте. Если бы глаза были неподвижны, то слепое пятно также было бы недвижимо, и на него проектировался бы один и тот же участок изображения. Но на самом деле слепое пятно попеременно «закрывает» различные участки. Смена участков происходит достаточно часто, так что мозг не успевает забыть о них прежде, чем это необходимо. Опыт с крестиком и кружком трудно проводить тоже благодаря этому скачкообразному процессу зрения, при котором глаза не остаются в покое.

Следует сказать еще об одном очень важном свойстве зрения, которое, возможно, следовало бы в некотором отношении отнести к числу недостатков. Однако ученые и инженеры провели тщательные исследования и сумели столь блестяще использовать этот недостаток, что он превратился в очень большое достоинство. Без него немыслимы ни кинематограф, ни телевидение, ни некоторые другие важные области совместного использования света и глаза. Речь идет об инерционности зрительного восприятия, то есть о том, что мы не мгновенно, а спустя лишь некоторое время после появления видим изображение и продолжаем видеть его уже после того, как оно исчезло.

Именно потому, что зрение обладает инерцией, мы не в состоянии заметить быстро движущиеся части машины, спицы в колесе движущегося велосипеда, лопасти вращающегося пропеллера, артиллерийский снаряд в полете, движение крыльев пчелы и многое другое. Зато только благодаря этому свойству мы можем видеть при очень слабом свете, ибо инерционность зрения прямо связана со способностью светочувствительных клеток накапливать действие квантов. Если количество фотонов, попадающих в светочувствительную клетку, в единицу времени превышает некоторую минимальную величину, называемую порогом чувствительности глаза, то их действие благодаря инерционности зрения может накапливаться, или, иными словами, суммироваться, во времени.

Зрительное ощущение возникает вследствие распада светочувствительного вещества в палочках и колбочках, когда в них попадает свет. После того как свет прекращается, начинается обратный процесс — светочувствительное вещество вновь восстанавливается. Распад его идет тем быстрее, чем интенсивнее падающий в глаза свет. Восстановление же происходит тем скорее, чем более глубокая темнота воцаряется после исчезновения света.

Световое ощущение возникает обычно через 0,05—0,2 секунды, в зависимости от интенсивности света. Исчезновение светового ощущения происходит за большее время, более постепенно.

Теперь для освещения очень часто используются так называемые люминесцентные лампы, а для рекламных целей — газосветные трубки. И те и другие обладают одним свойством, которое сильно отличает их от обычных электрических ламп накаливания. Оно заключается в том, что при подключении их к напряжению переменного тока (а он теперь применяется почти везде) свет, испускаемый такой лампой или трубкой, будет непрерывно пульсировать.

В нашей стране и во всех европейских странах частота колебаний переменного тока равна 50 периодам в секунду. Это означает, что за секунду напряжение будет 50 раз менять свою полярность: 50 раз оно будет максимальным по величине и положительным и столько же раз максимальным и отрицательным. В промежутках между максимумами напряжение будет плавно уменьшаться до нуля и будет принимать нулевое значение 100 раз в течение секунды. В такт с изменениями напряжения будет изменяться и яркость: за секунду произойдет 100 вспышек, причем их яркость будет нарастать, достигая максимума, и снова падать до нуля.

Если бы наше зрение было безынерционным, все окружающее при свете газосветных ламп представлялось бы то ярко освещенным, то погруженным во тьму, словно озаренным чрезвычайно частыми вспышками молний. Но этого не происходит в силу того, что ни распад, ни восстановление светочувствительного вещества в палочках и колбочках не могут происходить мгновенно, а требуют заметного времени. Именно поэтому мы почти не замечаем мерцания люминесцентных и ртутных ламп, газосветных трубок.

Почти… Но отнюдь не полностью, даже в тех случаях, когда свет пульсирует с частотой 100 раз в секунду. Такие пульсации очень легко обнаружить, если специально этим заняться. Стоит лишь быстро провести в воздухе ладонью с расставленными пальцами или, что еще лучше, тонким блестящим штырем, и мы заметим необычное явление: вместо непрерывной просвечивающей насквозь полосы, которая наблюдается в подобных случаях днем, глаз различит множество отдельных, чуть смазанных полосок.

Проведите опыт при свете таких ламп, вырезав из приложения к этой книге диск с черно-белым узором. Попробуйте объяснить, почему при некоторой скорости вращения этого диска кажется, что кольца на нем начинают двигаться в разных направлениях. Объясните, почему это же не наблюдается при дневном свете и почему при свете ламп накаливания движение заметно очень слабо.

А теперь другой опыт. Посмотрите на зажженную спичку или горящую электрическую лампу (только не очень яркую), а затем быстро переведите взгляд на приготовленную заранее черную бархотку или на кусок черной бумаги. Если под руками у вас не окажется ни того, ни другого, можно перевести взгляд в темный угол комнаты. Сделав это, вы заметите, что изображение пламени или раскаленного волоска лампы, хотя и более тусклое, сохраняется некоторое время после того, как вы перестали смотреть на светящийся предмет. В данном случае вы видите его последовательный образ или, точнее, позитивный последовательный образ.

Возникновение и существование последовательных образов определяются тем, что процесс восстановления светочувствительного вещества в палочках и колбочках требует известного времени.

Снова проведем опыт, о котором говорилось выше, но теперь продолжим его. Когда последовательный образ яркого предмета потускнеет, быстро переведите взгляд с темного фона на равномерно и ярко освещенный лист белой бумаги. На его фоне вы снова увидите прежнее изображение, правда еще более расплывчатое и тусклое. Но важно другое: изображение теперь будет уже темным на светлом фоне. Оно тоже является последовательным образом, но на этот раз негативным.

Возникновение негативных последовательных образов объясняется тем, что засвеченные ярким светом участки сетчатки становятся менее чувствительными, чем те, на которые не попали лучи яркого света. Это неравномерное распределение чувствительности запечатлевается на сетчатке на несколько секунд. Если в это время смотреть на равномерно освещенный белый лист, он будет восприниматься таким, словно на его поверхности имеется затемненный участок, по форме соответствующий тому предмету, на который мы ранее смотрели.

Движущийся тонкий блестящий стержень при мерцающем свете люминесцентной лампы. Вверху, слева, — графики изменения тока через лампу и изменения яркости света.

Несколько слов об особенности зрения двумя глазами.

До сих пор, говоря о зрении, мы не делали различия между тем, смотрим ли на предмет одним или двумя глазами. Действительно, не стоило об этом думать, пока не возник вопрос о чувстве глубины пространства, о способности оценивать расстояние до предметов, находящихся в поле зрения.

Обычная фотография или картина всегда создает у зрителя ощущение глубины изображаемого пространства. Это ощущение, однако, не меняется от того, рассматриваем ли мы изображение одним или двумя глазами. В данном случае ощущение глубины создается линейной и воздушной перспективами. Первая позволяет нам судить о близости или отдаленности предметов по размерам их изображений. Вторая дополняет первую тем, что контуры и поверхности изображаемых предметов становятся все более расплывчатыми и нечеткими по мере удаления от переднего плана. Если изображение к тому же цветное, то этому способствует изменение цветов отдаленных предметов: они как бы блекнут и растворяются в воздушной дымке.

Подобным образом мы ощущаем глубину реального пространства, пользуясь одним глазом, и не чувствуем при этом большой разницы между зрением одним глазом и двумя. А она очень велика.

Попробуйте проделать один очень несложный опыт. Для него потребуются два обычных писчих пера или, если вы предпочитаете пользоваться авторучкой, две спички, хотя опыт с ними выглядит менее эффектно. Опыт надо проводить без какой-либо предварительной тренировки.

Положите одно перо на коробочку или книгу так, чтобы его острие выступало над краем. Затем возьмите в левую руку второе перо. Зажмурьте один глаз и попробуйте, перемещая руку с расстояния 20–30 сантиметров, плавным и непрерывным движением дотронуться кончиком одного пера до кончика другого. Сделайте то же, открыв оба глаза. И вы сразу почувствуете, какая огромная разница между зрением одним глазом (монокулярным) и двумя глазами (бинокулярным).

Этот опыт становится еще более убедительным, если наблюдать его со стороны. Попросите кого-нибудь провести его, а сами обратите внимание на движение руки с пером.

Между прочим, столь же простые опыты помогли ученым вдуматься в самые сокровенные процессы, происходящие в организме, и сформулировать некоторые важные положения новой науки — кибернетики.

Разницу в зрении одним и двумя глазами вы можете также уяснить, посмотрев на цветные стереофотографии. Перед вами два снимка, вернее — один, сделанный с помощью фотоаппарата для стереоскопической съемки. На первый взгляд левая и правая фотографии совершенно одинаковы. Разницу между ними можно заметить, только наложив одну на другую. Она ничтожна и заключается в том, что левая фотография снята под несколько иным углом зрения, чем правая.

Попытайтесь, хотя это и непросто, рассматривать одновременно обе фотографии таким способом, как это указано. После нескольких попыток вам удастся приспособиться. Обычно это случается внезапно, и вы вдруг заметите, что пространство изображения приобретает глубину, а все предметы становятся объемными.

Рядом еще фотографии. Не подумайте, что столь странно сдвинутые оттиски, делающие изображение неразборчивым, — типографский брак. Это сделано специально. Красный оттиск соответствует изображению для одного глаза, а зелено-голубой — для другого. Такие стереофотографии следует рассматривать через специальные очки. Вырежьте из бумаги оправу для очков и вклейте в каждое из отверстий по куску цветного целлофана (красного и зелено-голубого). Затем взгляните через эти очки на фотографию. Вы снова испытаете неожиданное и радостное чувство от внезапно раскрывшейся глубины и объемности изображения.

В чем же причина столь резкой разницы в зрении одним и двумя глазами?

Оказывается, она в первую очередь определяется устройством и работой мозга. Ничтожное отличие в изображениях для левого и правого глаза, отличие, которое мы не в состоянии ощутить, разглядывая каждое из изображений в отдельности, при зрении двумя глазами учитывается мозгом и преобразуется в стереоскопическое изображение пространства. Пока еще никто не знает, как, каким путем осуществляет это мозг. Но уже довольно давно известно, что очень важную роль в формировании ощущения глубины пространства играют мышцы, поворачивающие глаза в орбитах, и реснитчатое тело, управляющее аккомодацией хрусталика в каждом из глаз. Сигналы, зависящие от силы напряжения этих мышц, поступают в мозг одновременно с сигналами от каждого из глаз. Они также учитываются мозгом и позволяют ему из двух двумерных изображений (на сетчатке каждого из глаз изображаемое пространство имеет только два измерения — высоту и ширину) создать целостное стереоскопическое, или трехмерное, изображение, то есть такое, где есть три измерения: высота, ширина и глубина.

Рассматривая близко расположенный предмет двумя глазами, мы скашиваем их под большим углом друг к другу. Глядя на удаленный предмет, мы уменьшаем этот угол.

Выше была названа только одна причина уменьшения вредного влияния слепого пятна.

Она заключалась в скачкообразном процессе обзора пространства. Теперь можно назвать и вторую. Она сравнительно проста.

Когда мы смотрим на что-либо, наши глаза повернуты так, что интересующее нас изображение проектируется в область центральной ямки и желтого пятна. Это и понятно — ведь зрительная линия проходит как раз через центр желтого пятна, то есть желтое пятно расположено симметрично относительно зрительной линии. Что касается слепого пятна, то оно смещено относительно этой линии. В левом глазу слепое пятно находится примерно на 15° правее зрительной линии (ближе к носу), а в правом — на столько же градусов левее (опять-таки ближе к носу). Поэтому слепое пятно левого глаза закрывает совсем другой участок изображения, нежели слепое пятно правого глаза.

В левом глазу на слепое пятно попадает изображение дерева, в правом — человека.

Изображения в левом и правом глазу незначительно отличаются друг от друга, и мозг восстанавливает целостную картину, вставляя на место изображения, закрытого слепым пятном левого глаза, соответствующее изображение, полученное на сетчатке правого глаза. Подобным же образом «заштопывается» слепое пятно правого глаза. В результате мешающее действие слепых пятен обоих глаз становится практически неощутимым.

Нам понравилось стихотворение, и настолько, что мы решили выучить его наизусть. Тогда мы начинаем перечитывать его, стараясь запомнить каждое слово и его точное место среди остальных. Одним это удается очень быстро, другим приходится изрядно потрудиться, прежде чем строки прочно улягутся в памяти. Но рано или поздно каждый психически нормальный человек запомнит стихотворение.

Что же это означает: запомнит? А то, что даже по прошествии многих лет человек по желанию может повторить стихотворение слово в слово, не пользуясь при этом ни шпаргалками, ни подсказками.

Память. Что же это такое?

Мы знаем, что память человека определяется работой мозга.

Но пока ученые еще не могут достаточно точно ответить на многочисленные «как?», относящиеся к работе мозга. Это объясняется тем, что они пока мало знакомы с процессами деятельности мозга в силу их невообразимой сложности.

Иными словами, на этом пути сделаны лишь первые шаги. И мы еще слишком мало знаем о самом сложном, самом совершенном создании природы — о человеческом мозге. И пока не станут известны процессы, происходящие в мозгу, связанные с запоминанием, нельзя сказать совершенно точно, почему легко запомнить стихи, но трудно — прозу; почему запоминается мелодия, но не звуки настраивающегося оркестра или какой-либо другой шум; почему запоминаются геометрические фигуры, лица людей, картины мастеров, но забываются полотна абстрактных живописцев.

Об этих процессах, привлекающих внимание многих современных ученых и инженеров, работающих в самых различных областях науки и техники, начинают делать лишь первые плодотворные предположения. Нет сомнения, что в ближайшие годы прогресс в этом направлении будет очень значительным и, быть может, мы станем свидетелями разгадки величайшей тайны — тайны мышления и памяти.

Тогда же достоверно узнаем и об одном из интереснейших средств зрения: о способности запоминать, различать и классифицировать бесконечное разнообразие форм окружающего нас мира. Сейчас это свойство называют форменным зрением.

Вот что пишет о нем один из основателей кибернетики Норберт Винер:

«Одним из наиболее замечательных явлений в зрении следует считать нашу способность узнавать контурный рисунок. Несомненно, контур человеческого лица имеет очень небольшое сходство с самим лицом в отношении цвета и распределения светотени, и тем не менее в нем очень легко узнать портрет данного человека».

Ученого очень интересует эта способность, и вот какие вопросы он задает самому себе и читателям:

«Как мы узнаём индивидуальное человеческое лицо, когда видим его в разных положениях: в профиль, в три четверти или анфас? Как мы узнаем круг как таковой, независимо от того, большой он или маленький, вблизи он или вдали, находится ли он в плоскости, перпендикулярной к линии, проведенной от глаза к центру круга, и представляется как круг или имеет какую-нибудь другую ориентацию и представляется как эллипс?»

Далее Винер пытается ответить на эти вопросы и предлагает один из возможных вариантов, одну из возможных моделей работы мозга при различении формы. Он не утверждает, что мозг действует точно так же, но идеи, высказанные им, могут быть положены в основу одной из гипотез о работе мозга, а кроме того, на их основании может быть построена математическая машина, способная различать формы предметов, хотя бы простейших.

Интересно высказывание прославленного архитектора эпохи Возрождения Леона Баттисты Альберти (1404–1472), который в трактате «О статуе» тоже говорит о свойствах форменного зрения:

«Поскольку скульпторы ищут сходства, со сходства и надлежит начать. Я мог бы повести здесь рассуждение о природе сходства, о том, почему так бывает, что каждая особь очень похожа на всех других особей того же рода, — мы ведь видим это в природе и видим, что она это соблюдает в любом живом существе. С другой стороны, нельзя, как говорят, найти голос, вполне похожий на другой голос, нос — на другой нос, и точно так же среди всего множества людей нельзя найти человека, неотличимого от других. Добавь к этому, что лица тех, кого мы видели мальчиками, а затем знавали и подростками и кого ты видел юношами, распознаются и тогда, когда они стали стариками, как бы велики ни были те изменения, которые с возрастом, изо дня в день, испытали очертания их лиц. Таким образом, мы можем установить, что в самих формах тела имеется нечто, что меняется с течением времени, и нечто другое, глубоко в них заложенное и им врожденное, что всегда остается устойчивым и неизменным…»

Вот это-то устойчивое и неизменное, по-видимому, замечает форменное зрение, а память хранит долгие-долгие годы.

 

Цвета

Цвет есть результат воздействия физического объекта на сетчатку.
В. И. Ленин. «Материализм и эмпириокритицизм»

Прежде чем говорить о природе цветного зрения человека, необходимо выяснить законы образования самих цветов.

В спектре солнечного света, состоящем из бесконечного множества плавно переходящих друг в друга чистых цветовых тонов, человеческий глаз в состоянии различить более 150 оттенков. Обычно спектр разделяют на несколько цветовых групп: группу фиолетовых тонов, синих, голубых, голубовато-зеленых, зеленых, желтых, оранжевых и красных. Вот границы между соответствующими группами, выраженные в длинах волн: 439, 459, 492, 532, 571, 596 и 645 миллимикронов. Границы концов видимого участка спектра соответствуют длинам волн 380 и 770 миллимикронов. Интересно отметить, что границы цветовых групп, впервые намеченные Ньютоном, при переводе на язык волновой теории почти не отличаются от указанных. Кстати, Ньютон усматривал аналогию между восприятием цветовых и музыкальных тонов. Мы знаем, что одинаковые ноты в соседних октавах звучат согласно и отличаются только высотой тона. Частоты таких тонов находятся в соотношении 1:2, длины волн — 2:1. Если взять границы видимого спектра, то их длины волн тоже относятся, как 2:1. А если приглядеться, можно уловить цветовое сходство между крайними частями спектра — между глубоким красным и глубоким фиолетовым тонами. «Цвета, — писал Ломоносов, — удивительно согласуются с музыкой», В наше время этой аналогии не придают значения. Однако известно много случаев в науке, и мы о некоторых хорошо знаем, когда идеи, считавшиеся умершими, воскресали вновь.

Тона солнечного спектра далеко не исчерпывают всего многообразия цветов, встречающихся в природе. По существу, цветов бесконечно много, и наш глаз может различать в этом беспредельном многообразии с трудом исчислимое количество их.

Кривая чувствительности (кривая видности) человеческого глаза и границы между соответствующими группами цветов.

Если подсчитать все слова в русском языке, обозначающие цвета и оттенки, их наберется порядочно. Поэтому мы совершенно не испытываем затруднений, описывая даже очень тонкие различия в цветах. Тем не менее это описание оказывается недостаточным в тех случаях, где требуется точное знание о цвете. У профессионалов, даже у маляров и изготовителей вывесок, не говоря уже о живописцах, в ходу другие слова. Так, краски, дающие различные оттенки красного, имеют следующие названия: краплак, бриллиант-лак, киноварь, кадмий, кармин, сурик и так далее. За этими названиями стоят уже вполне определенные оттенки, потому что краска — это неизменная из года в год рецептура и технология; потому что на фабрике красок всегда есть эталонные образцы, по которым проверяется вновь выпускаемая продукция. Большую помощь в точном подборе цветов оказывают и колерные книжки — блокнотики, в которых каждый лист имеет строго определенный цвет — колер.

Но при современном развитии науки и промышленности этого далеко не достаточно. Техника вообще предпочитает пользоваться точными цифрами, а не словами, в толковании которых всегда будет присутствовать большая или меньшая неопределенность. Поэтому возникла и развилась специальная отрасль оптики — колориметрия, занимающаяся количественными методами определения цветов и законами их образования. В основу колориметрии положены точные знания определенных свойств цветового зрения человека. Она опирается на законы образования цветов в глазу человека, установленные многочисленными и многократно проверенными исследованиями.

Однако не надо спешить с описанием этих законов. Продолжим еще разговор о цветах.

Прежде всего следует отметить, что в колориметрии белый, черный и все промежуточные цвета, отсутствующие в спектре, столь же равноправны, как и все остальные. Правда, они составляют особую категорию так называемых ахроматических цветов (буквально — цветов, не имеющих цвета). Вся гамма серых цветов может быть получена смешением черного и белого в различной пропорции. В принципе эта гамма содержит бесконечное число цветов, но наш глаз может различить в ней около 300 градаций, что тоже не мало.

Любая поверхность, которая одинаково (плохо или хорошо) отражает все составляющие солнечного спектра, имеет ахроматический цвет. В равных условиях освещения поверхность, отражающая больше лучей, кажется светлее менее отражающей. Самой белой будет поверхность, покрытая окисью магния или бария, — она отражает до 98 процентов падающего света. Чистый белый снег (иногда выпадает снег, имеющий оттенок) на ее фоне покажется сероватым, он отражает всего лишь 85 процентов, а такая белая краска, как цинковые белила, и того меньше— всего 70–75 процентов. Очень черными кажутся поверхности, покрытые пористой сажей, но еще чернее — черный бархат; некоторые сорта его отражают не более 0,3 процента падающего света. Чернее бархата только черное тело — специальное устройство, о котором упоминалось в предыдущей главе.

Все цвета, кроме белого, черного и серых, составляют группу хроматических (цветных) цветов. Ее, в свою очередь, можно разделить на две подгруппы: в первую войдут спектрально чистые тона, или монохроматические, цвет которых определяется только одной длиной волны; во вторую — сложные, составленные из нескольких монохроматических цветов. Таких цветов — большинство. А вернее сказать, бесконечно много. Недаром живописцы утверждают, что в природе вообще не бывает двух совершенно одинаковых цветов.

Как установили ученые, все это многообразие может быть получено смешением исходных чистых тонов.

Чтобы яснее это представить, можно с помощью очень простого прибора провести несколько весьма интересных опытов. Для изготовления прибора надо взять небольшой кусок чисто вымытого и отполированного зубным порошком стекла и кусочек черного бархата.

Не беда, если бархата не окажется, вместо него можно воспользоваться книгой в черном матовом переплете. Кроме стекла и бархата, понадобятся также кусочки белой бумаги, раскрашенные акварельными красками в следующие цвета: красный, оранжево-красный, желтый, желто-зеленый, голубовато-зеленый, синий и фиолетовый. Краску следует наносить как можно ровнее по нескольку раз, давая просохнуть предыдущему слою.

Вид прибора показан на рисунке.

Простейший прибор для аддитивного образования цветов. Перед стеклом и сзади него следует положить раскрашенные листы бумаги (лучше всего их класть на черный бархат); в стекле будет виден результирующий цвет.

Принцип действия его заключается в том, что с помощью стекла удается совместить потоки света (и изображения) от двух участков поверхности и направить их в глаза наблюдателя. Один из участков поверхности лежит за стеклом; мы видим его потому, что стекло прозрачно. Второй участок находится перед стеклом; его изображение попадает в глаза наблюдателя, отразившись, как в зеркале, от передней поверхности стекла. Обычно оно отражает не более 10 процентов падающего света. Поэтому поток отраженного света будет значительно слабее потока, приходящего из-за стекла, но это поправимо.

С помощью прибора мы можем смешивать лучи света двух различных цветов. Источниками света будут служить раскрашенные листки бумаги. Нам известно, что листок синего цвета отразит синие лучи, листок желтого — желтые, и так далее.

Расположите листки так, чтобы их изображения, видимые в стекле, накладывались друг на друга. Затем попробуйте наклонять стекло на себя. Этим вы увеличите количество отраженного света и уменьшите количество проходящего света.

Таким образом, меняя наклон стекла, можно смешивать два цвета в самых разнообразных пропорциях.

Освоившись с методикой опыта, обратите внимание на изменение цвета совмещенного изображения. Для сравнения сместите листки друг относительно друга так, чтобы на каждом из них оставались неперекрытые участки. Тогда вы увидите в стекле одновременно два исходных цвета и результат их смешения.

Для начала положите за стеклом красный листок, а перед ним — белый.

Когда стекло установлено перпендикулярно к основанию, отражение от белого света мало, зато красный свет проходит почти полностью. Поэтому цвет, видимый в стекле, получается ярким и чистым, особенно если листки лежат на черном бархате.

Такой яркий цвет в колориметрии называется насыщенным или чистым.

При увеличении доли белого света результирующий цвет становится все более белесым, все более блеклым. Чистота его уменьшается по мере увеличения наклона стекла. Подобные же результаты получатся, если опыты повторять с листками других цветов.

На основании этих опытов придем к выводу, что смешение белого света с хроматическим приводит к уменьшению чистоты или насыщенности цвета. При изменении чистоты меняется и цвет. Как и в случае смешения черного с белым, создается целая гамма цветов, отличающихся друг от друга только чистотой. Но, хотя цвета в этой гамме и различны (и их бесконечно много), основной цветовой тон не зависит от количества добавляемого белого света — тон остается неизменным.

Теперь уже можно наметить некоторые параметры, характеризующие каждый отдельный цвет в такой гамме.

Вот они: цвет исходного тона и чистота цвета. Если мы по-прежнему будем обозначать цветовой тон только словами, то это будет недостаточно понятно. Поэтому исходный цветовой тон всегда связывают с длиной волны. Тогда все становится совершенно определенным. Так, цветовой тон λ = 400 миллимикронам означает, что из группы фиолетовых тонов выбран такой, длина волны которого равна названной.

Что касается чистоты цвета, то она дается в процентах и показывает, сколько единиц светового потока белого света и сколько единиц светового потока с заданным цветовым тоном содержится в получившемся при смешении цвете.

Что произойдет, если смешивать два хроматических тона?

Это можно выяснить с помощью нашего прибора. Для начала заменим белый листок желтым. Результирующие цвета в зависимости от наклона стекла будут меняться от красного к желтому, проходя через разные оранжевые оттенки. Такой результат не удивителен. Едва начав рисовать, мы уже знаем, что желтый и красный цвета, смешиваясь, дают оранжевый.

Но во всех ли случаях интуиция и опыт позволят предугадать новые цвета?

Попробуйте предсказать, какие получатся цвета, если смешивать:

Красный и синевато-зеленый.

Оранжево-красный и голубовато-зеленый.

Желтый и синий.

Желто-зеленый и синий.

Зелено-желтый и фиолетовый.

Лучше при этом записать свои предположения, особенно если опыт проводится не в одиночестве, и лишь потом проверить на приборе. Проводя проверку, следует каждый раз так подбирать наклон стекла, чтобы получающийся новый цвет не содержал исходных цветов. Опыт надо проводить крайне тщательно и без всякого предубеждения к результатам. Их тоже следует записать.

Боюсь, что ни один из полученных ответов не сойдется с тем, что было предсказано. Но огорчаться не стоит. Ведь в науке предвидеть что-либо можно, лишь опираясь на теорию. Нам же она пока неизвестна.

Зато если вы внимательно разберетесь в том, что получилось, то удастся обнаружить очень важный для создания этой теории факт. Все пары выбранных цветов, смешиваясь в определенной для каждой пары пропорции, дают один и тот же цвет. Более того, получается серый, ахроматический цвет, хотя во всех случаях исходными были хроматические цвета.

Вполне возможно, что получить настоящие ахроматические цвета не удастся, а вместо них будут наблюдаться белесовато-грязные оттенки. Но это объясняется тем, что, называя цвета, мы продолжали пользоваться обычными названиями цветов, и тем, что листки трудно окрасить достаточно хорошо. Если же подобные опыты провести более тщательно, то результат будет совершенно определенный — получающийся новый цвет окажется белым (или серым, в зависимости от яркости). Зная результаты опыта, можно вновь повторить его, на этот раз с большим успехом.

Опыты такого рода, проведенные учеными, имели чрезвычайно важное значение. Они показали, что устройство нашего глаза таково, что ощущение белого цвета можно вызывать, смешивая не все цвета солнечного спектра, а всего лишь два. Таковы первое, проверенное нами опытным путем свойство цветового зрения человека и правило смешения цветов.

Конечно, не всякая пара цветов дает при смешении белый. Это ясно на примере пары «красный — желтый».

Два цвета, которые, смешиваясь в определенной пропорции, дают белый или какой-либо другой цвет из ахроматического ряда, называются дополнительными. В природе существует бесконечное множество пар дополнительных цветов, в том числе и монохроматических или спектрально чистых.

Для того чтобы ваш опыт наверняка удался, следовало бы взять следующие пары:

Красный (=656 ммк) и синевато-зеленый (=492 ммк).

Оранжево-красный (=608 ммк) и голубовато-зеленый (=490 ммк).

Желтый (=585 ммк) и синий (=485 ммк).

Любителям живописи следует обратить особое внимание на то, что дополнительные цвета, нанесенные рядом друг с другом или один на фоне другого, дают сильный и приятный для глаза цветовой контраст. Об этом свойстве дополнительных цветов догадывались уже очень давно— во времена Возрождения. А художники нового времени сознательно прибегают к нему. Так знаменитый французский художник Дега даже в рисунках пользовался этим свойством, достигая великолепных эффектов. Дега часто рисовал не на белой, а на тонированной бумаге: зеленой, розовой, серовато-зеленой. При этом цвет карандаша он выбирал дополнительным к цвету бумаги или же подкрашивал отдельные места рисунка дополнительным цветом.

Любителей живописи заинтересует и другой факт. В любой паре дополнительных цветов один всегда принадлежит к группе теплых, а другой — к группе холодных. Теплые тона — это такие, в которых содержатся лучи красного и оранжевого цвета, холодные же тона содержат лучи синего и голубого цвета.

Можно ли без специальных приборов наблюдать дополнительные цвета? Оказывается, да. Один из способов основан на инерционности зрения, точнее, на использовании негативных последовательных образов.

Так, например, после пребывания в течение нескольких минут при свете синей медицинской лампы обычный свет кажется совсем желтым. За последние два года на улицах Москвы появилось много ртутных ламп. Они дают очень сильный зеленоватый свет. Глаз, привыкая к такому свету, видит ночное небо города необычным: оно приобретает фиолетовый оттенок. Посмотрев через зеленую целлофановую пленку и затем отняв ее от глаз, можно увидеть окружающее в розовом свете.

Наблюдать цветные последовательные образы можно, воспользовавшись приготовленными для предыдущих опытов цветными листками. Повернитесь спиной к свету и, держа хорошо освещенный листок перед глазами, пристально смотрите на него в течение 30–40 секунд. Затем быстро переведите взгляд на равномерно освещенный лист белой бумаги. Через несколько секунд появится негативный последовательный образ, сперва туманный и едва заметный, затем более яркий и отчетливый.

Не следует удивляться, если обнаружится, что его размеры отличаются от размеров окрашенного листка. Их изменение зависит от соотношения расстояний, на которых находились окрашенный и белый листок. Если расстояния равны, то равны и размеры последовательного образа и объекта. Если белый лист находится на большом удалении, то последовательный образ окажется увеличенным и более блеклым. Если же белый лист находится на меньшем расстоянии от глаза, чем раскрашенный листок, то последовательный образ уменьшается, а его кажущаяся яркость увеличивается. Лучше всего объект (в нашем случае — окрашенный листок) рассматривать на расстоянии вытянутой руки, а белый лист держать сантиметрах в тридцати от глаз. В этом случае последовательный образ получается достаточно ярким. Начинать опыты лучше всего с красного или зеленого листка.

В опытах по смешению цветов нам приходилось иметь дело с цветами не очень высокой чистоты. К сожалению, в домашних условиях почти невозможно провести их с чистыми спектральными тонами. А они дают очень интересные результаты. Так, если в некоторых пропорциях смешивать два спектральных цвета, каждый из которых обладает чистотой в 100 процентов, получающийся цвет будет иметь чистоту, меньшую 100 процентов. В предельном случае, то есть при смешении дополнительных цветов, чистота результирующего цвета снизится до 0 процентов. Иными словами, он станет белым. Правда, и в этом правиле есть исключение: тона спектра с длинами волн от 575 до 700 миллимикронов, смешиваясь, вызывают ощущение чистого спектрального цвета, с длиной волны, находящейся внутри указанного диапазона.

В природе существует одна очень важная группа цветов, полностью отсутствующая в спектре. Это все пурпурные цвета. Они составляются из смеси красных лучей с фиолетовыми или красных с синими. Такая смесь дает очень красивые оттенки. О них можно получить представление, вновь обратившись к помощи нашего прибора.

Итак, смешивая два хроматических цвета или хроматический с белым, можно получить бесконечное количество новых цветов. Можно ли таким способом получить любой из существующих цветов? Да, можно. Но для этого потребуется непрерывно менять пары исходных хроматических цветов. Если же пара остается неизменной, то, как мы знаем, можно получить бесконечную гамму цветов, но отнюдь не всю совокупность существующих цветов.

Ученых и живописцев уже с давних пор интересует вопрос: какое же наименьшее количество неизменных исходных (основных) цветов потребуется, для того чтобы, смешивая их в разных комбинациях и пропорциях, можно было получить все существующие в природе цвета?

Вот как отвечал на этот вопрос образованнейший человек своего времени, знаменитый архитектор эпохи Возрождения Леон Баттиста Альберти (1404–1472):

«Мне кажется очевидным, что цвета изменяются под влиянием света, ибо каждый цвет, помещенный в тени, кажется не тем, какой он на свету. Тень делает его темным, а свет, в том месте, куда он ударяет, делает его светлым. Философы говорят, что нельзя видеть ничего, что не было бы освещенным и окрашенным. Итак, цвета в отношении видимости очень родственны светам; а насколько они родственны, вы видите по тому, что при отсутствии света отсутствуют и цвета, а по возвращении света возвращаются и цвета. Итак, сначала мне хочется сказать о цветах, а затем исследуем, как они изменяются при свете. Будем рассуждать, как живописцы. Я утверждаю, что от смешения цветов рождается бесконечное множество других цветов, но истинных цветов столько, сколько стихий,— четыре, от которых, постепенно умножаясь, рождаются другие виды цветов. Цветом огня будет красный, воздуха — голубой, воды — зеленый и земли — серый или пепельный. Другие цвета, как яшма или порфир, — смесь этих цветов. Итак, существуют четыре рода цвета, которые образуют свои виды в зависимости от прибавления темного или светлого, черного или белого; эти виды почти неисчислимы…

…Итак, примесь белого не меняет род цвета, но создает его разновидности. Так же и черный цвет обладает подобными же свойствами — производить своею примесью бесчисленные разновидности цветов. Мы видим, что в тени цвета густеют, а когда усиливается свет, цвета становятся ярче и светлее. Поэтому нетрудно убедить живописца, что белое и черное не суть настоящие цвета, но лишь изменения других цветов…»

Столь длинная выписка из работы Альберти была сделана для того, чтобы читатель яснее представил, как много знали, а вернее — гениально предчувствовали, лучшие люди итальянского Возрождения. Ведь с тех пор, как Альберти написал свои «Три книги о живописи», прошло несколько сот лет! Но как много из того, что утверждал он на основании своего опыта и поразительной наблюдательности, подтвердилось наукой почти через пятьсот лет.

Из приведенных слов совершенно ясно следует, что четыре цвета — красный, голубой, зеленый и серый — являются основными, а все остальные — производными. Это утверждение очень близко к истине, но все же не сама истина. Если бы в число названных Альберти цветов не входил серый, знаменитого архитектора можно было бы считать основателем современной теории цветов.

Первым, кому удалось точно указать количество основных исходных цветов, был М. В. Ломоносов. В своем «Слове о происхождении света, новую теорию о цветах представляющем, в публичном собрании Императорской Академии наук июля 1 дня 1756 года говоренном» Ломоносов высказал мысль, что все цвета можно произвести, смешивая лишь три исходных. В подтверждение «сея системы» Ломоносов ссылался на многочисленные опыты, «которые особливо мною учинены в изыскании разноцветных стекол к мозаичному художеству».

Современная теория цветов и цветового зрения была создана трудами Юнга и Гельмгольца. Очень многое сделал в этой области и Максвелл.

Колориметрия наших дней, основанная на принципе трех основных цветов, представляет собой стройную науку. Она позволяет точно предсказывать результаты смешения и определения состава сложных цветов. Она дала в руки специалистов простой и надежный метод расчетов, пригодных для всей бесконечной совокупности существующих в природе цветов. В качестве трех основных цветов выбраны чистые спектральные тона: красный (λ=700 ммк), зеленый (λ =546,1 ммк) и синий (λ= 435,8 ммк).

Нет смысла объяснять здесь теоретические тонкости колориметрии и методы расчетов. Важно одно: теория и практика колориметрии целиком основаны на свойствах цветового зрения человека, определенных опытным путем и выраженных в соответствующих математических соотношениях.

Эти соотношения, в частности, позволили ученым создать сравнительно несложный цветовой график. Пользуясь им, специалисты могут отвечать на все вопросы, связанные с образованием цветов. Вы можете увидеть цветовой график на рисунке. В принципе каждая точка на поверхности графика соответствует одному из существующих в природе цветов. Этот график отличается от практически применяемых отсутствием ряда вспомогательных линий и тем, что художник для наглядности нанес на нем цвета. Разумеется, он не мог нанести бесконечное количество их, но общее расположение и переходы цветов выполнены правильно.

До сих пор мы говорили о смешении цветов путем добавления друг к другу световых потоков разных цветов. Такой способ называется аддитивным (буквально — слагательным) смешением цветов.

Другой способ основан на слиянии в глазу отдельных чистых тонов, наносимых на поверхность мелкими точками в непосредственной близости друг к другу. В этом случае используется известное нам свойство глаза — острота зрения. Если расстояние между точками и их размер таковы, что глаз не может различить их как отдельные, то они сливаются в единое пятно, цвет которого определяется тонами отдельных точек.

Такой метод смешения красок применяли некоторые художники, однако в живописи этот метод не оказался особенно плодотворным, и в настоящее время он не применяется. Зато в текстильной промышленности он применяется очень часто: ткань составляется из тонких нитей различных цветов. В результате смешения ее цветовой тон отличается от цветов нитей.

Но, пожалуй, наиболее полезным метод пространственного смешения цветов оказался в телевидении. В настоящее время все системы цветного телевизионного вещания и многие цветные телевизионные системы специального назначения созданы на основе этого принципа.

Пытались применить его при создании фотопленки для цветной фотографии и кинематографии. Перед второй мировой войной она даже поступила в продажу. Но в последующие годы от такой пленки отказались.

В настоящее время широкое распространение получила цветная пленка, в которой образование цветов осуществляется субтрактивным (буквально — вычитательным) методом.

Возможность такого образования доказывает, в частности, существование дополнительных цветов. В самом деле, какой цвет мы увидим, если каким-либо путем вычтем из лучей белого света красные лучи? Мы увидим дополнительный к красному — зеленый цвет.

Действие светофильтров как раз и основано на субтрактивном образовании цветов. Так, про зеленый светофильтр можно сказать, что он пропускает зеленые лучи. Но столь же верно и то, что зеленый светофильтр не пропускает лучей красного цвета; то есть, находясь на пути белого света, он вычитает из него все красные лучи. Подобным образом действуют и светофильтры остальных цветов.

Теория показывает, что субтрактивный метод также позволяет образовывать из белого света все цвета с помощью трех светофильтров: красного, голубого и зеленого. Для получения нового цвета необходимо подбирать в определенном соотношении плотность (пропускание света) каждого из светофильтров. При фотографировании на цветной пленке такой подбор происходит автоматически.

Цветная печать в полиграфии, пользование акварельными и некоторыми другими видами красок тоже основаны на субтрактивном образовании цветов. В этих случаях, однако, процессы их образования осложняются целым рядом дополнительных обстоятельств, которые не позволяют столь же просто и точно предсказывать цвета не опробованных еще сочетаний красок. Поэтому часто приходится прибегать к практической проверке и пробам.

 

От фактов к теории

Как увязать между собой все многообразие фактов, относящихся к цветовому зрению?

Как связать их с устройством глаза?

И, наконец, как объяснить способность нашего зрения различать между собой огромное количество цветов и столь тонко чувствовать разницу в оттенках?

В общих чертах устройство глаза уже известно читателю. Знакомы ему и многие факты, связанные с цветовым зрением. Пока об устройстве глаза и его свойствах сообщались только факты, можно было принимать их на веру. Но, чтобы понять их связь, понять, почему они таковы, какие из них являются основными, а какие — следствиями, необходимо вкратце познакомиться с теорией.

До настоящего времени из всех предложенных наиболее удачной считается теория, разработанная Юнгом, Гельмгольцем и Максвеллом. Она носит название трехкомпонентной теории цветового зрения. Такое название дано ей не случайно. Дело в том, что исходный пункт, основа ее заключается в предположении о наличии в глазу трех цветочувствительных приемников, или элементов, из которых один реагирует преимущественно на лучи красного света, другой — на лучи зеленого, а третий — на лучи синего света.

По законам пространственного смешения цветов каждый цветочувствительный центр сетчатки должен содержать все три типа приемников. Так, если в данную точку сетчатки попадает луч красного света, то возбудится только красночувствительный элемент, оба других в это время не будут посылать сигналов в мозг. Если же в глаз приходит сложный, хроматический свет, например желтый, то сигналы в мозг будут поступать уже от двух приемников — от красночувствительного и зеленочувствительного. Ощущение белого света возникает, когда все три приемника одновременно и в сильной степени будут возбуждены светом.

Практика, опыт являются лучшими методами проверки любой теории. Это справедливо и в данном случае. Те, кто разобрался в явлении смешения цветов, сразу поймут, что трехкомпонентная теория хорошо согласуется с фактами. С ее помощью можно качественно и количественно объяснить явление смешения цветов, существование дополнительных цветов, цветовых последовательных образов.

Эта теория, в частности, позволяет объяснить причины довольно распространенного порока зрения, называемого дальтонизмом. Люди, страдающие дальтонизмом, плохо различают некоторые цвета. Дальтоников не так уж мало: до 9 процентов среди мужчин, но всего 0,5 процента среди женщин. Этот порок получил название по имени известного английского химика Дальтона, о котором упоминается во всех учебниках по химии. Но редко кто знает, что он, обладая таким недостатком зрения, тщательно изучил его и описал в литературе, чем и объясняется название, присвоенное этому пороку.

Наиболее часто дальтоники не различают красного и зеленого, в то время как другие цвета воспринимаются ими нормально. Зная теперь о трех компонентах, о трех приемниках цвета, мы можем предположить, что могут быть люди, не воспринимающие синих цветов. Действительно, такие люди встречаются, но очень редко. Еще реже встречаются такие, которые вовсе не различают цветов.

Следует предупредить читателей, что очень часто дальтоники даже не подозревают о недостатке своего зрения. Прибегая к аналогии с восприятием звуков, дальтоников можно уподобить людям с плохим музыкальным слухом. В некоторых случаях дальтонизм может привести к тяжелым последствиям, особенно на транспорте, где красный и зеленый сигналы являются приказами взаимно-противоположного смысла.

Самым лучшим критерием правильности трехкомпонентной теории является ее успешное применение в технике. Именно на основе этой теории современная техника создала цветную фотографию и цветное телевидение, разработала новейшие источники света, вызвала к жизни цветную полиграфию и значительно расширила возможности лакокрасочной промышленности. Художникам, предчувствовавшим ее, быть может, раньше всех, она тоже оказала и продолжает оказывать неоценимую помощь.

 

Необъяснимые явления

Нынешняя теория цветного зрения довольно стара. Она в основном была создана во второй половине прошлого века. В наши дни, когда в физике идет непрерывное обновление, непрерывная смена теорий, возраст ее кажется очень большим и вызывает у некоторых даже не меньшее удивление, чем возраст какого-нибудь старого, но все еще не побитого спортивного рекорда.

Чем же объяснить столь почтенный возраст этой теории?

Тем ли, что она верна, или тем, что ей не уделяли должного внимания?

Частично справедливы оба предположения.

Хотя абсолютных теорий не бывает, нынешняя теория цветового зрения оказалась в состоянии объяснить ученым и инженерам практически все интересовавшие их до сих пор факты. Это доказывает, что ее следует считать правильной.

Но в некоторой степени справедливо и второе предположение. Теория взаимодействия света и глаза действительно не находилась в центре внимания физической науки всех этих лет. Главное направление физики шло в области исследования света как такового, атома, его ядра и элементарных частиц. Некоторые выдающиеся естествоиспытатели отдавали свои силы выяснению взаимодействия света и глаза, но в общей совокупности физических исследований их усилия составляли малую долю, хотя решали они задачу, сложность которой люди сумеют оценить лишь в будущем. К этому следует добавить, что эту задачу должны решать не только физики, но и специалисты из многих других областей науки, что до последнего времени тоже усложняло дело.

И, быть может, хорошо, что получилось именно так. Потому что дальнейшие открытия в области воздействия света на глаз и нервную систему человека могут оказаться столь серьезными и важными, что их стоит оставить до лучших времен, когда эти открытия будут использоваться только во благо, а не во вред людям. Следует подчеркнуть, что подобных открытий может и вовсе не случиться, но при современном уровне знаний предположение об их принципиальной возможности не следует считать чистой фантазией. В самое последнее время зародилась новая наука — бионика. Одной из ее задач является изучение органов чувств человека и животных, чтобы понять, как они устроены, и создать по их подобию искусственные органы чувств. У большинства животных зрение является основным чувством, и ему, естественно, уделяется особое внимание. Можно не сомневаться, что эта наука сумеет сделать новые очень интересные и важные открытия.

Трехкомпонентная теория цветного зрения существует без принципиальных изменений так долго потому, что до сих пор она оказалась в состоянии объяснить практически все известные факты, и потому, что великолепно оправдала себя на практике.

Кроме того, до недавней поры не знали о сколько-нибудь серьезных фактах, объяснить которые оказалось бы не под силу этой теории. То есть необходимости в пересмотре ее до последнего времени не возникало. Но в пятидесятые годы были открыты новые факты.

Что же это за факты?

Прежде всего, это — отсутствие твердых доказательств о наличии в глазу трех цветочувствительных приемников, на предположении о существовании которых основывается трехкомпонентная теория. Уже в течение многих лет пытаются отыскать их в глазу. Доподлинно известно, что на цвет реагируют колбочки. Поэтому имелось предположение, что не все колбочки одинаковы, а делятся на три типа: одни чувствительны к красным, другие — к зеленым, третьи — к синим лучам. Но не все ученые так думали, некоторые считали, что все колбочки одинаковы, но в них существуют некие центры или некие химические процессы, по-разному реагирующие на разные цвета.

Для проверки подобных предположений ставились и ставятся многочисленные опыты. Их результаты часто бывали очень противоречивыми. И временами казалось, что доказательства о существовании трех видов цветочувствительных приемников уже в руках ученых. Но на поверку все выходило не так просто. И в настоящее время многие исследователи не склонны считать, что существующие гипотезы — по крайней мере, в том виде, как они формулируются теперь, — являются верными. Более того, в результате исследований последних лет возникли серьезные сомнения в самой природе восприятия света с помощью зрительных пигментов (иодопсина, родопсина). Сейчас некоторые ученые высказывают даже предположения о том, что фотохимическая теория зрительных процессов в глазу может оказаться неверной.

Уже много лет ученым известно очень простое устройство или, скорее, забавная игрушка с удивительными свойствами. Устройство это называется диском Бенхема и представляет собой круг, закрашенный до половины в черный цвет; на второй половине круга по белому полю расположены черные парные дуги разных радиусов. Подобный диск помещен в приложении к книге. Вырежьте его, наклейте на кусок картона и сделайте из него волчок.

Раскрутив диск Бенхема, вы увидите неожиданное явление. Черно-белый диск становится вдруг цветным. На его поверхности появляются цвета. Они слабые и ненасыщенные, но все же хорошо заметны. Цвета эти непостоянны. По мере того как обороты диска падают, они меняются.

Несколько лет назад английские специалисты в области телевидения, видимо основываясь на этом же явлении, провели очень интересный опыт. Однажды во время передачи английские телезрители увидели на экранах своих приемников торговую рекламу бульонных кубиков. Это было неподвижное изображение с очень простыми формами. На него вряд ли обратили бы внимание, если бы это изображение не оказалось цветным. Цвета были блеклые, но явственно заметные. Это привлекло всеобщее внимание — ведь телевизоры были не цветными, а обычными.

Любая полная научная теория должна объяснять все известные науке факты, относящиеся к какой-либо области. Это справедливо и по отношению к общепринятой теории цветового зрения. Она тоже должна была бы объяснить действие диска Бенхема и опыт английских инженеров. Однако, по крайней мере в настоящее время, она не дает такого объяснения. Можно, конечно, считать явление цветов в диске Бенхема частным, нехарактерным случаем, потому что практически на наш глаз всегда действует постоянный свет, а от этого диска приходит свет пульсирующий. Но такой ответ может удовлетворять науку лишь до определенной поры, пока таких частных случаев мало, пока не появляется хотя бы один существенно важный.

И если бы такой важный факт не стал известен, то подобной неопределенной ссылкой на частный и нехарактерный случай пришлось бы закончить главу о зрении. Но в самом начале 1959 года в науке о цвете, спокойно развивавшейся на основе классической теории в течение многих десятилетий, случилось событие огромной важности.

На одном из заседаний Национальной академии наук США выступил физик Эдвин Лэнд. Тот самый Лэнд, который за десять лет до того изобрел быстрый фотографический процесс, применяемый теперь в некоторых фотографических камерах, и в частности в фотоаппаратах «Момент». В этот раз Лэнд докладывал о некоторых опытах по теории цветового зрения, которые он проводил со своими сотрудниками в течение нескольких лет. Результаты опытов столь интересны, что, по крайней мере, об одном из них стоит подробно рассказать.

Для осуществления опыта была сконструирована специальная сдвоенная фотографическая камера. От обычной она отличается тем, что световой поток, прошедший через объектив, с помощью особого устройства делится на два, из которых каждый падает на отдельную фотопластинку. Изображения на обеих пластинках получаются абсолютно одинаковыми, так как объектив общий и фотографирование на обе пластинки производится в одно и то же время.

Сдвоенная фотокамера (сверху) и сдвоенный проектор Лэнда. В фотокамере с помощью специальной системы призм, установленных позади общего объектива, создается два одинаковых изображения. Для того чтобы осуществить цветоделение, перед пластинками установлены светофильтры. Изображения проектируются и совмещаются на общем экране. В проекторе имеются два независимых объектива.

Но есть и различие. Оно состоит в том, что на пути каждого из световых потоков ставятся разные светофильтры. Один из них пропускает лучи света с длинами волн больше 585 миллимикронов, то есть оранжевые и красные. А другой — только лучи с волнами короче 585 миллимикронов, то есть частично желтые и полностью зеленые, голубые, синие и фиолетовые.

С полученных в этой камере негативов были отпечатаны диапозитивы. Назовем диапозитив, полученный от негатива, снятого в оранжево-красном свете, длинноволновым, а другой — коротковолновым. Представим себе, что натурой для этих фотографий послужил букет красных георгинов в синей вазе. Если внимательно вглядеться в диапозитивы, мы увидим, что формы предметов на них абсолютно одинаковы, но гамма серых цветов различна. На длинноволновом диапозитиве цветы будут совсем светлыми, а листья и ваза темными. Зато на коротковолновом диапозитиве цветы кажутся почти черными, а листья и ваза светлыми. Промежуточные цвета натуры дадут нам на обоих диапозитивах различные серые цвета.

Такие негативы и диапозитивы называются цветоделенными и сами по себе не представляют новинки в практике цветной фотографии и цветной печати. Правда, обычно снимаются три негатива через три светофильтра: красный, зеленый, синий. Не ново и то, что делали Лэнд и его сотрудники дальше. Они вставляли оба диапозитива в сдвоенный проекционный аппарат и точно совмещали оба изображения на белом экране. При этом получалось черно-белое изображение.

Но не оно интересовало ученых. Они проектировали изображение с полученных диапозитивов в различных цветах: коротковолновый проектировался через тот же самый коротковолновый светофильтр, а длинноволновый— через длинноволновый светофильтр.

Но (это и есть самое главное) ученые задались таким вопросом: что произойдет, если оставить только один из светофильтров?

Ответ же оказался поистине поразительным. Когда Лэнд убрал коротковолновый светофильтр (на это понадобились всего секунды!), картина на экране осталась многоцветной! Гамма цветовых тонов была не столь богатой, как в натуре, но глаза отчетливо различали разнообразные цветовые тона и оттенки.

Что же изменилось, когда Лэнд убрал коротковолновый светофильтр?

Только одно — коротковолновый диапозитив стал проектироваться в лучах белого света вместо голубовато-зеленых. Длинноволновый же диапозитив продолжал проектироваться в лучах оранжево-красного света. И таким образом на экран стали падать лучи только белого и оранжево-красного света. Никаких других лучей не было. На экране эти лучи смешивались аддитивно, но важно то, что в каждой точке экрана пропорции смеси белого и оранжево-красного цветов были различными. Они зависели от степени потемнения каждого из диапозитивов в данной точке изображения.

Мы проделывали с вами опыты по аддитивному смешению цветов и, в частности, белого с красным и помним, что при изменении пропорции менялась только чистота, насыщенность красного цвета, но цветовой тон оставался неизменным — красным.

Лэнд прекрасно знал о законах аддитивного смешения цветов. И поэтому трудно вообразить себе состояние ученого, когда на его глазах (именно на глазах) в течение нескольких секунд эти законы, существовавшие незыблемыми в течение очень долгого времени, рухнули!

Что делали Лэнд и его сотрудники, совершив открытие, мы не знаем. Но что пришлось им делать далее, известно — работать и работать. Снова и снова повторять опыты, опровергать самих себя и искать новые подтверждения, новые факты, объясняющие открытие. И в первую очередь следовало проверить, нет ли ошибки в самом опыте. Ведь глаз видел разнообразные цвета там, где по теории должны были существовать только цвета одного тона — оранжево-красного. Это утверждала колориметрия, это же подтверждал многолетний практический опыт. И главное, подтверждали объективные оптические приборы, с помощью которых обследовали изображение на экране. Они показывали, что (как и следовало ожидать) в любой точке экрана существует только смесь белого света с оранжево-красным.

Но человеческий глаз действовал вопреки показаниям приборов, вопреки теории и даже, казалось, самой логике: он видел различные цветовые тона там, где их не должно было быть!

Вот что пишет по этому поводу сам Лэнд:

«В чем же состоит ошибка классической теории? Тот факт, что проблемой цветового зрения занималось столь большое число исследователей, исключает возможность ошибки. Ответ заключается в том, что почти все работы по цветному зрению имели очень малое отношение к… цвету в том виде, в каком мы фактически воспринимаем его. В этих работах, по сути дела, изучались цветовые пятна, в частности пары таких пятен, подбиравшиеся до их совпадения по цвету. Заключения, к которым приходили ученые, молчаливо принимались для любых цветовых ощущений. Это утверждение, казавшееся весьма убедительным, прочно вошло в учебники физики. Лишь немногие ученые позволили себе усомниться в нем…

Таким образом, цветовое зрение в естественных условиях при наблюдении полных изображений (а не цветовых пятен) оказалось совершенно неисследованной областью!»

Черно-белые фотографии, полученные Лэндом с помощью сдвоенной фотокамеры и светофильтров. Обратите внимание на различия в этих фотографиях.

Не все ученые согласны с утверждением Лэнда о том, что его открытие не может быть объяснено с помощью классической теории. Некоторое время назад с возражениями Лэнду выступил ряд ученых.

Пока еще рано судить, кто в конечном итоге окажется правым. Как бы то ни было, все специалисты сходятся на одном: новые факты имеют очень важное значение для науки. Возможно, именно они позволят понять работу не только самого глаза, но, что особенно важно, зрительных центров мозга и их взаимосвязь с остальными частями мозга.