Девять цветов радуги

Штейнгауз Александр Израилевич

ТЕЛЕСКОП И МИКРОСКОП

 

 

…старое, но грозное оружие.
В. В. Маяковский

1600 год… Начало эпохи великих социальных и научных революций.

Начало века, в котором засияли в науке имена Галилея, Гюйгенса, Декарта, Кеплера, Лейбница, Ньютона. Эти люди так много сделали для науки, что благодарные потомки недаром ставили им памятники. Но, наверное, нет памятника тем безыменным голландским шлифовальщикам, чьими руками в самом начале того же XVII века был создан первый телескоп и первый микроскоп — самое важное оружие науки на протяжении многих-многих лет.

Трудно себе представить, что было бы, если в XVII веке не сделали все эти великие изобретения. Конечно, рано или поздно они все равно были бы сделаны. Но имена названных здесь ученых, возможно, и не вошли бы в историю, ибо научные заслуги большинства из них так или иначе связаны с использованием тех знаний, которые дал им телескоп.

Триста шестьдесят лет прошло с тех пор, как любопытный детский глаз заглянул в поставленные одна за другой линзы. За эти долгие годы было сделано много великих открытий и изобретений, определивших об-лик нашей сегодняшней жизни. Но не все они продолжают служить человеку. Многие уже безнадежно устарели. Паровую машину сменили паровая турбина и электродвигатель. Паровоз уступает место более совершенным электровозу и тепловозу. Телеграф Морзе вытеснен телетайпом. А в недалеком будущем уйдут на покой и некоторые другие изобретения, принесшие в свое время великую пользу.

Но телескопу и микроскопу суждено существовать очень долго, а скорее всего — всегда.

Конечно, современные оптические инструменты сильно изменились в сравнении со своими «прародителями», но принцип их действия остался все тем же. Резко изменилось другое — точность и качество изготовления, а следовательно, и возможности этих инструментов.

 

Телескопы

Все сведения о небесных телах доставляет нам свет. Только он является тем мостиком, который соединяет Землю с великой Вселенной. Уловленный телескопами и запечатленный на рисунках, фотопластинках и звездных картах, свет позволил астрономам накопить множество знаний и создать первые серьезные теории о происхождении и строении Вселенной.

Мы являемся свидетелями начала новой астрономии — астрономии эпохи космических путешествий. Эпохи, в которую человечество приступит к непосредственному исследованию многих небесных тел. Совсем недавно советскими людьми был запущен первый искусственный спутник. Но за это короткое время ученые и инженеры добились новых блестящих успехов. Эти успехи превзошли самые смелые прогнозы специалистов, недооценивших возможностей современной ракетной техники и темпов ее развития. Так, например, лет пять назад считалось, что высадка человека на Луну окажется осуществимой лет через сто после запуска первого спутника, теперь же можно смело сказать, что мы будем свидетелями этого великого события в 70-е годы нашего столетия.

Столь большие успехи породили у некоторых людей мнение, что теперь наступает пора прямых исследований и что телескоп со временем перестанет быть главным орудием исследования Вселенной, потому что путешествия человека к звездам и тем более на другие планеты сделают его ненужным.

Это — ошибочное мнение.

Несомненно, люди посетят планеты, и, видимо, в первую очередь Марс. И очень хотелось бы, чтобы это произошло еще при жизни создателей первого спутника. Но самые крупные планеты солнечной системы, к сожалению, еще надолго останутся недоступными для человека. Главное средство обороны этих планет от посягательств землян — огромная сила тяготения. Так, например, на Юпитере, самой большой планете солнечной системы, все тела приобретают вес в 3 раза больший, чем на Земле. Даже если не будет никаких других препятствий, посадка ракеты на Юпитер и ее возвращение хотя бы к одному из спутников этой планеты из-за очень большой силы тяготения вряд ли окажутся возможными в ближайшие десятилетия. Что же касается визита на какую-нибудь звезду или хотя бы близкого подлета к ней, то такая экспедиция никогда не будет возможной — достаточно лишь вспомнить о температурах, существующих на поверхности звезд, чтобы понять это.

Таким образом, телескоп навсегда останется одним из главных инструментов, с помощью которого будет вестись большинство астрономических наблюдений и исследований. Но это вовсе не означает, что развитие ракетной техники никак не повлияет на эти исследования. Оно уже начало сказываться на них. И о первых результатах здесь будет сказано несколько слов.

Часто говорят, что телескоп увеличивает наблюдаемые объекты. Это неверно. Изображение в телескопе всегда меньше наблюдаемого небесного тела. Правильнее говорить, что телескоп увеличивает угол, под которым наблюдается тот или иной объект. Иными словами, изображение в телескопе имеет увеличенные угловые размеры в сравнении с видимыми невооруженным глазом. Телескоп как бы приближает к нам наблюдаемые объекты. Однако такое увеличение не всегда возможно даже при использовании самых больших телескопов. И вот почему.

Объекты астрономических наблюдений в зависимости от угловых размеров, наблюдаемых невооруженным глазом, можно разделить на две категории.

К первой относят все небесные тела, угловой размер которых, определяемый как отношение поперечника тела к его расстоянию до Земли, достаточно велик. К таким объектам в первую очередь следует отнести Солнце и Луну, видимые под углом в 0,5°. Сюда же входят и планеты, хотя их угловые размеры значительно меньше: у Юпитера — 57', или 0,0158°, а у Марса — не более 19,2', или 0,00535°. Многие галактики тоже видны под большими углами, даже значительно большими, чем Солнце и Луна. Например, туманность Андромеды, вернее, ее главное тело, имеет около 40' в ширину и 160' в длину. Однако расстояние до нее так велико, что ее яркость соответствует девятой звездной величине. И даже глазу, вооруженному телескопом, она представляется не очень яркой звездой. Только фотографирование с большой выдержкой позволяет получить ее четкое изображение.

Вторая категория — так называемые точечные объекты — очень многочисленна. К ней относятся все звезды. Самая близкая из них так далека от нас, что численное значение отношения ее поперечника к расстоянию до Земли необычайно мало. Даже при максимальном теоретически возможном увеличении телескопа звезда все равно будет выглядеть светящейся точкой — такой же, как и при наблюдении невооруженным глазом. Изображение звезды в телескопе будет отличаться лишь большей яркостью да отсутствием лучей, которые мы видим у ярких звезд.

Итак, объекты первой группы при рассмотрении в телескоп приобретают большие угловые размеры, при этом на их поверхности могут быть различены детали, недоступные невооруженному глазу; а угловые размеры точечных объектов остаются практически неизменными.

Зачем же в таком случае рассматривать их в телескоп?

Прежде чем ответить на этот вопрос, отвлечемся от астрономии.

В некоторых районах нашей страны вода в источниках очень жесткая: она плоха и для стирки, и для мытья. В таких местах очень ценится дождевая вода. И, когда начинается дождь, люди, запасаясь водой, ставят под его струи ведра, корыта, тазы. Но ни одному даже самому несведущему в физике и математике человеку не придет в голову выставить под дождь бутылку — слишком мало капель попадет в ее узкое горлышко.

Нечто похожее происходит и при наблюдении звезд.

Все лучи, приходящие на Землю от какой-либо звезды, имеют практически одно и то же направление. Иными словами, пути всех фотонов, мчащихся от этой звезды к Земле, параллельны. Оптическая система, находясь на пути такого «дождя» фотонов, меняет направление каждого из них таким образом, что пути их перекрещиваются в одной точке. В глазу эта точка (фокус) находится на сетчатке, а в телескопе — в фокальной плоскости, где обычно устанавливается фотопластинка. Захваченные входным зрачком оптической системы световые кванты отдадут свою энергию: в глазу — палочкам и колбочкам, в телескопе — светочувствительным зернышкам фотоэмульсии или опять-таки палочкам и колбочкам глаза наблюдателя.

В невооруженный глаз фотонов попадает очень мало, а на фотопластинку или в глаз наблюдателя, вооруженный телескопом, — значительно больше.

Это и понятно. Ведь наибольший диаметр зрачка человеческого глаза не превышает 8 миллиметров. И, следовательно, площадь, с которой глаз собирает капли светового «дождя» — фотоны, равна 50 квадратным миллиметрам. Зато входной зрачок построенного в США телескопа имеет диаметр 5000 миллиметров. Площадь его равна 19,6 квадратного метра, то есть примерно такая же, как площадь жилой комнаты средних размеров. Соотношение площадей двух этих зрачков показывает, что в единицу времени телескоп собирает в 392 тысячи раз больше фотонов. Хороший наблюдатель в самых благоприятных условиях может увидеть невооруженным глазом звезды шестой величины. С помощью 5-метрового телескопа ему же удастся увидеть звезды 18—19-й величины.

Невооруженный глаз в нашем случае можно сравнить с узкогорлой бутылкой, а телескоп — с огромным чаном. И если продолжать эту аналогию, то при наблюдении в телескоп глаз можно уподобить бутылке, а телескоп — воронке с очень широким раструбом, собирающей все капли — фотоны и «вливающей» их в узкое отверстие глаза.

Оптические схемы телескопов.

В наше время астрономы довольно редко смотрят на звезды. Наблюдателя уже довольно давно сменила фотопластинка. Это удобнее по многим причинам, но наиболее важные из них, пожалуй, две.

Во-первых, фотографирование лучше тем, что каждая фотография является самым достоверным документом, сохраняющим на века точнейшие данные о взаимном расположении наблюдаемых объектов, об их светимости и конфигурации, имевших место в то время, когда производилось фотографирование. Обнаружить какие-либо изменения можно, только сопоставив снимки одного и того же участка неба, сделанные в разное время.

Во-вторых, фотографирование позволяет обнаружить звезды и другие объекты, слишком слабые для невооруженного глаза. Это объясняется способностью светочувствительных зерен фотоэмульсии суммировать во времени, накапливать фотохимическое действие фотонов. У глаза эта способность накапливать последовательные возбуждения от отдельных фотонов выражена в значительно меньшей степени. Кроме того, если количество фотонов, попадающих в данную палочку за единицу времени, меньше некоторого минимума (ниже некоторого порога), глаз вообще не ощутит света.

В «паспорте» каждой звезды имеется не только ее фотография, имя и адрес. В него же вписаны и особые приметы гражданки Вселенной — светимость (величина, характеризующая яркость звезды) и спектральный тип. Эти приметы помогают устанавливать специальные приборы — фотометры и спектрографы, применяемые совместно с телескопом. С помощью спектрографа фотографируется спектр звезды, а распределение энергии в этом спектре исследуется особочувствительными термометрами — термопарами.

В наши дни в распоряжении астрономов имеются телескопы различных типов и классов. Одни предназначены для исследования предельно доступных глубин Вселенной, но зато имеют очень малый угол поля зрения; другие так далеко в космос не проникают, но зато позволяют вести фотографирование довольно больших участков неба.

По принципу действия или, вернее, по оптической схеме телескопы можно разделить на три основные группы: рефракторы, рефлекторы и зеркально-линзовые. Первыми появились телескопы, в которых в качестве объектива использовалась собирающая линза, а в качестве окуляра — рассеивающая. По такой оптической схеме была собрана труба Галилея.

Схема трубы Галилея.

Кеплер создал другую оптическую схему, по которой и сейчас выполняются рефракторы. В этой схеме собирающие линзы используются и в объективе и в окуляре.

Схема трубы Кеплера.

Первые телескопы давали очень несовершенное окрашенное изображение. Ньютон объяснил причину этого недостатка и даже пришел к выводу, что устранить окрашивание в рефракторах невозможно. Это была ошибка. Но она имела не только вредные, но и полезные последствия: она натолкнула Ньютона на мысль о постройке телескопа по иной оптической схеме. Такой телескоп был собственноручно изготовлен ученым в 1668 году. Это был первый в мире рефлектор — телескоп, у которого в качестве объектива используется не собирающая линза, а вогнутое зеркало. Окрашивание объектов в рефлекторе принципиально отсутствует, потому что свет не проходит сквозь линзу, а отражается от полированной поверхности зеркала.

Правда, сама идея рефлектора принадлежит не Ньютону — она была высказана еще за пять лет до него соотечественником великого физика — Грегори, но его оптическая схема несколько отличалась от предложенной Ньютоном. Поэтому последнему часто приписывают и славу изобретателя рефлектора. На самом деле он был первым, кто построил телескоп-рефлектор. Грегори же не повезло: уже после того как Ньютон построил свои телескопы, оптическую схему, подобную предложенной Грегори, вновь описал другой ученый — Кассегрен. И оптику, выполненную по этой схеме, до сих пор часто называют кассегреновской.

Ошибка Ньютона была исправлена лишь в 1729 году, когда появился первый ахроматический (неокрашивающий) объектив. С тех пор рефракторы вновь обрели признание.

В настоящее время строятся и применяются оба типа телескопов. Каждому присущи свои достоинства и недостатки; каждый тип применяется для решения особого круга задач: с помощью рефракторов ведутся астрономические наблюдения и исследования, с помощью рефлекторов— астрофизические, например исследования спектров.

Совсем недавно появился новый тип телескопа. Его изобрел советский ученый Д. Д. Максутов.

Телескоп Максутова. У телескопа автор Д Д. Максутов.

Схема этого телескопа представляет собой сочетание рассеивающей линзы — мениска — и вогнутого зеркала сферической формы. Преимуществами этого типа телескопов являются большая простота и весьма малая длина инструментов.

Наиболее мощными инструментами в настоящее время являются рефлекторы. Диаметр главного зеркала, наиболее крупного из всех существующих, равен 508 сантиметрам. Этот телескоп установлен в обсерватории на горе Маунт Паломар, в Калифорнии. Диаметр объектива самого крупного рефрактора равен всего лишь 102 сантиметрам. Это означает, что самый большой рефлектор позволяет собирать в 25 раз больше света, чем самый большой рефрактор.

В СССР совсем недавно был построен рефлектор с диаметром зеркала в 260 сантиметров. Он установлен в Крымской астрофизической обсерватории в Симеизе.

Новый телескоп-рефлектор в Симеизской обсерватории. Его называют ЗТШ-2,6, что означает: зеркальный телескоп Шайна с диаметром главного зеркала 2,6 метра.

Можно не сомневаться, что наши оптики при необходимости сумеют построить и более крупные телескопы, которые позволят астрономам исследовать глубины космоса. Это будут самые большие в мире инструменты.

Обработка зеркала диаметром 2,6 метра на Ленинградском оптико-механическом заводе. Обработка длилась более года и велась при строго постоянной температуре.

Самый большой рефрактор в Советском Союзе установлен в Пулковской обсерватории: диаметр его объектива равен 75 сантиметрам.

По фотографиям вы можете судить, какое огромное и сложное сооружение — современный крупный телескоп. Помимо высоких оптических качеств, это огромное сооружение должно иметь возможность наводиться на требуемый участок неба и вращаться так же плавно и равномерно, как наш земной шар, с тем чтобы с чрезвычайно высокой точностью следить за положением избранной звезды. Строительство подобных телескопов длится годы и обходится очень дорого. Иметь такие инструменты может позволить себе не каждое даже богатое государство.

Новый телескоп-рефрактор, построенный в ГДР.

Строительство нового телескопа в ГДР.

Еще совсем недавно, до эпохи ракет и спутников, многие считали астрономию наукой, оторванной от жизни. Теперь отношение к ней со стороны непосвященных переменилось, но тем не менее они продолжают считать, что практическую пользу астрономия принесет лишь в будущем. Это неверно. Астрономия не только наука, устремленная в будущее, она в то же время одна из самых древних наук. И появилась она для того, чтобы ответить на вопросы, жизненно важные для человеческого рода. Ею успешно занимались жрецы Египта и Двуречья, а в Западном полушарии — жрецы народов майя, инков и ацтеков.

Астрономия для древних народов имела не только мистическое значение и служила не только для укрепления власти жрецов. Основное ее назначение было чисто практическим и необыкновенно важным — она дала народам календарь.

В наши дни календарь кажется извечным, присущим самой природе и само собой разумеющимся явлением. Однако это вовсе не так. Календарь — одно из важнейших изобретений древнего мира, сделанное на основании знаний о законах смены времен года и небесных явлений. Именно календарь помогал народам проводить сельскохозяйственные работы в правильные сроки.

Самый точный календарь, как недавно установили ученые, оказался у народа майя. Хотя летосчисление у этого народа было основано на отличных от принятых теперь принципов, они все же точнее всех других определили длительность года. Вот табличка, в которой сопоставлены длительности года, указываемые различными календарями:

Юлианский календарь 365, 250 000 дня.

Григорианский календарь 365, 242 000 дня.

Календарь майя 365, 242 129 дня.

Точные астрономические данные 365, 242 198 дня.

Жизнь любого народа даже и по настоящий день в какой-то степени подчинена календарю. Есть дни, когда он предписывает веселиться; есть дни, считающиеся печальными. Все это — наследие глубокой старины, когда жрецы, а затем и священники требовали неукоснительного соблюдения календарных предписаний.

Дальнейшее развитие астрономия получила, столкнувшись с новой, очень важной для человечества задачей — с навигацией. Это произошло в то время, когда стало развиваться мореплавание. Только звезды могли указывать дорогу судам вдали от берегов, и морякам поневоле пришлось стать и астрономами. Знание некоторых разделов астрономии необходимо и штурманам наших дней. Навигация по звездам — астронавигация— имеет в наше время важное практическое значение.

Новая, современная астрономия зародилась в эпоху позднего Возрождения, когда ум человеческий впервые за многие века вырвался из оков церковного мракобесия. В 1543 году, в год смерти великого польского астронома Николая Коперника (1473–1543), вышла в свет его книга «Об обращении небесных сфер». Этой книгой Коперник нанес решительный удар освященной веками и римской церковью Аристотелевой картине Вселенной.

Окончательно взгляды Коперника утвердились уже в начале XVII века, когда Галилей сделал свои всем известные наблюдения. Вот что пишет об этом в книге «Наука в истории общества» профессор Дж. Бернал:

«Едва новость о телескопе дошла до профессора физики и военно-инженерного дела в Падуе Галилео Галилея, как он решил сделать себе такой же прибор, чтобы направить его на небо. Галилей уже в то время был убежденным последователем Коперника, причем он одновременно глубоко интересовался движениями маятника и связанной с этим проблемой свободного падения тел. За несколько первых ночей наблюдения неба он увидел достаточно для того, чтобы разгромить всю аристотелевскую картину этой безмолвной стихии. Ибо Луна оказалась не совершенной сферой, а покрытой морями и горами; планета Венера, так же как и Луна, имела фазы, в то время как планета Сатурн казалась разделенной на три планеты. И, что важнее всего, Галилей заметил, что вокруг Юпитера вращаются три звезды или луны — миниатюрная модель системы Коперника, которую каждый смотрящий в телескоп мог увидеть собственными глазами».

В наши дни астрономия представляет собой по существу не одну, а несколько объединившихся ради единой цели наук. Здесь и небесная механика, изучающая законы движения небесных тел; и астрофизика, исследующая физические процессы и химический состав небесных тел и межзвездного вещества; и космогония — наука, стремящаяся постигнуть тайны происхождения и развития небесных тел; и даже астроботаника — новая область астрономии, изучающая растительные покровы Марса.

Астрономия — одна из немногих наук, привлекающая к себе с давних пор множество любителей. Нередки случаи, когда им удавалось делать весьма ценные наблюдения. Очень большую помощь оказали они при наблюдениях за полетом первого искусственного спутника. Правда, пока еще любителям трудно приобрести инструмент хорошего качества и часто они самостоятельно изготовляют простейшие телескопы. Теперь оптическая промышленность нашей страны стала одной из сильнейших в мире, и надо полагать, что скоро в продаже появятся хорошие любительские телескопы. И тогда астрономов-любителей будет у нас не меньше, чем радио- или фотолюбителей.

Одним из важнейших разделов астрономии является изучение планет солнечной системы. Они с давних пор привлекали внимание астрономов и тем, что были наиболее доступны для наблюдений, и тем, что ученые уже давно предчувствовали их близкое родство с Землей.

Эти предчувствия подтвердились, когда Ломоносов открыл атмосферу на нашей ближайшей соседке Венере. К сожалению, она очень непрозрачна, и мы до сих пор знаем об этой планете гораздо меньше, чем о более отдаленном Марсе. Изучению Венеры мешает также и то, что она ближе к Солнцу, и поэтому наблюдать ее менее удобно, чем Марс.

Но эта планета ближе к Земле, чем Марс, и поэтому именно в ее сторону, а не к Марсу были запущены первые автоматические межпланетные станции с различными научными приборами на борту. Пока еще неизвестно, каковы результаты изучения этих планет с помощью космических станций. Но несомненно одно — они позволят ученым делать новые открытия, важные не только для астрономов, но и для тех, кто изучает Землю. Ведь изучив особенности нашей ближайшей (не считая Луны) соседки, мы сумеем лучше понять и нашу родную планету.

Нам станут более понятными процессы, протекающие в нашей атмосфере; быть может, мы сумеем понять происхождение магнитного поля Земли.

Этот снимок сделан в радостные дни октября 1957 года, когда был запущен первый в истории искусственный спутник Земли. Астрономы-любители оказали в те дни большую помощь ученым.

Вероятно, в недалеком будущем люди сумеют послать к Венере и другим планетам такие автоматические станции, которые, «приземлившись» на поверхности планет, позволят уже самым непосредственным образом изучать их. И тогда мы сумеем узнать, есть ли жизнь на планетах солнечной системы, хотя бы самая примитивная, и изучать эти внеземные формы жизни. И, конечно, ученые постарались бы как можно скорее получить точную карту каждой из планет.

Точная карта планеты… Это действительно было бы бесценным приобретением для нашей земной науки. По ней мы могли бы судить не только о другой планете, а сумели бы, видимо, узнать и кое-что новое о своей.

И недаром столько внимания уделяется изучению поверхности Марса. Исследования этой планеты приняли особенно широкий характер после того, как итальянский астроном Джованни Скиапарелли (1835–1910) увидел на ее поверхности необычайный узор из пересекающихся тонких линий. Он истолковал увиденные линии как сооружения, выполненные разумными существами, и назвал их каналами. Такое толкование, вероятно, выражало заветную и не всегда осознанную мечту человечества — убедиться в существовании разумных существ на других мирах.

И, видимо, именно поэтому сообщение об открытии Скиапарелли привлекло к себе всеобщее внимание.

В годы, последовавшие за этим открытием, вопрос о каналах на Марсе был предметом очень серьезных споров между астрономами. В настоящее время они все же пришли к выводу, что скорее всего никаких образований на поверхности Марса, похожих на те, которые видел Скиапарелли, не существует. Но в то же время они не считают вопрос выясненным до конца.

Наиболее вероятным объяснением открытия каналов они считают оптический обман. Он возникает при наблюдении слабо освещенных объектов, находящихся на пределе видимости. Этому же способствовало и то, что телескоп Скиапарелли был небольшим и в нем сильно сказывались явления дифракции.

По мере того как в распоряжение астрономов поступали все более крупные инструменты, в которых изображение Марса было более ярким, а явление дифракции сказывалось меньше, случаи обнаружения каналов становились все более и более редкими. А в современные большие инструменты их и вовсе не видно. Вы можете убедиться в этом, посмотрев на карту Марса, составленную в обсерватории Пик дю Миди во время последнего противостояния Марса в ноябре 1958 года.

Карта Марса, выполненная во время противостояния в 1958 году.

Наблюдения Марса велись с помощью 61-сантиметрового рефрактора при увеличении в 1200 раз. Угловой размер изображения Марса при этом был равен 19,2'∙1200 = 6,4°. Под таким углом виден пятак, помещенный в 22 сантиметрах от глаза. Помимо карты Марса, в книге приведен один из последних его рисунков (Марс на фотографиях получается хуже, и его до сих пор зарисовывают наблюдатели). Карта и фотоснимок дают некоторое представление о том, каким видят Марс астрономы. Из этого рисунка видно, что каналов на Марсе нет. Либо за шестьдесят лет, прошедшие со времени открытия Скиапарелли, они исчезли, заметенные песчаными бурями, либо, и это почти не вызывает сомнений, никогда не существовали.

В наше время ученые считают, что на Марсе нет разумных существ. Зато они не сомневаются в существовании растительности. Множество фотографий поверхности Марса, сделанных в различных лучах спектра, и другие спектральные исследования, проведенные советскими астроботаниками под руководством Г. А. Тихова, позволяют считать это установленным фактом.

Огромное внимание уделяют астрономы и астрофизики изучению Солнца — этой единственной звезды, которая достаточно близка к нам.

Физические процессы на Солнце, исследуемые учеными, позволяют глубже проникнуть в тайну вещества и ядерных реакций. Эти процессы оказывают очень большое влияние на состояние атмосферы Земли, на погоду, и радиосвязь. Изучив Солнце, ученые сумеют лучше познать и другие звезды.

Солнце исследуют разными методами: фотографируют спектры, его видимую поверхность в лучах света с различными длинами волн, исследуют его корону. И во всех этих исследованиях телескоп является основным прибором.

Вот как описывает Солнце известный английский астрофизик Джемс Джинс (1877–1946):

«Ясно, что Солнце — не мертвый мир, подобно Луне или Меркурию. Наоборот, здесь ничто не пребывает в покое; все находится в бешеном движении; вся поверхность возбуждена, кипит, бурлит и извергается разными путями. Нам понятно, почему это должно быть так.

Внутренность Солнца представляет собой как бы огромную, непрерывно работающую силовую станцию. Энергия, освобождающаяся внутри Солнца, делает его чрезвычайно горячим, так что огромный поток тепла выбрасывается наружу, на поверхность, откуда он и изливается в пространство в виде радиации… При этом поверхность, естественно, не может оставаться спокойной, и мы видим ее сплошь кипящей. Верхние слои, попросту говоря, перевертываются и обращают свои самые горячие стороны к внешнему пространству, что дает возможность быстрее выделиться заключенной в них энергии излучения.

Солнце, сфотографированное через специальные светофильтры, пропускающие практически свет одной длины волны: 1 — в ультрафиолетовых лучах; 2 — в лучах синего цвета; 3— в лучах красного цвета; 4 — для сравнения приведена обычная фотография Солнца в лучах белого цвета.

Но и этого еще недостаточно. Огромные фонтаны пламени, называемые протуберанцами, там и сям бьют над солнечной поверхностью на сотни тысяч километров в высоту. Они — большей частью малинового цвета — часто принимают самые фантастические формы. Одни из них стоят почти спокойно, другие же выпускают побеги со скоростью тысяч километров в секунду. Некоторые совершенно отделяются от Солнца, взлетая на высоту сотен тысяч километров…

Фантастическая архитектура малинового пламени протуберанцев не единственная декорация солнечной поверхности. В разных ее местах мы видим темные зияющие впадины, очень похожие на кратеры действующих вулканов, извергающих огонь и вещество из недр Солнца. На Земле мы называем эти впадины солнечными пятнами…»

На фотографиях, приведенных в книге, можно увидеть снимки Солнца, полученные на разных длинах волн, а также четыре последовательных снимка гигантского взрыва на Солнце.

Четыре последовательных снимка гигантского взрыва на Солнце.

От Солнца путь астрономической науки идет к звездам и отдаленным мирам Вселенной — к галактикам. Для их изучения требуются огромные и объединенные усилия ученых всего мира. Чтобы лучше представить объем уже проделанной работы, достаточно сказать, что обследованы и внесены в каталог уже несколько сотен тысяч одних только галактик. Но исследуются ведь не только галактики, но и отдельные звезды. Очень большой интерес для науки представляет изучение межзвездного вещества и газа. Изображение одной из таких газовых туманностей вы можете увидеть на фотографии.

Фотография одной из галактик.

Познакомившись с фотографиями различных объектов астрономических исследований, вернемся снова к инструменту, с помощью которого они были сделаны, — к телескопу. Мы видим, что он позволил ученым добиться очень многого, но отнюдь не всего, чего им хотелось бы. Телескопы вовсе не идеальны и не всесильны. Их совершенству положены пределы, установленные законами оптики и свойствами земной атмосферы.

Так, например, оказывается невозможным поднять увеличение телескопа выше некоторой, сравнительно небольшой величины. И, если кто-либо из читателей полагал, что большие телескопы строятся только для получения больших увеличений, он ошибался. С ростом диаметра объектива максимально возможное увеличение действительно повышается, однако основная цель строительства гигантских телескопов в другом: в том, чтобы увеличить количество собираемого света и тем самым увеличить глубину проникновения в бесконечные дали Вселенной.

Светящаяся газовая туманность.

Предел увеличению телескопа ставит явление дифракции. Оно сказывается тем сильнее, чем меньше диаметр объектива и чем больше увеличение. Практически наилучшее увеличение даже в очень крупных инструментах не превышает 800 раз. В некоторых случаях наблюдатели сознательно прибегают к удвоению и даже учетверению этой цифры, но количество различимых деталей при этом не повышается. Меняются лишь условия наблюдения, что иногда бывает удобнее для работы. Явление дифракции очень хорошо видно на фотографии Сириуса. Лучи, отходящие от этой звезды, являются следствием дифракции света. На самом же деле их нет.

«Острота зрения» телескопа с диаметром зеркала 508 сантиметров в 1200 раз выше, чем у глаза. Это означает, что наименьший объект, форму которого еще можно различить, должен иметь угловой размер не менее 0,05', что на поверхности Луны будет соответствовать линейному размеру 50 метров, а на поверхности Марса — 8 километрам. Можно видеть и меньшие предметы, но форму их определить окажется невозможным: круг, квадрат, прямоугольник или любая другая фигура при этом становятся неотличимыми друг от друга, представляя собой некие расплывчатые пятнышки. Наибольшее полезное увеличение 508-сантиметрового рефлектора, как мы уже говорили, равно примерно 1200, но поле четкого зрения у него очень мало — всего лишь 0,25° в поперечнике; в него не поместится целиком даже Луна.

При чрезмерно большом увеличении наблюдению светил начинает препятствовать явление дифракции. На снимке приведено изображение Сириуса; лучи, расходящиеся в стороны, возникли за счет дифракции.

Предел увеличению ставит и яркость наблюдаемых объектов. При повышении увеличения яркость изображения в телескопе будет падать. Это и понятно — ведь количество фотонов, попадающих в глаз или на пластинку, определяется только яркостью самого объекта, расстоянием до него и диаметром объектива телескопа, но не зависит от увеличения. С ростом же увеличения растет размер изображения, и то же самое количество фотонов должно будет распределиться на большей площади. Следовательно, на каждое зернышко эмульсии или на каждую светочувствительную клетку на сетчатке глаза придется меньшее количество фотонов. Такое падение освещенности фотопластинки или сетчатки при наблюдении объектов малой яркости может оказаться недопустимым.

Если первые две причины, ограничивающие увеличение, определялись диаметром телескопа, то есть так или иначе зависели от человека, то третья, весьма существенная причина имеет совсем иную природу и совершенно не подчиняется нашей воле. Эта причина — состояние атмосферы.

В контейнере установлены два телескопа: большой — для фотографирования светил, а с помощью малого телескопа и специального автомата осуществляется наводка большого телескопа на заданное светило (малый телескоп спереди).

Оказывается, наша атмосфера не столь уж прозрачна и однородна, как мы привыкли считать. И дело вовсе не только в облаках, туманах и пыли. Есть другие не менее неприятные помехи для астрономических наблюдений. Речь идет о тех малозаметных мельчайших изменениях плотности атмосферы, которые обычно можно наблюдать над разогретыми поверхностями: над асфальтовой лентой шоссе, над большими полями или над степью. Если смотреть сквозь толщу воздуха над такими поверхностями, то мы увидим, что воздух струится и дрожит от мелких токов, словно густой сахарный сироп, растворяемый в воде.

Такие колебания атмосферы, даже выраженные в гораздо меньшей степени, — страшные враги астрономов. Они мешают им вести наблюдения, потому что приводят к непрерывным и неконтролируемым изменениям резкости изображений небесных тел. Они сказываются тем сильнее, чем больше увеличение телескопа. Поднимать его выше определенной величины нет смысла — изображение от этого только ухудшится. Чтобы избавиться от таких помех, астрономы поднимаются высоко в горы, где воздух не только чище, но и гораздо спокойнее. Так, в СССР Абастуманская и Бюраканская обсерватории построены в горах на высоте 2000 метров над уровнем моря.

Атмосфера Земли создает и другие помехи — она оказывается неодинаково прозрачной в различных участках спектра. На некоторых длинах волн она поглощает почти весь свет. И это свойство атмосферы очень мешает астрономам при исследовании спектров Солнца и звезд. До последнего времени астрономам приходилось бороться с этой трудностью только косвенными методами. Но несколько лет назад в иностранных журналах появилось сообщение, что американским инженерам удалось помочь ученым: они сумели поднять телескоп над атмосферой. Такой подъем осуществляют двумя способами.

Первый — это подъем контейнера с телескопом и другой аппаратурой на стратостате.

Стратостат такого типа, как изображенный на фотографии, способен подняться настолько высоко, что под ним остается практически вся атмосфера.

Контейнер с телескопом поднимается над плотными слоями атмосферы с помощью стратостата.

Эти прекрасные снимки Солнца были сделаны со стратостата.

На такой высоте (20 километров и более) телескоп автоматически наводится на Солнце и опять-таки с помощью автоматов производится фотографирование Солнца в различных лучах спектра и снимаются спектрограммы. Одна из фотографий, сделанных со стратостата, и приведена здесь.

Второй способ — это подъем телескопа на высотной ракете. Конечно, телескоп на ней можно установить только очень небольшой. Зато атмосфера уже не помешает повысить увеличение. Как и на стратостате, фотографирование и другие исследования производятся автоматически. При возвращении ракеты в атмосферу отсек с установленной в нем аппаратурой спасается с помощью парашютов. Снимки Солнца, сделанные с борта высотной ракеты, вы тоже можете здесь увидеть.

Поверхность Солнца, сфотографированная при большом увеличении телескопа. Телескоп был установлен на борту ракеты.

Ракетные исследования верхних слоев атмосферы и солнечного излучения ведутся уже более десяти лет. Как известно, метеорологические и геофизические ракеты использовались наукой еще за несколько лет до запуска первого спутника.

Но вот 4 октября 1957 года над Землей закружился первый искусственный спутник. Он был еще очень мал — небольшой шар весом примерно 80 килограммов, но сигналы его радиопередатчиков, знаменитые «бип-бип», всколыхнули весь мир, возвестив человечеству начало новой эпохи.

Для точного определения траектории спутника его фотографируют в полете с помощью специальных киноустановок. Пунктирная линия — след спутника в небе. Слева, внизу, фотографируется шкала очень точных часов, что позволяет точно определять время полета спутника.

Вот как выглядели на экране осциллографа сигналы первого искусственного спутника Земли, его знаменитые «бип-бип».

Первые спутники Земли были предназначены для исследования околоземного пространства, о котором ученые в то время знали гораздо меньше, чем теперь. Так, им еще не были точно известны границы земной атмосферы, и они не могли даже достаточно точно предсказать, сколько времени просуществует на орбите первый спутник.

После запуска первых трех спутников наука получила очень ценные сведения о метеоритной опасности, о космическом излучении; она открыла пояса интенсивной радиации, окружающие Землю, уточнила свои знания об атмосфере. Не менее ценные знания получила и техника. Опыт по созданию и запуску спутников позволил вскоре перейти к решению более сложной проблемы. 2 января 1959 года был дан старт первой космической ракете, которая стала первой искусственной планетой солнечной системы. Осенью того же года была запущена новая космическая ракета, достигшая Луны. А через два года после запуска первого спутника советские люди послали новую ракету.

Отделившаяся от этой ракеты межпланетная станция облетела Луну и, приблизившись к Земле, передала с помощью телевизионных устройств фотографии неведомой дотоле обратной стороны Луны. Это был новый триумф на пути прямых исследований солнечной системы.

Современная техника вооружила астрономов еще одним мощным инструментом для исследования Вселенной.

Последовательные снимки искусственной кометы — облака натрия, которое было вы пущено в космосе автоматической межпланетной станцией, сфотографировавшей Луну.

Мы уже знаем, что принципиальной разницы между радио и световыми волнами нет. Она заключается лишь в том, что самые длинные световые волны значительно короче самых коротких радиоволн. Поэтому и на радиоволнах можно создать некое устройство, которое по своему назначению будет похоже на телескоп. Такое устройство должно улавливать не световые волны, а радиоволны, излучаемые небесными телами. По аналогии с телескопом его назвали «радиотелескоп».

И это не поверхностная аналогия. Между оптическим и радиотелескопом действительно очень много общего. По существу, радиотелескоп очень похож на телескоп-рефлектор. Так же как и в рефлекторе, в радиотелескопе используется параболическое собирающее зеркало. Правда, оно отличается от оптических зеркал. Его поверхность делают из листов металла или даже из металлической сетки. Для световых волн она не является зеркалом, но радиоволны великолепно отражаются не только от листов металла, но и от металлической сетки, при условии, что размеры сторон каждой из ее ячеек будут меньше наикратчайшей из принимаемых радиоволн.

Этот радиотелескоп сравнительно невелик — диаметр его антенны всего лишь 25 метров.

Сетка в параболических зеркалах для радиоволн применяется для того, чтобы облегчить вес зеркала и уменьшить давление ветра на него. На первый взгляд это может показаться странным, но станет понятным, если назвать размеры зеркала. Они очень велики. У среднего радиотелескопа диаметр зеркала достигает 20–25 метров, а у самого большого из существующих он равен 76 метрам, то есть в 15 раз больше, чем у самого крупного оптического телескопа.

Известный радиотелескоп в Джодрел Бэнк, Англия. Диаметр параболического зеркала этого телескопа равен 76 метрам.

Такие огромные зеркала радиотелескопов строятся с той же самой целью, что и в оптике, — собрать как можно большую энергию радиоизлучений и сфокусировать ее. В фокусе параболического зеркала устанавливается антенна сравнительно небольшого размера. Она предназначена для преобразования энергии электромагнитных волн в пропорциональные по величине электрическое напряжение и ток.

В оптических системах в качестве приемников световой энергии используются глаз, фотопластинка, фотоэлемент и некоторые другие типы приемников света. В радиотелескопах эти приемники не применимы. Их заменяет сверхчувствительный радиоприемник, к которому подводится из антенны электрическое напряжение радиочастоты. Но это не единственное различие между оптическим телескопом и радиотелескопом. Очень важное различие состоит в том, что в радиотелескопе не создается какого-либо изображения в том смысле, в котором мы привыкли понимать его. Вся энергия радиоволн концентрируется в очень малом объеме — в фокусе зеркала. Здесь она захватывается антенной и практически целиком подводится к радиоприемнику.

Разрешающая способность радиотелескопов гораздо хуже, чем у оптических, несмотря на столь большие размеры зеркал. Это, оказывается, зависит от того, что отношение диаметра зеркала к длине волны в радиотелескопах во много раз меньше, чем в оптических.

Вид радиотелескопа в Джодрел Бэнк с самолета.

В настоящее время в США приступили к постройке радиотелескопа, у которого диаметр зеркала будет равен 180 метрам. Высота этого гигантского телескопа будет такой же, как у 66-этажного небоскреба. Вес стальных и алюминиевых конструкций составляет 20 тысяч тонн.

Но даже его разрешающая способность будет все же очень мала. Например, при работе на волне длиной 21 сантиметр этот радиотелескоп сможет различить два источника радиоизлучения, находящиеся на Луне, только при условии, если расстояние между ними будет не менее 480 километров. А оптический телескоп с диаметром зеркала 5 метров различит два источника света на Луне, если они будут разделены расстоянием всего в 50 метров.

Проект гигантского радиотелескопа с диаметром зеркала 180 метров.

Радиотелескопы значительно увеличили возможности астрономов и позволили им открыть многое из того, что раньше оставалось совершенно недоступным.

Так, радиоастрономические исследования позволили проникнуть сквозь плотный атмосферный покров Венеры и измерить температуру ее поверхности. Подобным же образом исследуют и Юпитер. Не меньший интерес для науки представляет и радиоизлучение Солнца, звезд и галактик.

Одним из очень интересных открытий, сделанных с помощью радиотелескопов, является открытие радиогалактики в созвездии Лебедя. Радиоволны от нее идут к Земле 650 миллионов лет. Но, несмотря на невероятно большое расстояние, радиоизлучение этой галактики по мощности сравнимо с солнечным. О существовании такой галактики астрономы раньше не знали, потому что в обычные телескопы она почти не видна. И только когда радиотелескопы указали, где ее искать, была сделана фотография, на которой эта галактика получилась очень бледной, так как ее световое излучение очень мало. Зато ее радиоизлучение очень интенсивно, и именно поэтому она называется радиогалактикой.

Ученые предполагают, что она представляет собой «взорвавшуюся» звездную систему.

Радиотелескопы позволили также исследовать скопления межзвездного вещества. На одной из приведенных здесь фотографий вы можете увидеть рисунок распределения гигантских облаков водорода в нашей Галактике.

Скопление облаков водорода в нашей Галактике. Крестиком отмечен центр Галактики.

 

Микроскопы

Граммофонную пластинку или магнитофонную ленту можно проигрывать только в одном направлении. Если же пустить их в противоположную сторону, раздадутся совершенно немузыкальные звуки. Правда, два величайших гения, Бах и Моцарт, сочинили несколько пьес, одинаково звучащих при проигрывании с начала и с конца. Но это не более, чем курьез; не более, чем исключение, подтверждающее правило.

И даже не правило, а закон. Закон, повинуясь которому наш мир является несимметричным во времени. Мы можем заложить металлическую заготовку в токарный станок и путем обработки придать ей нужную форму. Но нет такого станка, нет таких средств, которые помогли бы из выточенной детали и снятой стружки вновь воссоздать ту же самую заготовку.

Есть законы другого типа. Они, разумеется, не нарушают соотношения причины и следствия, потому что действуют в иной области. Основываясь на этих законах, можно создать устройства, в которых определенные процессы могут оказаться обратимыми. Так, некоторые виды электрических машин могут быть источниками электрической энергии, если их роторы вращать с помощью двигателей, но могут, в свою очередь, обратиться в двигатели, если их подключить к источнику электроэнергии. О таких машинах говорят, что они обратимы.

В оптике тоже есть обратимые устройства. Одним из них является собирающая линза. Пучок параллельных лучей, пропущенный сквозь нее, соберется в одной точке — в фокусе. И, наоборот, пучок лучей, расходящийся от точечного источника света, установленного в фокусе, пройдя через линзу, превратится в пучок параллельных лучей. Правда, в данном случае обратимость имеет несколько иной смысл, потому что она относится не к процессу, а к ходу лучей.

Нечто подобное происходит и в других оптических устройствах. Наведя фотоаппарат на какую-либо плоскостную картину, мы получим ее изображение на матовом стекле аппарата. Если же вместо матового стекла вставить диапозитив с изображением картины, а на место картины повесить экран, то наш фотоаппарат превратится в проекционный: на экране мы увидим изображение, нарисованное светом, прошедшим сквозь диапозитив и объектив фотоаппарата.

Микроскоп по своей оптической схеме ничем не отличается от трубы Кеплера. Принципиальное отличие состоит лишь в том, что свет в микроскопе движется в противоположном направлении. Длиннофокусный объектив телескопа обращается в окуляр микроскопа, а окуляр телескопа — в короткофокусный объектив микроскопа.

Заглянув впервые в такой перевернутый телескоп, вы, скорее всего, не согласитесь со сказанным, потому что все предметы будут иметь уменьшенные размеры, будут казаться удаленными. Это не должно вас смущать. Увеличения вы добьетесь сразу же, как только поднесете рассматриваемый предмет поближе к объективу. Его надо поместить на дистанции, не превышающей двух, но несколько большей одного фокусного расстояния.

Те, кому удалось соорудить телескоп по рецепту, приведенному в книге, могут легко проверить это. И тогда они убедятся, что сделали не только телескоп, но и микроскоп.

Оптическая схема и ход лучей в микроскопе.

Итак, одна и та же оптическая схема позволяет создать и телескоп и микроскоп. Разница же состоит в том, что в первом случае объект находится на расстоянии, в гигантское число раз превышающем фокусное расстояние длиннофокусного объектива; а во втором — на очень малом расстоянии (между одним и двумя фокусными расстояниями) от короткофокусного объектива. А отсюда вытекает и еще одно различие: в телескопе видимое изображение много меньше удаленных объектов (очень близкие объекты телескоп может и увеличить), а в микроскопе изображение всегда много больше самих объектов.

Однако не надо думать, что какой-либо даже самый лучший телескоп может одновременно быть и отличным микроскопом, а микроскоп телескопом. Это, конечно, не так. На практике и конструкция, и оптические детали телескопов и микроскопов сильно отличаются по своему выполнению, потому что рассчитываются для получения наилучшего изображения для конкретного случая применения. А применение у этих инструментов совершенно различное.

Велики различия в оптике и у разных микроскопов, хотя схема у всех одинакова. Эти различия опять-таки диктуются несходством областей применения микроскопов. Конечно, имеются и универсальные инструменты, которые можно применять даже в очень отличающихся друг от друга условиях. Но этот путь не всегда дает наилучшие результаты. Часто совсем простой, но специально предназначенный для определенных наблюдений микроскоп оказывается более полезным.

Телескопы выполняются в настоящее время по трем оптическим схемам. Микроскопы, практически все, — по одной: по схеме «перевернутой» трубы Кеплера. Таким образом, все они являются рефракторами. Можно было бы делать и микроскопы-рефлекторы. Еще Ньютон собирался построить такой микроскоп, но по каким-то причинам не осуществил своего замысла. Рефлекторы не делались и в последующие годы, так как они не давали никаких преимуществ в сравнении с линзовыми. Только в наше время, вскоре после войны, было построено некоторое количество микроскопов-рефлекторов специально для работы в области коротких ультрафиолетовых лучей. Однако широкого распространения такие микроскопы не получили. Их вытеснили появившиеся в те же годы электронные микроскопы.

Астрономия как наука существовала задолго до изобретения телескопа. После того как он был изобретен, ученые смогли неизмеримо расширить свои познания о Вселенной. Микроскоп позволил сделать большее — открыть мир, о котором люди даже не подозревали. И это открытие вызвало к жизни множество чрезвычайно важных наук.

Первые микроскопы были столь же несовершенны, как и первые телескопы, но все же довольно скоро их удалось улучшить. Знаменитый голландец Антони Левенгук (1632–1723), первый в истории микробиолог, не был профессиональным ученым. Но именно ему удалось построить очень хорошие по тому времени (около 1677 года) микроскопы, дававшие увеличение до 300 раз. С их помощью он впервые наблюдал движение крови в капиллярах, красные кровяные тельца, строение мышц и хрусталика глаза; он открыл и изучил многие микроорганизмы.

Шли годы, многие оптики трудились над усовершенствованием микроскопов. Качество их становилось все лучшим. Ученые добились устранения окрашивания предметов, свели практически к нулю искажения формы изображения, значительно повысили увеличение и разрешающую силу, то есть различимость мелких деталей изображений. За эти же годы расширилась и сфера применения этих инструментов. Они оказались незаменимыми не только в микробиологии — наука с успехом использует их в самых различных областях. В наши дни микроскоп можно увидеть на рабочем столе биолога и медика, химика и физика, геолога и металлурга, археолога и криминалиста и многих других.

Не менее прочное положение заняли микроскопы и в промышленности. Разные производственные процессы и операции технического контроля при изготовлении особо точных и ответственных механических деталей, узлов электронных ламп, транзисторов ведутся с помощью микроскопов. Часто совместно с ними используется фотографическая и даже кинокамера.

Современные микроскопы представляют собой необыкновенно точные и совершенные оптические приборы. Типы и конструкции их весьма разнообразны и определяются областью применения.

Наиболее привычные по виду и, пожалуй, наиболее распространенные микроскопы показаны на первой фотографии. Это так называемые биологические микроскопы, хотя, разумеется, их можно применять и во всех других областях, где это позволяет конструкция осветителя и предметного столика.

На следующей фотографии вы видите микроскоп, используемый на заводах для контрольных и измерительных операций.

Современные универсальные микроскопы.

Обратите внимание на конструкцию предметного столика: на две микрометрические головки, смещающие столик в двух взаимно-перпендикулярных направлениях, и на угломерный круг с нониусом, позволяющий точно отсчитывать углы поворота столика.

Другим видом микроскопа, применяемого в промышленности, является измерительный микропроектор. Он позволяет проектировать на круглый экран изображения (чаще всего профильные) различных мелких деталей. Размеры изображения могут быть от 5 до 100 раз больше самой детали. На таких проекторах проверяется точность выполнения профиля прецизионных резьб, миниатюрных штампованных деталей и тому подобное. Многие мерительные приборы, обеспечивающие точность отсчета размеров порядка 0,001 миллиметра и выше, включают в свою конструкцию микроскоп.

Современный микроскоп для производственных нужд.

Итак, современный микроскоп доведен до высокой степени совершенства. Но, подобно телескопу, его возможности не беспредельны. Более того, они уже в основном исчерпаны. И ждать резкого улучшения оптических микроскопов в будущем вряд ли следует, ибо границы их возможностям установлены самими свойствами света.

При наблюдении в телескопы одним из ограничивающих полезное увеличение факторов является атмосфера. Для микроскопистов этот фактор не имеет значения. Зато явление дифракции в данном случае играет даже большую роль, чем прежде. Как известно, в телескопах с дифракцией можно бороться путем увеличения диаметра объектива. В принципе это влияние можно свести до сколь угодно малого. Но на практике этому препятствуют огромные технические трудности, возникающие при изготовлении объективов большого диаметра. Эти трудности, однако, не являются принципиально непреодолимыми. То, чего техника не могла сделать в прошлом, сейчас выполняется сравнительно легко, и поэтому можно ожидать, что техника будущего, если потребуется, сумеет еще больше увеличить размеры телескопических объективов.

Микропроектор.

Что касается наблюдений микроскопических объектов, то здесь полностью устранить дифракционные явления невозможно даже в принципе.

Их можно только ослабить. Влияние дифракции в этом случае не уменьшается беспредельно с увеличением диаметра объектива.

Второй метод борьбы с дифракционными явлениями, также дающий лишь ограниченный выигрыш, заключается в том, что объектив микроскопа помещается в прозрачную среду с большим коэффициентом преломления.

Для этого используются вода и кедровое масло. Микроскопы, у которых объектив находится в сильно преломляющей среде, называются иммерсионными.

Применив все доступные методы борьбы с дифракцией, можно создать микроскопы (и они уже существуют), которые позволят рассматривать объекты с линейными размерами не менее 0,3λ, где λ—длина волны света, в лучах которого рассматривается объект.

Наш глаз реагирует на свет с длинами волн от 380 до 770 миллимикронов.

Фотография сетчатки глаза человека, полученная с помощью микроскопа.

Микроскоп помог изучить и строение ствола зрительного нерва. На снимке можно различить даже отдельные волокна зрительного нерва рыбы.

Освещая объект самыми короткими фиолетовыми лучами, мы сможем различить форму объекта с линейными размерами не менее 125 миллимикронов. Обычно в микроскопах используется не монохроматический, а белый свет. Поэтому для оценки влияния дифракции ориентируются на некую среднюю длину волны и полагают, что разрешающая способность соответствует примерно 200 миллимикронам, или 2·1-5 сантиметра. Это предельно малый размер микроскопического объекта, форму которого еще можно определить. К сожалению, он примерно в 2000 раз больше размера молекулы, и, следовательно, увидеть ее когда-либо с помощью оптического микроскопа не представляется возможным.

Сильно увеличенный глаз краба, он сходен с глазом насекомых, в частности стрекозы, и называется фасеточным глазом.

Стоит сказать также что в микроскопе могут быть видны и частицы, имеющие размеры даже в 5 миллимикронов. Для их обнаружения применяется ультрамикроскоп. От обычного он отличается лишь конструкцией осветителя, который освещает частицы боковым светом. При таком освещении эти частицы кажутся яркими точками на темном фоне. Но о форме их по полученному изображению мы судить не можем. Однако часто и такие наблюдения оказываются необыкновенно ценными. Ведь и звезды мы наблюдаем точно такими же.

Вероятно, все помнят, откуда это:

«Стали все подходить и смотреть: блоха действительно была на — все ноги подкована на настоящие подковы, а левша доложил, что и это еще не все удивительное.

— Если бы, — говорит, — был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, — говорит, — увидеть, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал.

— И твое имя тут есть? — спросил государь.

— Никак нет, — отвечает левша, — моего одного и нет.

— Почему же?

— А потому, — говорит, — что я мельче этих подковок работал: я гвоздики выковывал, которыми подковки забиты, — там уже никакой мелкоскоп взять не может.

Государь спросил:

— Где же ваш мелкоскоп, с которым вы могли произвести это удивление?

А левша ответил:

— Мы люди бедные и по бедности своей мелкоскопа не имеем, а у нас глаз и так пристрелявши».

Так выглядят под микроскопом клетки.

Как это ни странно, преувеличивать возможности микроскопа свойственно не только художественной литературе. Даже в наше время очень многие продолжают считать, что микроскоп может увеличивать во много тысяч раз. Такое мнение неверно.

Вследствие дифракции увеличение микроскопов оказывается относительно небольшим. Вернее, его можно получить очень значительным, подобрав для этого соответствующий объектив. Но оно в большинстве случаев будет бесполезным. При очень большом увеличении количество различимых мелких деталей не возрастет, но зато на изображении явственно проступят дифракционные узоры. И даже опытные микроскописты, у которых «глаз пристрелявши», нередко впадают в ошибку, принимая их за изображение мелких деталей самого объекта.

Это не фотография драгоценных браслетов и ожерелий. Вы видите микрофотографию крошечных водных организмов — планктона.

Вот что пишет по этому поводу Г. Г. Слюсарев в своей книге «О возможном и невозможном в оптике»:

«…полезное увеличение микроскопа не превышает 300–500 раз. И здесь, как и в телескопических системах, можно идти на удвоение и даже на утроение этих чисел. Все же увеличения, превышающие 1000, явно бесполезны и даже вредны: в них дифракционные явления ясно выступают, добавляя свой рисунок к контурам рассматриваемых объектов и являясь причиной всяких ошибок и недоразумений.

Вообще плохое знакомство с оптикой приводит не только молодых, неопытных работников, но и ученых с мировым именем к ошибкам иногда очень крупным. Ряд объектов, имеющих огромный интерес для биологии, зоологии, цитологии (науки о клетке), имеет размеры, лежащие как раз несколько ниже наименьшего разрешаемого расстояния. При умелом обращении с микроскопом эти объекты могут быть обнаружены, но очевидно, что при этом крайне легко стать жертвой оптического обмана. Такие случаи бывали и не раз будут повторяться, до тех пор пока всем работающим с микроскопом не станет ясно, что смотреть изображение в окуляре микроскопа, не зная его теории, так же трудно, как читать книгу на малознакомом языке».

Один из способов повышения разрешающей силы микроскопа и, следовательно, максимально возможного увеличения является уменьшение длины волны света, в лучах которого исследуется объект. Первым препятствием для укорочения волны является нечувствительность нашего глаза к ультрафиолетовым излучениям. Заменяя глаз фотопластинкой, можно значительно продвинуться в область ультрафиолетовых лучей и тем самым повысить разрешающую способность и полезное увеличение микроскопа. Очень больших успехов в деле создания ультрафиолетовых микроскопов добился советский ученый Е. М. Брумберг.

Такие микроскопы довольно часто применяются учеными, но они имеют один немаловажный недостаток — исследуемый объект можно увидеть только после проявления фотографий. Поэтому в настоящее время в ультрафиолетовый микроскоп вводят еще одно важное устройство— преобразователь изображениях его помощью недоступное глазу изображение в ультрафиолетовых лучах превращается в видимое. Преобразователи такого рода основаны на хорошо известном явлении фотоэффекта.

А пока вернемся к очень интересному методу цветной ультрафиолетовой фотографии микроскопических объектов.

По существу, ни о каких естественных цветах в этом случае говорить нельзя. Но очень часто для лучшего различения мелких деталей объекта и определения оптических свойств отдельных его частей объект фотографируют в различных участках спектра ультрафиолетовых лучей. Можно условно назвать самые длинноволновые из них красными, промежуточные— зелеными, а самые коротковолновые — синими. Три негатива, полученные таким способом, можно использовать для получения цветного отпечатка. Изображение такого рода может оказаться гораздо более подробным: участки красного цвета на нем будут соответствовать тем местам изображения, где от объекта приходило много длинноволновых ультрафиолетовых лучей; зеленые цвета покажут, где приходило много промежуточных лучей, и так далее. Зная теорию смешения цветов, вы можете судить о составе лучей и в тех местах, где имеются отличные от исходных хроматические цвета. Одна из фотографий подобного рода приведена здесь.

Ультрафиолетовые микроскопы Брумберга позволяют примерно вдвое повысить разрешающую способность и полезное увеличение микроскопа. К сожалению, идти по пути еще большего укорочения световых волн затруднительно, вследствие того что большинство объектов очень сильно поглощает короткие ультрафиолетовые лучи. Кроме того, возникают трудности и иного рода. Они уже связаны с оптическими свойствами стекла: с сильным поглощением ультрафиолетовых лучей в стекле.

В последние годы в микроскопии стал широко использоваться и другой участок диапазона невидимых световых лучей — инфракрасный. Разрешающая сила микроскопов и полезное увеличение при работе в этих лучах, естественно, снижаются, но цель применения инфракрасных лучей в микроскопии другая; эти лучи позволяют вести такие исследования, которые раньше казались совершенно невыполнимыми. Оказывается, что многие органические и неорганические вещества, непрозрачные для лучей видимого света, хорошо пропускают инфракрасные. Это позволяет исследовать их микроструктуру с помощью специальных инфракрасных микроскопов.

Модель инфракрасного микроскопа была создана электрофизической лабораторией Института металлургии Академии наук СССР в 1956–1957 годах. Эта модель хорошо зарекомендовала себя, и с 1960 года начался выпуск инфракрасных микроскопов «МИК-1».

Микроскоп этого типа позволяет проводить наблюдения как в видимых, так и в ближней зоне (до 1200 миллимикронов) инфракрасных лучей. Наблюдение может вестись в отраженном и проходящем свете. В микроскопе имеется преобразователь, и поэтому изображение можно наблюдать непосредственно или фотографировать.

Мы привыкли считать металлы непрозрачными, и действительно нам никогда не приходилось видеть их иными. И, если бы к кому-либо из нас попал чистый кремний (силиций) или чистый германий (экасилицием называл его Менделеев, предсказавший существование этого химического элемента), мы, глядя на блестящие серебристые кусочки этих металлов, и не подумали бы, что они прозрачны. На самом же деле они очень хорошо пропускают свет, но не видимый, а инфракрасный.

В наши дни кремний и германий — металлы новейшей радиоэлектроники.

Именно из кристаллов этих химических элементов делаются многие полупроводниковые устройства: диоды, фотодиоды, транзисторы, фототранзисторы, солнечные батареи для спутников, элементы холодильных устройств. Для их изготовления кремний и германий должны быть полностью очищены от различных примесей, а их кристаллическое строение не должно иметь никаких дефектов. Получение химически чистых крупных кристаллов — одна из самых сложных задач, когда-либо решавшихся металлургией. И поэтому не случайно, что инфракрасный микроскоп создали не в каком-либо оптическом институте, а в Институте металлургии, где он, по-видимому, был наиболее необходимым.

Инфракрасный микроскоп позволяет заглянуть внутрь кристаллов кремния и германия. Он дает возможность более глубоко изучить возникающие дефекты и тем самым найти пути их устранения. На помещенной здесь фотографии, сделанной с помощью «МИК-1», видно изображение кристалла кремния; темные загнутые линии и есть дефекты его строения.

Фотография дефекта в кристалле кремния, полученная в инфракрасных лучах с помощью микроскопа «МИК-1». Эту фотографию сделали сотрудники Института металлургии Академии наук СССР.

Итак, инфракрасные лучи позволили проникнуть в толщу непрозрачных для обычного света веществ. Но при этом разрешающая сила и полезное увеличение микроскопа упали. И, видимо, у большинства читателей уже давно возник вопрос: «Почему же для этих целей не были использованы рентгеновские или гамма-лучи, которые практически проникают через все вещества и в то же время имеют очень короткие длины волн?»

Вопрос этот совершенно справедливый. Действительно, микроскоп, работающий на этих лучах, имел бы очень высокую разрешающую способность. С его помощью можно было бы увидеть даже молекулы.

Ученые пытались строить рентгеновские микроскопы. И они уже существуют. Но пока еще не созданы такие инструменты, которые могли бы сравниться по качеству с обычными микроскопами.

Сложность заключается в том, что науке неизвестен какой-либо материал, который мог бы преломлять рентгеновские или гамма-лучи подобно тому, как преломляет стекло обычные световые волны. Делались попытки использовать вместо линзовых рефлекторные схемы, но и на этом пути не добились большого успеха. Зеркало, которое великолепно отражает лучи видимого и даже ультрафиолетового света, для рентгеновских лучей представляет собой не гладкую отражающую, а изрытую глубокими бороздами и ямами поверхность. Это происходит потому, что неровности, которые были неощутимы для довольно длинных волн видимого света, становятся соизмеримыми и даже превышают длину волны рентгеновского и гамма-излучения. Поэтому полировка зеркал для таких коротковолновых лучей требует необыкновенной, недостижимой по разным причинам чистоты поверхности. Но это еще не вся трудность. Не менее существенно и то, что рентгеновские лучи могут отражаться от зеркал только в том случае, если углы их падения отлогие. При достаточно крутых углах отражения не происходит даже и при хорошем зеркале — лучи проникают в его толщу.

И все же именно рентгеновским лучам мы обязаны тем, что смогли представить себе строение молекул различных химических соединений. Только сделали это не с помощью каких-либо микроскопов, а иным путем — с помощью явления дифракции. Того самого явления, которое справедливо считается злейшим врагом всех микроскопистов и не позволяет нам видеть в микроскопе не только молекулы, но и куда более крупные объекты.

Зато при рентгеновских исследованиях структуры вещества дифракция принесла огромную пользу. Изучение дифракционных картин кристаллов позволило ученым найти методы определения структуры вещества по этим картинам.

Пример с явлением дифракции наталкивает нас на очень важную мысль. В природе нет явлений абсолютно вредных или абсолютно полезных. Каждое из них может проявлять себя по-разному. Всем известно, что трение в колесных осях вагонов заставляет локомотив расходовать много лишней энергии даже на ровных участках дороги. И поэтому с трением всячески борются, стараясь свести его до минимума. Но в то же время, если бы трения вовсе не было, локомотив вообще не мог бы двигаться, его колеса буксовали бы на месте.

Говорить о том, что было бы, если бы какой-либо из физических законов изменился или вовсе исчез, почти всегда беспредметно. Физические законы не зависят от воли человека. Зато именно от воли, от силы его ума и от изобретательности зависит такое использование этих законов, которое может принести пользу. И в тех случаях, когда какой-нибудь закон встает перед человеком непреодолимой преградой, он силой своего разума находит решение задачи, опираясь на тот же самый или на другой физический закон.

Теперь мы уже знаем, что именно законы света не позволяют нам повышать разрешающую способность и увеличение оптических микроскопов. На этом пути сделано уже все или почти все, что можно сделать при современном уровне развития науки.

Но нет ли другого пути, нет ли других явлений, которые помогли бы нам сделать то, чего не позволяет свет?

Мы можем ответить на поставленный вопрос. Для этого стоит лишь вспомнить, что известно науке о природе света. Свет, говорит она, обладает и свойствами волны, и свойствами частицы.

Но нет ли другого, физического объекта, обладающего сходными свойствами? Есть. И мы знаем его. Электрон проявляет себя точно так же — он и частица и волна.

Но если это так, нельзя ли создать микроскоп, в котором вместо световых волн использовались бы волны, связанные с электронами?

Да, можно. И даже необходимо, потому что длина волны, связанной с электронами, может быть сделана поразительно малой, даже меньшей, чем у рентгеновских лучей. И, следовательно, разрешающая способность такого электронного микроскопа может оказаться чрезвычайно высокой.

Мысль о создании электронного микроскопа, вероятно, возникла вскоре же после открытия, сделанного Луи де Бройлем в 1924 году. Он предсказал тогда, что электроны должны обладать волновыми свойствами. И вскоре это предсказание подтвердилось экспериментально — ученые обнаружили явление дифракции электрона.

Схема электронного микроскопа. В принципе она не отличается от схемы оптического микроскопа, но роль линз в данном случае выполняют специальные электромагнитные катушки.

Однако от идеи микроскопа до ее практического осуществления было еще далеко. Ученым предстояло создать второй необходимый компонент электронного микроскопа — линзы. Ведь обычные линзы непригодны для преломления электронных пучков. К счастью, с такими линзами дело обстояло гораздо проще, чем в случае рентгеновских лучей, ибо, в отличие от электромагнитных волн, электронные пучки могут отклоняться в электрическом и магнитном поле.

Разработка теории и практическое осуществление различных систем электронной оптики заняли немало времени, и только к началу второй мировой войны были созданы первые более или менее удовлетворительные образцы электронных микроскопов. В них лучи света были заменены пучками электронов, а стеклянные линзы — системами электромагнитных катушек и электродов, подключенных к источникам электрического напряжения. Но ход лучей-электронов и электронно-оптическая схема в этом микроскопе оставались такими же, как и в оптическом.

Электронный микроскоп.

Конечно, конструкция нового типа микроскопа совершенно иная. Электронный микроскоп значительно сложнее и по своим размерам гораздо больше оптического. Это прежде всего объясняется тем, что пучок электронов может беспрепятственно перемещаться только в пустоте. Поэтому в трубе электронного микроскопа поддерживается очень высокий вакуум. Свет не может не двигаться, а электроны обязательно нужно ускорять. Для этого в электронном микроскопе имеется специальная ускоряющая система, на которую от высоковольтного источника подается электрическое напряжение. Так, в электронном микроскопе типа «УЭМ-100» это напряжение достигает 100 тысяч вольт. Длина волны, связанной с электроном, при таком ускоряющем напряжении равна всего лишь 0,039 ангстрема, или 3,9∙10-10 сантиметра.

Если бы разрешающая способность в электронном микроскопе ограничивалась только явлением дифракции, то можно было бы рассматривать даже молекулы. К сожалению, разрешающую способность значительно снижают сами линзы микроскопа. По своим качествам они несравненно хуже оптических, и в настоящее время еще не найдены пути устранения их недостатков. Поэтому разрешающая способность современных электронных микроскопов далека еще от теоретически возможного предела и пока достигает только единиц ангстремов. Но и эта величина в несколько сот раз превышает разрешающую способность оптических микроскопов. Кроме того, в некоторых типах электронных микроскопов, помимо обычных наблюдений, можно также проводить и дифракционные исследования. Получающиеся при этом изображения дифракционных картин — электронограммы — дают ученым возможность изучать строение кристаллов и молекул, недоступное иным способам наблюдения.

Увеличение современных электронных микроскопов достигает многих десятков тысяч. Оно является произведением двух увеличений — электронно-оптического и фотографического. В электронном микроскопе типа «УЭМ-100» изображение фотографируется на пластинку размером 6х9 сантиметров. При печати это изображение может быть дополнительно увеличено. Общее увеличение в 50–75 тысяч раз еще не является пределом.

Такое увеличение необычайно велико. Для того чтобы вы лучше представили себе это, стоит сказать несколько слов о подготовке срезов, которые изучаются с помощью электронного микроскопа. Операция эта очень тонкая, и ее невозможно контролировать даже с помощью сильного оптического микроскопа. Рассматриваемый на просвет срез должен иметь очень малую толщину. Толщина, если в данном случае можно воспользоваться этим словом, среза может достигать всего лишь 10 миллимикронов, то есть она в 38 раз меньше самой короткой длины волны видимого света. Такая величина находится на пределе разрешающей способности электронного микроскопа.

Такие сверхтонкие срезы делаются с помощью специального устройства, так называемого ультрамикротома. Ультрамикротом позволяет делать срезы толщиной от 10 до 150 миллимикронов, причем она может устанавливаться в указанных пределах с точностью до 5 миллимикронов. Это точность, которой пока не требуется даже в самых новейших металлообрабатывающих станках. Ножи ультрамикротома, сделанные из специального стекла или алмаза, позволяют делать срезы не только мягких тканей, но даже и металлов. Максимальная площадь поверхности среза достигает размеров 3х4 миллиметра.

Здесь помещены изображения различных объектов электронной микроскопии и одна электронограмма.

Негативное изображение клетки листа томата, пораженного вирусом табачной мозаики. Фотография сделана в лаборатории электронной микроскопии Академии наук СССР.

Бактерии и фаговые частицы. Фотография сделана в лаборатории электронной микроскопии Академии наук СССР.

Кристаллы бета-каротина. Эта фотография сделана в лаборатории электронной микроскопии Академии наук СССР.

На первой фотографии дается негативное изображение клетки (одной клетки!) листа томата, пораженного вирусом табачной мозаики. Червеобразные линии, видимые в полости клетки, и есть вирусные частицы. На второй фотографии видны изображения бактерий со жгутиками и несколько фаговых частиц. Сами бактерии можно было бы увидеть и в обычном микроскопе, но ни их жгутики, ни фаговые частицы в этом случае не могли бы быть обнаружены. На третьей фотографии дано изображение кристаллов органического вещества — бета-каротина. Как видите, эти кристаллики очень малы сами по себе. Каким же путем можно исследовать их строение? Помощь может оказать изучение электронограмм, или дифракционных картин, полученных от этих кристаллов. Однако это оказывается не простым делом, так как пучок электронов, разогнанных в ускоряющем электростатическом поле микроскопа, легко разрушает строение кристаллов органических соединений биологического происхождения. Лишь совсем недавно ученым удалось получить электронограммы подобных объектов.

Для нас с вами электронограмма особенно интересна тем, что картина дифракции электронов, очень хорошо видимая на ней, совершенно аналогична картине дифракции света, которую мы наблюдали раньше.

Здесь были приведены изображения объектов, исследуемых в биологии. Но электронный микроскоп используется так же широко и в других областях науки и техники; его с успехом применяют и физики, и химики, и металлурги, и другие.

Электронограмма — картина дифракции электронов на кристалле. Сравните этот снимок со снимком дифракции света, помещенным в первой главе. Электронограмма была сделана в лаборатории электронной микроскопии Академии наук СССР.