Прорыв за край мира

Штерн Борис Евгеньевич

Часть IV. БОЛЬШОЙ ФЕЙЕРВЕРК

 

 

Теория инфляции повела ученых дальше, чем это можно было представить после появления первых работ. Оказалось, что инфляция продолжается не 10 -35 с, как это предполагалось в первых статьях, — однажды начавшись, она не может прекратиться и продолжается вечно, рождая новые вселенные. Вместо Большого взрыва получается большой, немыслимый, бесконечный фейерверк вселенных.

 

42. Антропный принцип

Среди простых вопросов, ставивших космологов в тупик до появления теории инфляции (см. главу 9), был один, который мы до сих пор не рассматривали. Есть много физических постоянных, значения которых вроде бы ниоткуда не следуют. Но если мы попытаемся представить мир, где какая-нибудь из этих констант немного изменена, жизнь в таком мире оказывается невозможной: не образуются атомные ядра, не горят звезды и т.п. Что так подогнало значения констант, чтобы мы могли существовать?

Что это за константы, и чем их изменение фатально для нас? Самой капризной вещью во Вселенной оказываются звезды, без которых мы не можем существовать. Повторим широко известные факты на этот счет:

• Ядро тяжелого водорода, дейтрон, оказывается довольно слабо связанным, что играет большую роль в процессе горения водорода (в основном протон-протонном цикле) в звездах. Если чуть-чуть увеличить ядерную силу притяжения между протоном и нейтроном, то вероятность одной ступени протон-протонного цикла — соединение протона с дейтерием в ядро гелия-3 упадет, и звезды будут еле тлеть. Если силу притяжения ослабить, дейтрон исчезнет и протонный цикл оборвется

• В главе 6, посвященной Фреду Хойлу, упоминалась тройная гелиевая реакция как его главное достижение и как единственный мостик от легких к тяжелым элементам в звездном нуклеосинтезе. Эта реакция идет благодаря резонансу ядра углерода при удачной энергии. Стоит немного изменить константу ядерных взаимодействий, и реакция блокируется, а Вселенная остается без тяжелых элементов.

• Звезды горят потому, что во Вселенной осталось много водорода, и образовалось только 20 % «негорючего» гелия. Если бы чуть усилить сильные взаимодействия относительно электромагнитных, появилось бы новое стабильное ядро — дипротон.

И тогда всё вещество Вселенной в первые минуты перешло бы в форму гелия. Звезды бы не зажглись.

Еще более ужасающая возможность — облегчить нейтрон на одну тысячную, тогда он бы стал стабильным, и не было бы ни электронов, ни атомов — одни нейтроны.

Есть и другие способы разрушить наше комфортное мироздание, слегка чего-нибудь изменив в нем. О некоторых мы поговорим ниже, а пока сказанного достаточно, чтобы понять, что объем в пространстве значений физических констант, допускающий существование жизни, ничтожно мал. Будто физические константы специально подогнаны таким образом, чтобы мы могли существовать.

Теперь давайте взглянем на Землю: на ней тоже всё как будто специально подогнано для нашего существования: температура, атмосфера, вода, стабильная орбита, хороший наклон оси вращения, слабая бомбардировка астероидами благодаря Юпитеру, очистившему пространство от космического мусора. Но ведь мы точно знаем о существовании других планет и множества других планетных систем, где условия совсем иные. Так там никто и не живет. Мы могли появиться лишь в одном из относительно немногих миров — в том, который благодаря стечению обстоятельств как будто специально подогнан под существование жизни.

То же самое и со Вселенной, если:

• вселенных очень много, возможно, бесконечно много;

• все они разные, возможно, с разными законами физики, разными константами взаимодействий, разными наборами частиц, причем конкретная реализация случайна.

Вот мы и появились там, где могли, где нейтрон тяжелей пары протон + электрон, где углерод имеет ядерный резонанс с нужной энергией и так далее. Возможно, в пространстве параметров существуют и другие благоприятные «острова», где возможна какая-то другая жизнь, совсем не похожая на нашу. И там разумные обитатели будут удивляться удачной подстройке физических величин. А в большинстве вселенных, где не произошло благоприятной случайности, некому посетовать на неудачные значения физических констант.

Это и есть суть антропного принципа.

Он снимает некоторые вопросы, перекладывая ответственность за какие-то факты на случайность. Почему именно таковы массы кварков? Они определяются константами взаимодействия кварков с полем Хиггса, и величина этих констант ниоткуда не следует. Но если их изменить — «поедет» всё — энергия резонанса ядра углерода, стабильность и энергия связи ядер, — и мир изменится так, что мы не сможем жить. Антропный принцип намекает, что эти константы — результат случайности в биографии нашей Вселенной, и вместо объяснения этих конкретных значений заставляет искать механизм, дающий случайные реализации физических констант. Это делает поиск более осмысленным. В данном конкретном случае мы пока не знаем точного ответа, но имеем ряд правдоподобных гипотез. Например, фазовый переход вакуума в самой ранней Вселенной (см. главу 16). Есть и другой механизм случайной реализации, о нем будет сказано ниже.

Антропный принцип предполагает существование огромного множества вселенных. Предположение о множественности вселенных становится естественным сразу, как только Вселенная признана физическим объектом. Но хотелось бы еще знать, каков конкретный механизм производства этого огромного множества. Оказывается, космологическая инфляция делает и это, что первым понял Андрей Линде.

 

43. Вечная инфляция

Оказывается, инфляция, раз начавшись, не может закончиться! Напомним, «мотором» инфляции является скалярное поле (инфлатон), скорость инфляции пропорциональна квадратному корню из плотности его энергии. Для определенности предположим, что плотность энергии растет с величиной поля (это не обязательное, но удобное предположение, имеющее место во многих моделях). Если пренебречь квантовыми эффектами, то величина поля постепенно снижается, плотность энергии тоже. Причем, чем ниже падает плотность энергии, тем быстрее ослабляется поле — всё заканчивается его диссипацией в частицы и переходом на фридмановскую стадию расширения.

Существует некий люфт в терминологии, требующий уточнять понятия по мере углубления в предмет обсуждения. Что такое Большой взрыв? Многие понимают под Большим взрывом некое самое-самое начало расширения пространства. Можно было бы назвать Большим взрывом некий старт инфляции. Однако исходя из сказанного ниже этот «старт инфляции» теряет всякую определенность. Но в истории Вселенной есть совершенно четкий момент: окончание инфляции, связанное с ним «выгорание» поля-инфлатона и переход к горячей Вселенной, расширяющейся по закону Фридмана. Будем называть «Большим взрывом» именно этот момент — как только он произошел (а он происходит за очень короткое время), вселенная с ее огромной энтропией и большим будущим состоялась. Именно это и есть общепринятое определение Большого взрыва в среде профессиональных космологов. Однако, оно не общепринято среди популяризаторов науки, примером чего служит рисунок, обошедший недавно мировые средства массовой информации. Он иллюстрирует историю Вселенной, где Большой взрыв изображен неким ярким сферическим ореолом, предваряющим стадию инфляции. Но вернемся к процессу инфляции.

Если пренебречь квантовыми эффектами, то инфляция идет везде одинаково и везде одинаково заканчивается: Большой взрыв произойдет одновременно во всем пространстве (будем считать его замкнутым). Возникнет одна гигантская однородная вселенная.

Теперь вспомним про квантовые эффекты. В главе 26 мы писали про то, что при расширении пространства вакуумные квантовые колебания инфлатона переходят в реальные неоднородности — флуктуации плотности. У этих неоднородностей есть типичный размер (в принятых выше предположениях — 10-27 см) и характерное время формирования, типа 10-37 с. Их амплитуда скорее всего относительно невелика, но и поле меняется медленно. Может оказаться так, что флуктуация по амплитуде больше, чем изменение поля за время ее появления, — это выполняется легко. Если это флуктуация со знаком плюс, тогда она может увеличить значение поля, если со знаком минус — поле уменьшается быстрее, чем обычно.

Фокус заключается в том, что положительные флуктуации получают преимущество.

Действительно, если поле возросло, увеличилась и плотность его энергии, а значит, и темп расширения пространства в данной области. В результате, положительная флуктуация растянулась вместе с пространством на больший объем, чем отрицательная. Потом на эту положительную флуктуацию «садятся» новые, в том числе и новые положительные — там объем растет еще быстрее, и т.д. Получается, поле за счет квантовых флуктуаций местами лезет вверх вместо того, чтобы падать.

Всё происходит очень быстро: если бы не флуктуации, инфляция закончилась через 10-35 -10-34 с после начала. Так и происходит где-то в раздувающемся пространстве: поле падает, диссипирует в частицы, происходит новый большой взрыв, знаменующий рождение новой вселенной. Но в других областях поле держится, через 10-34 с даже усиливаясь, — инфляция продолжается. Пространство, увеличиваясь вдвое каждые 10-37 с, продолжает раздуваться. Условно говоря, каждые 10-35 -10-34 с производится новое поколение больших взрывов, дающих начало новым вселенным, — в каждом поколении их число экспоненциально увеличивается. И так миллиарды лет — инфляция никогда не может закончиться, поскольку всегда где-то есть область сильного поля, раздувающегося быстрее других.

Это все имеет четкое математическое описание, которое, конечно, зависит от конкретной модели инфлатона. Придумать такую модель, в которой нет вечной инфляции и квантовые флуктуации не способны поднимать величину поля и плотность энергии, можно, но для этого надо напрягаться — такие модели есть, но они менее естественны, чем те, что дают вечную инфляцию.

43.1. Рисунки Андрея Линде.

Как вечная инфляция с множественными вселенными спасла космологию. Справа вверху — ситуация 1982 года, когда теория рождения Вселенной с фазовым переходом (старая и новая инфляция) испытывала многочисленные проблемы. Все проблемы решились в рамках вечной хаотической инфляции, как показано справа внизу…

Куда помещаются все эти мириады рождающихся вселенных вместе с продолжающимся раздуваться пространством? Напомним, что раздувание идет со скоростью, превышающей скорость света: уже две точки, отстоящие друг от друга на 10-26 см, удаляются друг от друга быстрее света и теряют друг с другом причинную связь. Это не противоречит теории относительности, коль скоро эти точки находятся в причинно не связанных областях. Простым сложением имеем скорость удаления точек, отстоящих друг от друга на сантиметр, — 1026 скоростей света и т.д. Еще раз: подобная скорость нефизична, но данное число вполне способно проиллюстрировать, куда это всё помещается.

Конечно, весь этот бесконечный фейерверк больших взрывов никто не может увидеть: нет такой точки, откуда бы открывалась панорама на грандиозный апофеоз творения. Любой наблюдатель ограничен собственным горизонтом, радиус которого исчезающе мал в сравнении с масштабом картины. Мы можем воспроизвести вечную инфляцию только силой воображения, опираясь на математику.

 

44. В роли внешнего сверхъестественного наблюдателя

Пожертвуем одним из пространственных измерений и вспомним про модель вселенной в виде надуваемого шарика. Двумерное пространство вселенной — поверхность шарика. Себя представим находящимися в дополнительном измерении, взирающими на это со стороны благодаря сверхъестественным способностям, без всяких ограничений в скорости сигнала. Мы видим уже не шарик, но по сути — бесконечную плоскость, до которой этот шарик раздулся. Пусть плоскость будет цветной: цвет будет обозначать величину инфлатона. Самое сильное поле пусть будет представлено фиолетовым, менее сильное — синим и т.д. по спектру.

Плоскость продолжает растягиваться. Затормозим время в 1038 раз, чтобы успеть что-нибудь рассмотреть. Тогда расстояние между любыми двумя точками будет удваиваться за 10 с. Мы увидим желтые и красные пятна всевозможных размеров и форм на синем фоне, которые постепенно образуются то здесь, то там. Желтые пятна растут медленнее, чем разлетаются друг от друга. Синие и фиолетовые промежутки между ними растут быстрее, но на синем появляются новые желтые пятна.

Что происходит с пятнами теплых оттенков? Величина поля в них продолжает с какого-то момента необратимо падать (есть критическое значение, ниже которого она уже не может расти из-за квантовых флуктуаций) — всё быстрее, пока поле-инфлатон не «выгорает», передав свою энергию частицам. Изобразим области с «выгоревшим» полем белым цветом. Появление белого пятна — очередной большой взрыв — рождение вселенной. Несмотря на слово «взрыв», рост каждого белого пятна начинает сильно отставать от общего расширения — переходит на степенной режим.

Мы определенным образом преобразовали время, но не указали пространственный масштаб. Его можно и не указывать — картинка будет той же самой и на микронах, и на парсеках, она близка к фрактальной — не в математическом (дробная размерность), а в «обывательском» смысле: самоподобие в широком диапазоне масштабов (чтобы получить фрактал в строгом математическом смысле, можно нарисовать, например, линии уровня инфлатона). Свойство фрактальности имеет то же происхождение, что и плоский спектр первичных космологических неоднородностей: скорость растяжения пространства много больше скорости изменения инфлатона. На масштабах квантовых флуктуаций (10-27 см) никакой фрактальности нет, там есть выделенный размер, с которым рождается большинство неоднородностей. Допустим, мы видим картинку с разрешением один микрон и полем зрения метр или с разрешением метр и полем зрения тысяча километров, тогда в первом случае мы видим неоднородности, начавшие раздуваться в среднем на 2·10-36 с позже (если характерное время удвоения 10-37 с), только и всего. Даже за время обычной инфляции никаких глобальных изменений за такое время не произойдет, не говоря о вечной.

До сих пор мы для простоты рассматривали картину вечной инфляции как подвижную расцвеченную плоскость (напомним, плоскость отображает трехмерное пространство, одной координатой которого мы пожертвовали для наглядности). При более внимательном рассмотрении эта картина становится неадекватной, и нам придется усложнить ее, чтобы сделать шаг к большей достоверности.

Представим себе фиолетовое пятно очень сильного поля, окруженное синим фоном более слабого. Фиолетовое растягивается быстрей, чем синее, поэтому диаметр пятна должен расти быстрее, чем его окружность. Это означает, что пространство в масштабе фиолетового пятна искривляется.

Представить себе кривизну трехмерного пространства мы не можем, но с двумерным проще, поскольку природа дала нам объемное воображение. Мы можем представить кривизну, изгибая его в третьем измерении, которое недоступно для двумерных наблюдателей, живущих в этом двумерном пространстве. Для математического описания и формулировок физических законов дополнительное измерение не нужно — только для нашего воображения.

Итак, воспользуемся третьим измерением и представим, что на синем фоне вверх выпячивается фиолетовый бугор. Разница в скорости расширения синего и фиолетового не так уж и велика, но если вспомнить, что эти скорости стоят в экспоненте, фиолетовый бугор начнет превращаться в гигантский пузырь, горловина которого будет тоже расти, но с отставанием. Далее, на поверхности этого пузыря возникнут новые выступы и пузыри, и вечная инфляция предстанет в виде безудержно пузырящейся пленки, с ускорением расширяющееся во все стороны уже трехмерного пространства. Картина при этом остается фрактальной уже и в трех измерениях. Напомним, третье измерение введено нами для наглядности, но тут уже и оно перестает помогать нашему воображению. Сразу представляется коллизия: пузыри не умещаются в трехмерии и наезжают друг на друга — на самом деле ничего подобного не происходит, это лишь дефект нашего представления.

Кстати, очень интересная метаморфоза происходит с горловиной раздувающегося пузыря. Здесь замешаны достаточно сложные эффекты общей теории относительности. Это тот случай, когда лучше просто сослаться на мнение эксперта. Адекватным экспертом в данном случае является Игорь Ткачёв, поскольку еще в 1980-х годах они с Виктором Березиным и Вадимом Кузьминым решили похожую задачу. Вывод таков: горловина превращается в так называемую кротовую нору, связывающую одно пространство с другим. Со стороны пространства, где инфляция закончилась и образовалась новая вселенная, эта кротовая нора выглядит как обыкновенная черная дыра. Масса этой черной дыры может быть любой — все зависит от конкретных обстоятельств выдувания пузыря. В частности, эта масса может составлять стони миллионов или миллиарды солнечных масс — как у черных дыр в центрах галактик. Правда, вероятность, что подобная кротовая нора есть в наблюдаемой части нашей Вселенной, ничтожна — пока инфляция заканчивается и кротовая нора формируется, всё успевает разлететься на огромные расстояния и произвольный наблюдатель уносится далеко за пределы досягаемости. Вероятно, все черные дыры в центрах галактик — продукт истории Вселенной после Большого взрыва и никакого отношения к реликтовым кротовым норам не имеют. Путешествовать по вселенным из одной в другую через кротовые норы невозможно, даже если повезет оказаться вблизи кротовой норы — попытка прыгнуть в нее приведет наблюдателя в горловину, где плотность скорее всего близка к планковской и никакие классические объекты существовать не могут. Правда, теоретики изобретают разные варианты уравнения состояния материи, с которыми плотность в горловине оказывается ниже, но все равно такие прыжки крайне не рекомендуются, тем более, что заранее убедиться в правоте теоретиков едва ли возможно.

Таким образом, перед нами открывается картина вечной инфляции в виде растущих и множащихся пузырей разных размеров. На раздувающихся пузырях образуются пятна сильного поля, выдувающиеся в новые пузыри, которые расширяются быстрее. Каждый пузырь со временем превратится во вселенную, пройдя через стадию большого взрыва, но до этого от него ответвятся новые пузыри с сильным полем. Горловины превратятся в кротовые норы, связывающие вселенные. Некоторые из кротовых нор, у которых масса мала, испаряются в соответствии с механизмом Хокинга, тогда связь между вселенными теряется. Образуется бесконечная сеть сложной топологии, которая растет по экспоненциальному закону.

И так во веки веков.

Новые вселенные продолжают образовываться здесь и там. Они разносятся в стороны, порождают новые и т.д. В широком поле зрения мы видим мириады вселенных. Каков их размер и возраст? Возраст подавляющего большинства порядка 10-34 с или меньше. Доля старых вселенных катастрофически мала: расстояние между вселенными типа нашей удвоилось 1054 раз и составляет 1010 (всё равно чего — сантиметров или парсек). Тем не менее, число старых вселенных тоже огромно — таков закон инфляции. Что касается размера рождающихся вселенных — тут разброс может быть каким угодно: наша родилась диаметром не менее метра (на момент Большого взрыва), а верхний предел может быть любым.

Через миллиарды лет картина не изменится: все новорожденные вселенные, упомянутые выше, созреют и будут разнесены на гигантские расстояния — в каких-то из них возникнет жизнь. За это время число вселенных опять удвоится 1054 раз и т.д.

Мы попытались решить очень сложную для нашего воображения задачу. Насколько это решение оказалось удачным, сильно зависит от индивидуального восприятия читателя. Облегчающим обстоятельством является то, что задача, по крайней мере, на данном уровне рассмотрения (дальше будет хуже), описывается довольно простой математикой.

По-видимому, эта сильно упрощенная умозрительная модель вечной инфляции — крайний рубеж, на котором наше воображение еще на что-то способно. Скорее всего, реальная картина гораздо сложней — в ходе тотального раздувания пространства меняется число измерений, могут возникать так называемые браны — миры меньшего числа измерений, вложенные в пространства большего числа измерений. Топологические курьезы, которые там могут возникать, представить невозможно. Однако математика давно работает с понятиями, которые невозможно представить, поэтому наука не собирается отступать на этом рубеже.

 

45. В роли внутреннего наблюдателя

Итак, в роли внешнего наблюдателя, стоящего вне пространства и законов физики, мы видим грандиозный вечный акт творения экспоненциально растущего числа вселенных. Теперь лишим себя одной из сверхъестественных возможностей — видеть пространство всё сразу «извне» — и представим, что, тем не менее, можем телепортироваться внутрь разных мест пространства. Если мы телепортировались в область идущей инфляции, нам нужно уменьшиться до околопланковских размеров, иначе разорвет. Ничего интересного мы не увидим — горизонт будет составлять 10-27 см, всё разлетается, всё всюду одинаково с точностью до квантовых флуктуаций. Фактически мы лишены возможности передвигаться: к сверхъестественному свойству двигаться быстрее света не прибегаем, а свет в масштабе всей грандиозной картины движется очень медленно. Однако если подождать, будет интересно. Рано или поздно поле ослабнет, потом катастрофически быстро передаст свою энергию частицам. Несмотря на то, что инфляция вечная, для каждого конкретного наблюдателя это произойдет обязательно, причем довольно быстро: вечность в инфляции для него закрыта. Как это объяснить?

В каждой точке пространства вероятность изменения поля-инфлатона вниз (т.е. в сторону меньших значений) больше, чем вверх, поскольку есть общий плавный дрейф поля вниз и наложенные на него случайные квантовые флуктуации, равновероятные в обе стороны. У тех флуктуаций, что подбросили поле вверх, больше перспектива, но попасть в них трудней. Это легче представить на примере лабиринта.

Допустим, мы на входе в бесконечный ветвящийся лабиринт. В каждом ветвлении ход разделяется на шесть ходов, четыре из которых заканчиваются тупиком с ловушкой, из которой нет хода назад, а два ведут дальше к новому ветвлению. Лабиринт бесконечен, и число открытых ходов растет по экспоненте. Но если путник при каждом ветвлении выбирает ход случайно (а в процессе инфляции судьбой наблюдателя в данной точке управляет именно случайность), он довольно скоро окажется в ловушке. Вероятность пройти до второго ветвления 1/3, до третьего — 1/9 и т.д., вероятность пройти дальше экспоненциально убывает, несмотря на то, что число открытых ходов экспоненциально растет.

В случае с космологической инфляцией роль тупика с ловушкой играет большой взрыв. Наблюдатель увидит, как поле спадает и возникают частицы огромных энергий, — он попал в новую горячую вселенную, расширяющуюся по закону Фридмана, уже с торможением, а не с ускорением. Горизонт станет расти, температура частиц падать. Если подождать еще, откроется большая однородная вселенная, но вероятность увидеть внутри горизонта какие-нибудь родовые дефекты, типа кротовой норы в пространство с другой биографией, исчезающе мала.

Телепортировавшись в произвольную зрелую вселенную, мы не знаем заранее, какой пейзаж встретим и будут ли там звезды и галактики — это может зависеть от ряда случайных факторов, которые обсуждаются ниже.

Наверняка нарисованная картина вечной инфляции в чем-то неверна и заведомо неполна. Отчасти это проблема воображения, отчасти — сложности всевозможных проистекающих явлений. Особенно сложные вещи будут происходить в тех местах, где поле заброшено вверх до таких величин, что плотность его энергии стала порядка планковской. Об этом будет сказано ниже в несколько другом контексте.

Интересно, если вернуться к европианам: им будет легче или сложнее представить пространство за ледяным панцирем, чем нам вечную инфляцию? И да, и нет. С одной стороны проще — за панцирем то же самое евклидово трехмерное пространство, не требуется математических трюков и диких чисел для его описания. С другой стороны сложнее — они знают о нем гораздо меньше, чем мы о возможных механизмах космологической инфляции, — им неоткуда знать, что такое звезды, у них нет зацепок, чтобы представить межзвездные расстояния и природу других планет. У них, выросших в полумраке с максимальной дальностью видимости в немногие сотни метров и привыкших больше полагаться на звуковую локацию, оковы воображения должны быть куда теснее наших.

 

46. Дежурный по границе

В метановом куполе действовали весьма жесткие правила навигации. Никто не имел права отклоняться от фарватера, идущего вверх по сжимающейся спирали, обозначенного цепью акустических маяков. Ни одно судно не имело права пересекать границу вода-метан иначе, чем через иллюминированный «бублик». Пространство непосредственно под скважинами было самым запретным: под одной вертикально шли кабели, под другой время от времени самоходом отправлялся вниз лёд и контейнеры с отходами. Эти запреты не относились только к дежурным по границе, ответственным за уборку льда и отходов.

Очередной дежурный дождался, когда наверху из тьмы проступило несколько голубых огней. Он застабилизировал буксир, вколол себе дозу прес-сонола, спустил давление в рубке и выплыл наружу. Это формально не было нарушением правил, но только потому, что их составители и в страшном сне не могли подумать, что кто-то из дежурных может выкинуть такой фортель. Кроме этого Дежурного никто такого и не выкидывал. Вообще-то на дежурстве запрещалось даже вести посторонние разговоры по сотовой связи, не то, что покидать буксир.

Целью странного поступка Дежурного было полюбоваться тем, что произойдет, когда связка глыб льда достигнет границы. Из рубки он насладиться зрелищем не мог.

Где-то далеко наверху в каждой из двух скважин проходчики высверлили отверстия, аккуратно подорвали очередной слой льда так, что он раскололся на четыре сектора — как круглый торт, поделенный на четверых. Глыбы опустились на сетку. Из восходящей скважины их перетянули по горизонтальному штреку в нисходящую, где ждали еще четыре глыбы. Все восемь сцепили в гирлянду, к каждой прикрепили голубой светодиод и отпустили свободно погружаться — сначала по скважине, потом в открытой толще метана до границы с водой. Дежурный сам был проходчиком, поэтому очень хорошо знал, как всё это делается. Администрация предпочитала направлять рабочих на разные участки работы, чтобы каждый хорошо представлял себе всю цепочку,-так было меньше нестыковок и накладок. Большинство не любило дежурить у границы — большинство, но не этот.

Гирлянда, собравшись в комок, пересекла границу, затормозилась и пошла вверх. Дежурный, закрыв глаза, чтобы лучше сосредоточиться, начал изо всех сил отрывисто свистеть. Он «видел», как вздымается огромная кольцевая волна между водой и метаном, поднимая мелкую ледяную шугу. Кольцевой холм начал медленно расходиться, а в центре, куда опустилась гирлянда, начал подниматься новый бугор — он тоже превратился в расходящееся кольцо — и так несколько раз. Волны отличались от земных кругов на воде огромными размерами и медлительностью — результат слабой гравитации и сравнительно небольшой разницы в плотности воды и углеводородов.

Никто из европиан никогда не видел волн! Вообще, никто из них до сих пор не видел поверхности, по которой могут ходить волны. И наблюдать их было здорово — это стоило риска любых дисциплинарных взысканий. Почему эволюция одарила разумных существ тягой к невиданным явлениям вместо того, чтобы снабдить рациональным страхом? Дежурный завороженно следил за кругами, пока поверхность чуть не успокоилась — надо было срочно выполнять основную обязанность.

Он вернулся на буксир, восстановил давление и направил судно к гирлянде. Зацепив кольцо с красным маячком, он не спеша потянул гирлянду, которая не успела смерзнуться в бесформенный комок (а бывало и такое) за пределы купола в ледовый отвал. Это тоже было зрелище! Глыбы льда, неся в себе космический холод, быстро покрывались новым намерзающим льдом, приобретая более округлые очертания. Светильники тоже оказались под толстым слоем льда, и теперь глыбы светились изнутри — Дежурный любовался гирляндой в зеркало заднего вида. Путь был неблизкий, и можно было вволю пофантазировать.

Всем проходчикам было торжественно обещано, что они смогут своими глазами увидеть внешнее пространство. Возможно, это был опрометчиво: почти все теперь не могли отделаться от фантазий, что они там увидят. Каждый представлял это по-своему-Дежурный не мог отделаться от образа плавающих в пространстве ледяных миров, подсвеченных изнутри: буксировка десятков гирлянд сделала свое дело — воображение переклинило. Как только он пытался представить, что увидит, поднявшись в барокамере из последнего шлюза на телескопической стреле, перед глазами вставал хоровод миров — ледяных шаров, светящихся внутренним светом. Дежурный знал, что миры освещаются снаружи,знал, что лёд, покрывающий целый мир, не может выглядеть прозрачным, но знание не помогало — он тряс головой, но воображаемые миры оставались полупрозрачными, светящимися сами по себе. Но это был еще не худший случай. Бригадир, начитавшись одного известного фантаста, не мог представить себе внешнее пространство без огромных прозрачных тварей, испускавших синеватое свечение.

А самое сложное заключалось в другом. Все становились в тупик от осознания, что там, за ледяным панцирем, средством восприятия далеких предметов становится не слух, а зрение. Никто никогда не видел глазами ничего дальше четверти свиста. А тут требовалось вообразить что-то за сотни тысяч и миллионы свистов, воспринимаемое через глаза. Зрительное воображение бастовало и не могло предложить ничего, кроме подсвеченных ледяных глыб, крупных тварей с биолюминесценцией и прочих атрибутов глубоководного мира. Далекие миры появлялись скорее в звуковом воображении, хотя все понимали, что во внешнем пространстве нет и не может быть никаких звуков. Вообразить космос жителям океанских глубин не проще, чем нам представить кривое и тем более замкнутое трехмерное пространство.

Буксир с гирляндой покинул Купол — впереди замаячил свет отвала. Аккумуляторы светодиодов, вмерзших в лёд, были рассчитаны на тридцать смен — гирлянды в отвале смерзались между собой, образовав сияющий монолит. Проходка скважин уже наградила участников неожиданными красотами, кажется, предвещавшими совершенно феерическое зрелище в конце. Но до конца было еще далеко — треть проходки, монтаж четырех аварийных шлюзов, основных шлюзов и самые сложные последние пласты льда. А сейчас еще предстояло прочесать границу на предмет обломков льда и мусора, такого, что тонул в метане, но всплывал в воде.

Буксир вернулся в Купол и выпустил трал: сеть, грузила, легкие поплавки, пограничные стабилизирующие поплавки. Чистить границу — занятие простое, но долгое и монотонное. Зато можно чуть расслабиться и подумать — о внешнем пространстве или о доме, куда он попадет через десять смен, помечтать о теплых базальтовых полях, куда отправится в отпуск. Собственно^ сама проходка скважин состояла из простых однообразных действий, разве что капсула аппарата была тесней рубки буксира, да рычажков и кнопок управления в ней куда больше. Прижать фиксаторы к стене, включить их обогрев, выключить, дождаться сигнала примораживания, проверить, прочно ли примерзли, выставить дрель по лучу лазера, включить дрель, расслабиться и подумать или помечтать, вынуть бур, вставить заряд, переместить дрель на новую позицию. После нескольких отверстий включить обогрев фиксаторов, когда отмерзнут — переместить аппарат на новую позицию, приморозить фиксаторы, выставить дрель и так далее… Потом — долгожданное разнообразие: все в своих аппаратах убираются в соседнюю скважину через штрек, остается включить сирену, подорвать заряд, дождаться эха от внешней поверхности, попытаться снова «рассмотреть» ее рельеф, несмотря на искажения, возникающие от того, что сидишь в проклятой капсуле. В эхе просматривалась прямая ровная гряда, проходящая неподалеку от места, куда выйдет скважина. Бригадир уверял, что она двойная:

46.1. Гряда на поверхности Европы, ставшая предметом спора Дежурного и Бригадира. Снимок сделан космической станцией NASA «Галилео» (photojournal.jpl.nasa.gov). Размер поля снимка 14 × 12 км. Высота гряды 350 м

— Ну как ты не слышишь?! Она разделена на две одинаковые параллельные гряды, посередине желоб — так и идут они ровнехонько, насколько хватает эха!

— Ну не знаю, может, мне жмор дрынем слух отшиб, но нет, по-моему, там никакого желоба посередине. Тебе мерещится.

— Постучи по затылку, потряси головой в следующий раз…

И так далее. Этот спор происходил едва ли не после каждого подрыва.

Буксир отправился за пределы Купола с полным тралом. Дежурный подумал: «Как, по сути, просто всё это делается. Говорят, величайший проект цивилизации. Внизу нас считают чуть ли не героями. А тут одна рутина. Сделал то, сделал се, сделал третье — как ракушки лузгать, а если что забыл, напомнит автоматика. Кругом защита от дурака, и не зря — от такой работы впору действительно стать круглым идиотом…»

Теперь действительно всё шло как по маслу. Дежурный подзабыл, как он сам учился управлять аппаратом, как переживал нервные срывы от тесноты капсулы, как однажды так запутал аппарат в силовом кабеле, что пока его распутывали, едва не кончилось жизнеобеспечение. Трудно было представить, что не так давно ни одна душа не имела представления о том, как работать в среде, где любого ждет гарантированная смерть сразу от двух причин: низкого давления и мгновенного замораживания. Уже не вспоминалась война двух школ разработчиков — автономщиков и пилотажников. Первые хотели создать полностью автоматический гигантский буровой механизм (нет проблем с жизнеобеспечением проходчиков), вторые — легкие пилотируемые аппараты с разнообразными манипуляторами, управляемыми из капсулы, где поддерживаются комфортная температура и давление. Как видно из вышесказанного, победили вторые, хотя первый вариант поначалу казался проще. Проект автоматического бура споткнулся о проблему температурного контроля всех движущихся частей, чреватую безнадежным вмораживанием гигантского механизма в лёд. К счастью, вмерзли лишь уменьшенные прототипы в пробных скважинах. Зато три — один за другим. Так что было всё — и драмы, и героизм, и тяжелые ошибки, и жертвы были. Поначалу казалось, что отладить процесс проходки скважин, так, чтобы не было регулярных аварий и переделок, не удастся никогда. Но два глаза боятся, а восемь рук делают, и теперь все идёт как по маслу за исключением мелких дрязг и неурядиц.

Снова показалось зарево отвала. Дежурный пытался представить гряду на внешней поверхности — то ли простую (по его впечатлению), то ли двойную (на чем настаивал Бригадир). Он ведь ее увидит своими глазами, когда придет тот самый момент — не слухом, а глазами. Как это — увидеть глазами такую огромную гряду? Так же четко, как он видит свою руку, но размерами во много свистов, что в родном Мире не только не увидишь, но и не отсви-стишь! Как это представить? А если бы вдруг Мир внезапно стал таким же прозрачным, как внешнее пространство? По крайней мере, если верить ученым, которые утверждают, что внешнее пространство абсолютно прозрачно для зрения. Что он увидит, если Мир полностью просветлеет для глаз и заполнится светом? Сразу все горы, города, ледяное небо! Это будет красиво или устрашающе? А если увидеть это сверху, отсюда! Ландшафт с крохотными городами далеко внизу, как на карте, закругляющийся и исчезающий за выпуклостью мира. И серо-голубое волнистое небо, тоже закругляющееся и уходящее за выпуклость… Он вдруг понял, что мог бы внезапно умереть -толи от страха, то ли от восторга, если бы действительно случилось такое.

Дежурный осознал, что мысли завели его слишком далеко, и лучше вернуться к чему-то попроще и поприятнее, например, к теплым базальтовым полям…

 

47. Где Бог играет в кости?

Мы попытались описать, как в ходе вечной инфляции рождаются мириады вселенных. Насколько они разные? Антропный принцип предполагает, что они должны существенно различаться, иначе как среди них появится хоть одна с тонко подобранными физическими константами, благоприятствующими жизни? Где может иметь место случайность, определяющая законы и судьбу вселенной?

Выше шла речь о фазовых переходах в ранней Вселенной, при которых менялась физика — массы частиц и характер их взаимодействия. Не могла ли случайность реализоваться именно здесь, не приводят ли в разных вселенных те же самые фазовые переходы к разной физике? Мы же видим, как лёд на поверхности воды в ведре на легком морозе образует случайный узор!

По сути дела, мы хорошо понимаем лишь один фундаментальный фазовый переход, связанный с электрослабым объединением. В этом случае ответ известен, и он отрицательный. Там нет никакого параметра, который влиял бы на результат перехода (параметра порядка), — он подобен фазовому переходу вода — пар, где нет никакого произвола. И вода, и пар не имеют структуры.

Но могли быть и другие фазовые переходы, более ранние, при температурах, до которых не способна добраться экспериментальная физика высоких энергий. Напомним: из экстраполяции данных, полученных при доступных энергиях, угадывается еще одно объединение, где к электрослабым взаимодействиям добавляется сильное — великое объединение, уже упоминавшееся выше.

Электрослабый фазовый переход связан с полем Хиггса: пространство заполнилось однородным скалярным полем, и физика частиц изменилась — электромагнитные и слабые взаимодействия стали разными. А если существует великое объединение, то был и другой фазовый переход, когда сильные взаимодействия отщепились от электрослабых. И тот фазовый переход тоже связан с появлением однородного скалярного поля. Разница в том, что при великом объединении могло быть несколько скалярных полей, и пространство оказалось заполнено их некоторой комбинацией. Какой именно комбинацией, с какими именно коэффициентами вошли в нее составляющие скалярные поля — это может быть делом случая. И от этого случая будут зависеть массы частиц и их взаимодействия.

Может ли подобный фазовый переход дать необходимое разнообразие вселенных, чтобы некоторые из них оказались пригодны для жизни? Мы не способны точно реконструировать модель великого объединения, в частности, среди физиков существует и такая точка зрения, что его вообще не существует. Но есть проблема, общая для любых мыслимых моделей.

Обитаемость вселенной зависит от многих констант: массы разных частиц, констант разных взаимодействий. И в этом многомерном пространстве констант есть небольшой обитаемый «островок». Может быть, такой «островок» не один, но, несомненно, эти «островки» занимают ничтожный объем в пространстве. И нам надо «выбросить кости» так, чтобы они указали координаты одного из «островков». А если измерений много, а «костей» мало? Тогда может оказаться так, что, сколько ни кидай кости, ни на один «островок» не попадешь.

Допустим, есть трехмерное пространство констант (на самом деле число «измерений» больше) и в нем — островки-пузырьки, где значения параметров пригодны для жизни. Допустим, есть один случайный параметр, указывающий точку в этом пространстве по какой-то формуле. Если бесконечное число раз выбирать этот параметр случайным образом, указанные им точки дадут одномерное множество — линию. Какова вероятность, что эта линия попадет на один из маленьких островов-пузырьков, затерянных в пространстве констант? Если пространство параметров конечно, то что-нибудь типа (ν/V)2/3 N, где ν — типичный объем обитаемого «островка», N — число «островков», а V — объем всего пространства констант. Если «островков», благоприятных для обитания, не так много, то эта вероятность будет мала. Таким образом, когда число степеней свободы («костей») при случайном выборе существенно меньше размерности пространства параметров, то обитаемая вселенная скорее всего вообще не появится: линия исходов «бросания костей» пройдет мимо всех «островков». Именно этот случай имеет место при фазовом переходе типа того, что мог произойти в связи с великим объединением. Источник случайности должен быть более богатым, более многомерным, и его надо искать где-то еще.

Место, где его ищут, — теория струн. С самого начала автор книги решительно намеревался избежать серьезного экскурса в эту теорию. Чтобы понимать суть теории струн, надо хотя бы иметь представление о математике, которая лежит в ее основе. Ознакомление с этой математикой находится за пределами житейских возможностей автора данной книги. А без понимания основ лучше не писать вообще. Пусть теория струн остается героем повествования, который маячит за кулисами, не выходя на сцену, но неявно влияет на ход событий. Об этой теории должны быть написаны другие книги другими людьми.

Однако сейчас, чтобы разобраться с антропным принципом, совсем обойти молчанием теорию струн невозможно. В таких случаях полезно прибегать к цитированию людей, которые разбираются в предмете лучше тебя. Одним из таких является научный редактор данной книги. В качестве подходящей цитаты можно использовать интервью, взятое автором у Валерия Рубакова в связи с первым присуждением премии Мильнера, среди лауреатов которой были классики теории струн. Оно опубликовано в «Троицком варианте» в августе 2012 года и цитируется в слегка адаптированном виде.

Борис Штерн: Что касается струн, то там уже никаким экспериментом ничего не докажешь, но они тоже, видимо, имеют огромное мировоззренческое значение.

Валерий Рубаков: Не только. Еще огромное значение для математики. Суперструны наплодили большое количество интересных математических объектов, до которых сами математики не додумались. Да и просто для развития мозгов имеют немалое значение.

Суперструны вначале вводятся аналогично частицам в релятивистской квантовой механике — уравнение вроде Клейна — Гордона для свободных частиц, только объекты имеют вид струн — открытых или замкнутых, где есть квантовые уровни разных мод колебаний. Эти возбуждения можно ассоциировать с частицами. Далее сразу применяется теория возмущений, есть аналог диаграмм Фейнмана, только вместо линий там трубы, которые могут сливаться подобно штанинам брюк, ну и дополнительные интегралы надо брать.

Б. Ш.: Когда появились струны?

В. Р.: В первом варианте еще в 1960-х — начале 1970-х в попытке описать взаимодействия адронов. Поначалу теория давала неприятный артефакт — тахионы, двигающиеся быстрее света и нарушающие причинность. Потом появились суперструны, избавившие теорию от тахионов. Потом самосогласованные теории суперструн без всяких внутренних противоречий вообще. Причем они возможны только в пространстве большего числа измерений, минимум 10. Я очень хорошо помню, как в Москву приезжал Виттен, кажется в 1985 году. Выступая на семинаре в ФИАН, он заявил типа: друзья, всё, теория сформулирована! Есть две и только две самосогласованные модели — они должны описать всё. Остались технические трудности, но, осилив их, мы выжмем всё, мы сможем из первых принципов получить такие вещи, как заряд и массу электрона.

Б. Ш.: Получается, не осилили. Где основная засада?

В. Р.: С тех пор выяснилось, что всего самосогласованных моделей пять, сделан действительно огромный вклад в математику, а настоящего, окончательного аппарата всё еще нет.

Основная засада, полная сарсынь, как выражаются твои европиане, появилась в неожиданном месте: оказалось, что в теории суперструн есть примерно 10500 разных вакуумов, причем все они практически стабильны. И мы не знаем, в котором из этих вакуумов живем…

47.1. Эдвард Виттен. Институт перспективных исследований (Принстон, США)

Б. Ш.: Видимо, такое чудовищное число может взяться только из комбинаторики. Что именно комбинируется?

В. Р.: Конечно. Есть гигантское число способов, которыми можно редуцировать изначальное 10- или 11-мерное пространство в наш четырехмерный мир. Можно свернуть лишние измерения так, можно сяк, вакуумная топология одного поля может быть такой, другого — сякой. Ну и так далее. Понятно, что исследовать 10500 возможностей нереально. А то, как будет работать теория суперструн, что она будет предсказывать, зависит от конкретного вакуума, в котором мы находимся. Определить это невозможно ни теоретически, ни экспериментально. Люди пытались действовать следующим образом: возьмем такой-то подкласс суперструнных вакуумов, где их всего миллион — с этим числом уже можно работать. Посмотрим, нет ли в этом миллионе вариантов, где появляется нечто похожее на стандартную модель. Потребуем, чтобы при данном вакууме был легкий электрон, — 99% вариантов отсеивается. Потребуем, чтобы там были три поколения кварков, — остается всего 200 из миллиона. Потребуем еще, чтобы заряды были правильными, — не выживает ни один вариант. И что делать дальше с оставшимися 10500 за минусом миллиона?

Похоже, это и мог бы быть ответ. Десять в пятисотой разных вакуумов означает десять в пятисотой разных комплектов физических констант в разных вселенных. Конечно, такое число «точек» должно плотно заполнить любое пространство физических констант. И это один из аргументов в пользу теории струн: она обеспечивает простор для антропного принципа.

Суперструны, между прочим, «живут» на планковском масштабе. И опять, возвращаясь к метафоре Бога, мы снова вынуждены поселить его именно там, на сей раз для игры в кости. В планковский масштаб упирается гравитационный коллапс, из него берет начало космологическая инфляция и там же, похоже, случайно генерируется физика вселенных.

Но как при этом быть с вечной инфляцией? Ведь она — классическое явление, мы ее понимаем лишь постольку, поскольку плотность вакуума стала ниже планковской. Тут возможен следующий сценарий.

Допустим, инфляция идет в некоем конкретном суперструнном вакууме, сформировавшемся на самом ее старте на планковском масштабе. Вспомним, что при инфляции плотность энергии вакуума местами «лезет» вверх за счет квантовых флуктуаций. Где-то она приближается к планковским значениям, при этом вакуум может перестроиться, всё изменится вплоть до числа измерений. То есть и при вечной инфляции «игра в кости» продолжается.

 

48. Где кончается рациональность и начинается капитуляция?

Мы писали о применении антропного принципа для объяснения значений констант, единственная специфика которых заключается в их благоприятности для жизни (например, энергия резонанса ядра углерода). Здесь данный принцип выглядит естественным и не вызывает отторжения. А следует ли его применять для объяснения каких-либо выделенных значений? Например, если какой-то параметр строго равен единице (две величины в точности равны друг другу). Или какой-то другой параметр неотличим от нуля. Если близость одного параметра к единице, а другого к нулю являются условием нашего существования, следует ли нам объяснять эту близость антропным принципом?

Как отмечено выше, в 1970-х годах люди не понимали, почему так идеально подогнаны начальные условия Большого взрыва, в частности, почему плотность так близка к критической (Ω ~ 1), что предполагало равенство с точностью до 10-60 в начале Большого взрыва на околопланковских масштабах. А ведь если бы они не были подогнаны так точно, то и нас не было: Вселенная бы уже сколлапсировала или расширялась так быстро, что не успели бы образоваться галактики и звезды. Не возникает ли соблазн привлечь для объяснения факта антропный принцип? Если знать основное содержание этой книги — соблазна не возникает. Но в 1970-х годах никто этого не знал, и время от времени такая идея всплывала: ну, требуется попадание с вероятностью 10-60, но кто мешает предположить, что «попыток сотворения» вселенных было куда больше, чем 1060? Владимир Лукаш отметил в своем интервью, что упование на антропный принцип считалось в школе Зельдовича моветоном. И это правильно: если величина близка к выделенному значению, надо искать рациональное объяснение, а привлекать антропный принцип лишь в самую последнюю очередь, когда всё исчерпано. И в том случае правило сработало: вскоре была сформулирована концепция космологической инфляции, давшая рациональное объяснение близости Ω к единице.

Но осталась другая фундаментальная загадка: близость плотности энергии вакуума к нулю. Сейчас мы знаем, что есть темная энергия с плотностью около 10-8 эрг/см3, или, если выражать в единицах массы, 10-29 г/см3 . Возможно, это и есть плотность энергии вакуума. Мы не имеем рационального объяснения, почему она столь мала. Опять антропный принцип? Мы уже упоминали выше именно эту точку зрения.

Если считать, что плотность энергии ваккума равновероятна от планковского до минус планковского значений, то вероятность получить столь малую величину, 10-123, гораздо меньше, чем случайно получить вселенную с современной плотностью материи, столь близкой к критической. Впрочем, где 1060 вселенных, там и 10123 найдется, чтобы в одной из них вакуум оказался столь слабо тяготеющим, чтобы там смогли возникнуть мы. И есть люди, которые вполне серьезно именно это и утверждают. Но есть и те, кто считает такой подход моветоном и готовы бросить навсегда занятие наукой, если антропный принцип в данном случае окажется единственным возможным объяснением. Автор очень хорошо понимает вторых, но есть одно обстоятельство, которое вроде бы поддерживает точку зрения первых.

Механизм космологической инфляции, ответственный за близость плотности к критической, сделал свое дело гораздо точнее, чем необходимо с точки зрения антропного принципа. Мы бы могли появиться при современном значении параметра Ω ~ 0,1 или Ω = 2. Если бы этот параметр выпадал случайно, мы бы, скорее всего, обнаружили его где-то в этих пределах, заметно отличающимся от 1. Но измерения показывают, что Ω отличается от единицы не более, чем на 0,01. И мы понимаем, это потому, что есть механизм, обеспечивающий равенство Ω = 1 с огромной точностью. Скорее всего, отличие Ω от единицы на много порядков меньше.

А в случае с плотностью энергии вакуума? Антропный принцип требует, чтобы она по абсолютной величине была не больше 10-28 г/см3 (число дано весьма приблизительно), иначе из-за ускоренного расширения не смогли бы образоваться галактики и звезды поколения Солнца. А на самом деле, если трактовать темную энергию как плотность энергии вакуума, то она составляет ~10-29 г/см3 . От механизма, обеспечивающего малую плотность вакуума, мы были бы вправе ждать гораздо меньшей величины. А тут подозрительно близко к тому, что требуется для обитаемости вселенной. Достаточно малая величина, чтобы мы смогли появиться, но не более того: всего порядок разницы. Наводит на мысль, что это действительно может быть результатом случая. И некоторые серьезные ученые принимают этот аргумент. Соблазн при этом довольно велик: отпадает необходимость искать причину малой плотности вакуума: это просто случай, выпавший с вероятностью 10-123 в бесконечном числе вселенных. И над странным энергетическим масштабом темной энергии, никак не связанным с известными масштабами взаимодействий, не надо ломать голову: случай!

Насколько этот подход рационален?

Он был бы более-менее рационален, если наблюдаемое значение плотности энергии вакуума было бы произвольным с точки зрения законов физики и истории Вселенной. Так ли это?

Нет никаких гарантий того, что темная энергия — вакуум с ненулевой плотностью. Под вакуумом, напомним, мы понимаем состояние с постоянной и однородной плотностью энергии, с уравнением состояния р = -ε. Однако вполне возможно, что плотность настоящего вакуума равна нулю, а темная энергия — скалярное поле, переменное во времени, например, находящееся в режиме медленного скатывания к нулевой плотности. Это заведомо не вакуум, и уравнение состояния здесь другое, напомним: р = -ωε, где ω < 1, что соответствует квинтэссенции. Здесь есть варианты теории, когда нынешнее значение плотности темной энергии, близкое к плотности материи, получается естественным образом. То есть существуют возможные объяснения наблюдаемой плотности темной энергии без привлечения антропного принципа. И что важно, они могут быть подтверждены или опровергнуты. В частности, квинтэссенцию можно отличить от вакуума, измерив величину со, что вполне реально.

Подведем итог. Антропный принцип — метод понимания окружающего мира, который говорит нам важные вещи: вселенных много, они разнообразны, в формировании их физической картины участвует случайность. Это следует из значений физических констант, характерных единственно тем, что они благоприятны для появления жизни. Но есть условия другого типа, тоже необходимые для жизни: что-то с высокой точностью равно чему-то, а что-то удивительно мало. Автор, как и многие исследователи, придерживается той точки зрения, что привлекать в данном случае антропный принцип — нечто сродни капитуляции, которая оправдана лишь в случае полной безнадежности найти прямое объяснение. Пока загадка малой энергии вакуума остается одной из тяжелейших, но до полной безнадежности еще далеко.

 

49. Как за полчаса изменился мир (интервью с Андреем Линде)

Пожалуй, текст, приведенный ниже, можно назвать скорее рассказом, чем интервью. У автора были заготовлены вопросы, но Андрей регулярно предвосхищал их — оставалось только слушать и запоминать.

Борис Штерн: Начнем с истории. Когда вам стало ясно, что теория инфляции — это и есть самый главный ответ на главные вопросы космологии?

Андрей Линде: Пожалуй, это было растянуто по времени, лучше изложить цепь событий. Мы ходили вокруг да около еще в 1976 году, когда с Давидом Абрамовичем Киржницем занимались фазовым переходом по электрослабому взаимодействию. Мы видели, что Вселенная может застрять в переохлажденном состоянии, когда в плотности энергии надо всем доминирует поле типа полей Хиггса, причем застрять надолго. Это как раз то, что потом стало базой для первых инфляционных моделей, но у нас тогда были совсем другие задачи, в этом направлении мы совсем не думали. Мы думали о том, как из этого получить нужную энтропию, как объяснить с помощью переохлаждения барионную асимметрию (напомним, барионная асимметрия требует нарушения теплового равновесия, что и дает фазовый переход с переохлаждением. — Б. Ш.).

49.1. Андрей Линде

На эту тему у нас была работа с Геной Чибисовым в 1978 году — у нас там тоже сталкивались пузыри новой фазы, как и в сценарии Гуса (фамилию Guth в русской речи произносят и как Гут, и как Гус, поскольку адекватного произношения для Guth в русском не существует, в данном случае автор придерживается произношения собеседника. — Б. Ш.). Но у нас не было идеи посмотреть, как фазовый переход влияет на динамику Вселенной, нас интересовало рождение барионов.

Первое самосогласованное описание того, как может возникнуть мир де Ситтера, появилось в 1980 году в работе Алексея Старобинского. Это была блестящая работа, в России она оживленно обсуждалось на семинарах и конференциях. Помню, Сахаров находился в состоянии радостного возбуждения по поводу работы Алексея. Но было одно обстоятельство, которое меня озадачивало. Ранняя Вселенная, описывающаяся в его модели решением де Ситтера, была не сингулярной — ее история могла быть неограниченно продолжена назад во времени, минуя состояние бесконечной плотности. Но мир де Ситтера вместе с тем оказывался нестабильным, и эта нестабильность делала такое предположение невозможным. Кроме того, Алексей в своей работе писал следующее: «Наш сценарий прямо противоположен мизнеровскому изначальному хаосу». Это противоречило основной идее инфляционной космологии: нужно описать, как Вселенная стала такой «хорошей», стартовав с чего угодно. Это есть и в сценарии Гуса, и во всех последующих. А у Алексея наоборот — Вселенная начинается с «хорошего» чистого состояния, с мира де Ситтера, а потом уже с ней происходят всякие пертурбации.

Но эти проблемы были исправимы. Вскоре вышла провидческая работа Зельдовича, где он предлагает трактовать модель Старобинского как сценарий рождения Вселенной из ничего. Потом это формализовал Саша Виленкин. Затем, в 1983-м, после выхода моей статьи о хаотической инфляции, Алексей модифицировал свою модель на подобной основе, и его модель стала частью более стандартного подхода к инфляционной космологии.

Несмотря на бытовавшие в то время сомнения, Слава Му-ханов и Гена Чибисов решили отодвинуть в сторону все эти проблемы, взять модель Старобинского и посмотреть, как будут вести себя в ней квантовые флуктуации метрики — какой спектр возмущений они дадут. Ранее самой популярной гипотезой был плоский спектр Гаррисона — Зельдовича, однако он был взят с потолка, просто чтобы объяснить данные по крупномасштабной структуре Вселенной. Муханов и Чибисов обнаружили, что из модели Старобинского в первом приближении получался именно такой спектр. Они также рассчитали отклонение от плоского спектра — он на самом деле логарифмический, и сейчас именно это видно по данным WMAP и «Планка». Из работы Муханова с Чибисовым следовало, что галактики и их скопления не что иное, как бывшие квантовые возмущения, сначала растянутые инфляцией, а потом усилившиеся из-за гравитационной неустойчивости. Поначалу такое утверждение вызвало массовое неприятие: как огромный классический объект может появиться в результате квантовых процессов?! Сейчас это общее место.

В то время многие стали задаваться вопросом, как получить большую однородную Вселенную, но все сталкивались с какими-то проблемами. Я попал на семинар Рубакова — они пытались объяснить, почему Вселенная большая и плоская исходя из модели Колемана — Вайнберга. Но из этого ничего не получилось. Когда мне позвонил Лев Борисович Окунь и сказал про работу Гуса, я сразу объяснил, почему это работать не будет, — мы уже имели дело с распадом переохлажденного скалярного поля. Вообще то время запомнилось ужасным эмоциональным состоянием — чувствовалось, что ответ близок, но всё что-то не клеилось.

В модели Старобинского чего-то не хватало в ее начале, на старте. Модель Гуса очень хорошо обоснована, но не работает в ее конечной стадии. Успех работы Гуса связан не с тем, что он ездил и всюду о ней рассказывал. Ему удалось зажечь аудиторию ясной подробной аргументацией — через всю статью проходит чистая линия мысли. После его статьи всё стало прозрачным, несмотря на то, что проблема в целом еще не была решена. Зельдович вынужден был сказать: «Мы прошляпили инфляцию!» Кстати, в Америке широкое общественное мнение насчет инфляции так и застряло в 1981 году. Согласно популярным статьям и учебникам, Алан Гус — единственный герой новой космологической парадигмы. Но он сам нашел, что его теория не работает, а год спустя подтвердил этот вывод.

Б. Ш.: Новый сценарий возник на следующий год?

А. Л.: Да, очень скоро. Игорь Ткачёв уже отчасти рассказал про то, над чем я бился в то время. Действительно, я пытался понять, куда происходит туннельный переход скалярного поля в сценарии Гуса, при этом пришлось использовать компьютер, с которым я не был дружен. Получилось, что иногда поле перескакивает под барьером почти по горизонтали — т.е. оказывается высоко на склоне потенциала. А дальше — проще: оно медленно скатывается вниз по склону (соответствующее уравнение было известно больше сотни лет назад — это уравнение гармонического осциллятора с вязким трением), и пока оно скатывается, пузырек за счет экспоненциального раздувания успевает вырасти в целую вселенную! Но тогда зачем вообще нужен барьер? Пусть поле просто скатывается с пологой вершины… Показалось, что я на правильном пути.

49.2. Андрей Линде и Валерий Рубаков. Киото, 1985 год

Это было в начале лета 1981 года, поздним июньским вечером. Семья уже спала. Я взял телефон и забрался с ним в ванную комнату, чтобы не будить детей, позвонить Рубакову и спросить его, что он думает по этому поводу (есть люди, с которыми нельзя делиться идеями, а есть те, с которыми можно без всяких опасений). Валера ответил, что слышит про такой сценарий впервые, и сам над этим не думал. Я рассудил, что если он до этого не додумался, то скорей всего не додумался никто, и надо действовать срочно. Разбудил жену и обсудил с ней всё это (жена Андрея — Рената Каллош, известный физик-теоретик, работающий в области теории струн. — Б. Ш.) Очень быстро написал статью, отправил в Главлит (Главлит — это не журнал, как могут подумать некоторые молодые читатели, это советский цензурный орган, миновать который, находясь в России, было невозможно. Типичное время прохождения составляло два-три месяца, иногда дольше. — Б. Ш.), но разрешение на публикацию пришло только через несколько месяцев в октябре 1981 года. В то время в ГАИШ проходила конференция, на которую приехал Стивен Хокинг. Меня попросили переводить на русский его доклад. Выглядело это так: Хокинг произносил слово, которое могли разобрать только хорошо знающие его люди. Это слово «переводил» на английский его аспирант. А потом я переводил это слово на русский. Это стало удручающим, и я стал забегать вперед, экстраполируя речь докладчика. Хокинг доказывал, что модель Гуса спасти нельзя. Он сказал, что у Линде была замечательная идея, как это сделать, но она не работает, и оставшуюся часть доклада я переводил аргументы, почему моя идея работать не может. В более глупом состоянии я никогда не находился: в зале сидели лучшие физики Москвы, от которых зависело мое будущее, а я при них публично себя ругал.

После доклада я сказал Хокингу, что не согласен с его аргументацией, и около двух часов объяснял ему, почему моя идея все-таки должна работать. Он внимательно слушал и время от времени произносил: «О!» — и его студент переводил: «Но вы же раньше об этом не говорили!» Вскоре Хокига хватились перепуганные организаторы конференции. Пропажа иностранца, да еще знаменитого — это было ужасно! В конце концов нас нашли в аудитории около доски, видимо, испытав огромное облегчение.

После этого Хокинг пригласил меня к себе в отель. Дискуссия продолжалась, затем он стал показывать фотографии своей семьи и пригласил меня на конференцию в Кембридже, которая в основном была посвящена моему сценарию. Туда поехало несколько человек из России, включая нас со Старобинским. В ходе конференции мы поняли, что новый инфляционный сценарий, который я придумал в 1981 году, нужно менять.

Б. Ш.: Пока шла речь о новой инфляции. Как возникла хаотическая?

А. Л.: С новой инфляцией была проблема: предполагалось, что инфлатонное поле, ответственное за раздувание Вселенной, сначала должно прийти в термодинамическое равновесие, чтобы оказаться в нуле — на вершине холма, но времени на это оказывалось очень мало. А если поле не успело термализоваться и находится где-нибудь на склоне потенциала? Написал уравнения — увидел простое решение: поле всё равно успевает раздуть Вселенную, если потенциал достаточно полог, и путь вниз достаточно длинный. Вроде можно обойтись и без термализации. Но в этом была психологическая проблема: Вселенная должна быть горячей изначально -к этому все привыкли! Идея горячей Вселенной была всем близка, и отказаться от нее было очень трудно.

49.3. Стивен Хокинг, 2007 год. Фото NASA

Логика хаотической инфляции была такая: давайте не пытаться решить сразу все вопросы. Предположим, что у природы есть выбор, с чего начать. И если природа пробует разные варианты, то наверняка и те, для которых простые уравнения показывают вход в режим инфляции.

Большая часть людей была полностью перпендикулярна этой идее. Тут уже речь идет не о логике, а о психологии или даже о социальном эффекте. Люди долго и упорно занимались горячей Вселенной, потратили на это массу времени и сил. И тут им кто-то пытается сказать, что это всё напрасно, что всё работает совершенно по-другому. Первая естественная реакция в таком случае — отправить проспаться того, кто какое говорит. Это всё равно, что ломают твой дом, который ты обжил.

Б. Ш.: Ну сейчас-то эта главная идея стала общим местом.

А. Л.: Сейчас — да, общее место, но тогда это был болезненный перелом. До сих пор большинство учебников, говоря об инфляции, преподносят старую версию, базирующуюся на сценарии Гуса и на моей «новой инфляции». Многие так и не поняли, что эти две идеи умерли тридцать лет назад и были заменены идеей хаотической инфляции, которую я предложил в 1983 году. Еще более трудный перелом я пережил в 1986 году.

Б. Ш.: Вечная инфляция?

А. Л.: Да. Она открывалась мучительно. Зато очень четко запечатлелся миг узнавания.

Первые проблески вечной инфляции появились еще на уровне модели Гуса, но там это был недостаток. Затем Стейнхардт обратил внимание, что в новой инфляции это тоже имеет место. Тут же я выпустил препринт, где утверждал, что это как раз очень интересно: всё время, пока инфляция продолжается, возникают новые вселенные с разными свойствами. Тоже самое относилось и к случаю новой инфляции. Это был 1982 год. В 1983 году Саша Виленкин сделал более элегантную работу на ту же тему. Он показал, что даже если поле где-то сползло с центрального бугра, квантовые флуктуации могут забросить его назад, и инфляция продолжится.

Ну а в 1986 году произошел момент кристаллизации: то же самое можно сделать и в рамках хаотической инфляции! Поначалу это казалось безумием — то же самое, постоянный заброс поля наверх, может происходить и на склоне потенциала! Причем это откровение произошло в момент тяжелейшего душевного кризиса.

Тогда уже началась горбачевская перестройка и среди прочего — перестройка Главлита с целью упрощения. Но старую систему закрыли, а с новой протянули целый год, и в этот год мы не могли публиковать статьи. Это было тяжелым ударом. К тому же я писал книгу, и она плохо шла — всё время приходилось что-то переписывать, а тогда приходилось всё делать на бумаге с ножницами и клеем — менять листы, переклеивать ссылки, что выбивает из колеи. В довершение я учился водить машину, а в том возрасте моторика уже не та, что в юности. И когда я в очередной раз загонял машину в сугроб, инструкторы орали на меня матом. В результате я пребывал в очень плохом виде, чувствовал себя ужасно, без сил. Ничего не мог делать — валялся на диване и читал детективы.

В это время вдруг позвонили из ФИАН — надо ехать в Италию со странной миссией — читать популярные лекции в рамках каких-то договоренностей. Причем лекции по астрономии, что не является моей основной специальностью. В то время действовал негласный лимит — одна поездка за границу в год. Жаль было тратить этот шанс на такое. Решил отвертеться по болезни, тем более, что действительно чувствовал себя совершенно больным. В конце концов справку о том, что я болен, подписал Гинзбург.

Однако, вскоре раздался еще один звонок. Мне было сказано: если вы больны сегодня и не способны выздороветь к моменту поездки, то может быть вы вообще не в состоянии ездить за границу? Я понял, что дело серьезно. Встал, взял такси, что было в то время для меня ответственным финансовым решением, поехал в поликлинику и, пройдя за день всех врачей, получил справку, что абсолютно здоров (тогда для выезда за границу требовалась справка о здоровье, причем медосмотр был на порядок серьезней, чем нынешний для прав на вождение. — Б. Ш.). После этого я два дня отлеживался, потом встал и за день оформил все бумаги, на что обычно уходил месяц или два. Мне позвонили опять и сказали, что итальянцы хотели бы видеть текст моих лекций. «Когда?» — «Завтра!»

Всё это выглядело безумием. Но мне пришло в голову, что в этом есть хорошая сторона. В течение года я не мог ничего из своих работ опубликовать за границей, а сейчас, если я что-нибудь интересное сделаю, они пошлют мою работу сами без всякого Главлита дипломатической почтой. Глупо эту возможность упускать, но и старое печатать незачем. Что я могу придумать нового за полчаса, чтобы тут же напечатать и завтра отправить? Я обхватил голову руками и стал раскачиваться из стороны в сторону: что я могу придумать за полчаса?

И через полчаса у меня была теория вечной хаотической инфляции. Это было одним из самых сильных эмоциональных потрясений моей жизни. Конечно, напечатать это за один вечер у меня уже не было сил, но через месяц, уезжая в Италию, я вез с собой три новых работы на эту тему, которые я отправил оттуда в три разных журнала.

Так, вероятно, и бывает в жизни: когда судьба скручивает человека, сжимает его как пружину: если он при этом не ломается, то потом распрямляется с той же силой.

Сначала это показалось невероятным: поле-инфлатон за счет квантовых флуктуаций при достаточно общих предположениях способно скакать вверх по склону потенциала — вплоть до планковских значений плотности энергии. Когда потенциал достигает значений, близких к плановскому, возбуждаются большие флуктуации всех остальных полей. А это значит, что вакуум может перестроиться, — поле снова покатится вниз, раздувая пространство уже с другим вакуумом, с другими законами физики. Как будто повязка с глаз спала! Мир изменился, и это был шок.

Я понял, что должен заново переписать книжку, над которой работал. В статье я написал: не надо пытаться объяснять, почему мир именно таков, каким мы его видим. Когда-то Эйнштейн настаивал именно на таком подходе: нужно объяснить, почему законы физики и физические константы именно такие, какие есть, а другого не может быть. Но мир не единственен, и набор законов природы тоже. Они таковы, потому что мы можем жить только там, где законы нам позволяют жить. Рыба может жить только в воде. Мы — только на суше под слоем атмосферы и т.д. Надо объяснять совсем другое: как образуется много разных частей Вселенной (или разных вселенных) с разной физикой, чтобы в каких-то из них могли жить мы или кто-то еще.

Б. Ш.: Это было более четверти века назад. С тех пор кое-что изменилось, в том числе открыто ускоренное расширение Вселенной, которое можно назвать современной демонстрацией того, что механизм работает. Данные WMAP и «Планка» льют воду на ту же мельницу. Насколько вообще космологическая инфляция утвердилась в общественном сознании, и есть ли конкурентоспособные альтернативы?

А. Л.: Как сказал Черчилль: «Демократия — худшая форма правления, за исключением всех остальных, которые пробовались время от времени». Конечно, в теории инфляции есть проблемы. И, конечно, очень важно исследовать все возможные альтернативы — только после этого можно быть уверенным в теории. Очень интересно, если удастся найти нечто разумное. Вопрос в том, как исследуются альтернативы. Если человек делает это честно, как, например, Валера Рубаков, это очень полезная деятельность. А если человек просто делает карьеру на альтернативных теориях, это порой выглядит удручающе. Например, люди, занимающиеся альтернативными теориями, говорят: «Мы уже всё решили». Им указывают на конкретные ошибки. Через год они, слегка подправив модель, говорят: «Мы опять уже всё решили». И т.д. Самое плохое в этом то, что таким образом отвращается от науки молодежь. Наблюдая подобный цирк, легко прийти к заключению, что вся наука такова. Получается так, что одни занимаются физикой, другие — обустройством социальной ниши.

Конечно же, нельзя исключить, что вдруг появится нечто более мощное, чем теория инфляции. В этом случае я был бы первым, кто это приветствовал. И уж точно лучше не отсиживаться в кустах, подобно Остапу Бендеру, когда их догнал настоящий автопробег. Я бы чувствовал себя в подобной позиции отвратительно! Но пока на горизонте не видно ничего, чтобы могло составить реальную конкуренцию. Кстати, еще один важный момент. В отличие от альтернативных моделей, в теории инфляции не важно, через что проходит Вселенная, перед тем, как раздуться. Это может быть стадия сжатия некой предшествующей вселенной. Это может быть обычная космологическая сингулярность — инфляция стартует от состояния, близкого к планковскому, независимо от того, откуда последнее взялось.

Естественно, в теории есть неясные места. Никакая версия инфляции не идеальна. Основные проблемы начинаются при приближении к самому началу — к планковским масштабам. Но эти проблемы носят общий характер — как сшить гравитацию с квантовой механикой? Какова роль теории струн? Мы привыкли работать в классическом времени, а как с ним работать в условиях квантовой гравитации в режиме, когда все часы и линейки немедленно ломаются, и говорить о «времени», когда родилась Вселенная, становится трудно?

Б. Ш.: Наконец, благодаря WMAP и «Планку» дошло дело до того, что данные позволяют выбирать между разными версиями инфляции. Найдут ли все-таки гравитационные волны и на каком уровне?

А. Л.: Не так давно делались ставки, что отношение амплитуды гравитационных волн к амплитуде скалярных возмущений, обозначаемое как r, будет найдено на уровне 15%. Уже проехали (см., однако, главу 37. — Б. Ш.) Есть несколько вариантов теории, которые предсказывают отношение r на уровне 3…4·103.

Б. Ш.: Так это ровно то, что называл Алексей Старобинский для своей модели, — полпроцента!

А. Л.: Да, но тут не только его модель, что само по себе является удивительным. Например, Михаил Шапошников с Фёдором Безруковым придумали хиггсовскую инфляцию, где инфлатоном выступает поле Хиггса, но не просто так, а имея неминимальное взаимодействие с гравитацией. Их модель совершенно не похожа на модель Старобинского. А предсказания дает точно такие же. Их точки не просто попадают в ту же область, разрешенную данными, а просто сидят на точках модели Алексея в координатах r — n s (n s — наклон спектра возмущений, см. главу 35, рис. 35.1. — Б. Ш.). И не они одни. Например, мы с Ренатой Каллош тоже пробовали строить разные потенциалы на основе супергравитации и нашли огромный класс теорий с такими же предсказаниями. Может быть, в этом странном факте заключена какая-то важная подсказка, которую мы пока не понимаем?

Б. Ш.: Дойдут ли наблюдатели до этого уровня?

А. Л.: Возможно. Причем, скорее на наземных установках. Их преимущество перед космическими экспериментами — возможность неограниченного наращивания. Появились новые деньги — поставили новые приемники в дополнение к старым — точность возросла. Правда, подавляющее большинство суперструнных моделей инфляции дают вообще безнадежно малый вклад гравитационных волн — ниже порога регистрации любого мыслимого эксперимента.

Что касается данных «Планка», с ними связана довольно драматическая история. Простые и наиболее естественные модели инфляции говорят, что реликтовое излучение должно быть с хорошей точностью гауссовым (математически гауссовость выражается как отсутствие корреляций между фазами разложения по ортогональным мультиполям. Физически это означает, что карта возникла как сумма независимых друг от друга возмущений. — Б. Ш.). Тем не менее существуют модели инфляции с несколькими взаимодействующими друг с другом полями, где гауссовость нарушается. Людей, занимающихся такими моделями, много — это достаточно широкая социальная ниша.

В какой-то момент пошли слухи, что команда WMAP намерила отклонение от гауссовости. Народ из вышеупомянутой ниши взбодрился. Я позвонил одному из членов команды, он сказал, что слышит такое впервые — никаких отклонений они не видят. Мы, затаив дыхание, ждали результатов «Планка». Жили, как на вокзале — пока не было ответа наблюдателей, рот был заткнут. Наконец в марте прошлого года космологические результаты «Планка» были опубликованы. Практически никаких отклонений от гауссовости, предсказания простейших моделей инфляции подтверждены.

Люди, занимающиеся сложными моделями инфляции, были несчастны. А для нас как будто плотину прорвало! Значит, можно ничего не бояться и продолжать заниматься тем, что представляется наиболее красивым и естественным.

Б. Ш.: Так, пожалуй, это и есть главный результат «Планка» на данный момент. В остальном — только уточнение относительно WMAP.

А. Л.: Согласен, это и есть главный результат.

На этом интервью завершилось без пафосно закругляющегося конца, поскольку оба устали — Андрей устал говорить, а автор, принципиально не пользующийся электронной записью, устал воспринимать и фиксировать сказанное закорючками на бумаге.

P. S. Интервью было взято до объявления результатов по обнаружению гравитационных волн экспериментом BICEP2 в Антарктиде (см. главу 37). Вот что Андрей написал вдогонку: «Недавние результаты полученные на установке BICEP2 рядом с Южным полюсом, показывают, что амплитуда гравитационных волн может оказаться очень большой, вплоть до r = 0,2, близко к тому, что предсказывают простейшие варианты хаотической инфляции. Если эти результаты подтвердятся, то это достижение будет сопоставимо по значению с открытием бозона Хиггса. Но пока еще рано подводить итоги. Нужно провести независимую проверку и понять причины разницы в результатах BICEP2 и предыдущих попыток найти сигнал от гравитационных волн. Одно несомненно: мы живем в эпоху великих космологических открытий!»

 

50. Интервью с адвокатом дьявола

Иногда, особенно к концу, полезно становиться и отрефлексировать: не слишком ли мы увлеклись одной стороной картины? Не слишком ли тешим себя тем, что всё ясно и прозрачно? В таком случае полезно поговорить с умным человеком, который берет на себя роль адвоката дьявола.

Борис Штерн: Я попробую сделать сильное утверждение: теория космологической инфляции благодаря WMAP и «Планку» утвердилось настолько, что ее можно считать победившей окончательно и бесповоротно.

Адвокат дьявола: Когда мне говорят, что теория инфляции доказана, я обычно отвечаю, что это не теорема. Да, свидетельств в ее пользу много, но «окончательно и бесповоротно» — это перебор.

Б. Ш.: Хорошо, давай по порядку. Перечислим подтвержденные предсказания теории инфляции так, как это сделал Вячеслав Муханов в интервью (глава 41). Предсказано, что Вселенная с подавляющей вероятностью должна быть неотличима от абсолютно «плоской». Подтверждено с точностью около процента.

А. Д.: Во всех альтернативных теориях Вселенная тоже получается «плоской», иначе такие теории никто и рассматривать не стал бы.

Б. Ш.: Хорошо, к тому, как это получается в альтернативных теориях, вернемся позже. А сейчас — предсказание спектра мощности неоднородностей плотности. Теория инфляции предсказывает почти плоский спектр — он и есть почти плоский. Предсказано, что он чуть-чуть отличается от плоского — он и отличается на столько, на сколько предсказано.

А. Д.: Плоский спектр проистекает из общего свойства масштабной инвариантности. Это естественное свойство и некоторых других теорий. А отклонение спектра от плоского может появиться как небольшое нарушение этой самой инвариантности — тоже ничего сверхъестественного, многие симметрии в природе нарушены.

Б. Ш.: Дальше у нас гауссовость. Анизотропия аналогична белому шуму. Предсказали — подтвердили, во всяком случае, подтвердили на уровне, который закрывает целый ряд хитрых моделей.

А. Д.: Если амплитуда возмущений 10-5, то и негауссовость должна быть маленькой. Да, есть модели, где она велика, но это отнюдь не абсолютный индикатор инфляции. Например, конформная симметрия дает малую негауссовость. Между прочим, негауссовость, если ее на каком-то уровне обнаружат, может оказаться очень информативной. Это ведь не число -это функция, корреляционная функция. По ее виду можно судить о теории, работавшей в момент генерации неоднородностей.

Б. Ш.: Дальше адиабатичность. Еще одно подтвержденное предсказание.

А. Д.: Ну, это общее место. Почти в любой модели есть адиабатичность. Достаточно, чтобы в начале горячей стадии было полное термодинамическое равновесие — дальше всё пойдет как по рельсам. Почти в любой модели есть адиабатичность.

Б. Ш.: Хорошо. Дошли до последнего следствия — гравитационных волн. Если результат BICEP2 верен — вопрос закрыт. Но предлагаю считать, что его не стоит использовать как аргумент в споре на данный момент — слишком много неясностей и подозрений. Слишком велики шансы, что эффект проистекает от поляризованной пыли в близкой оболочке сверхновой. Итак, есть предсказание гравитационных волн, но нет четких предсказаний на их амплитуду. Почему именно гравитационные волны так важны?

А. Д.: Гравитационные волны были бы прямым указанием на высокий энергетический масштаб: сгенерировать гравитационные волны достаточной амплитуды можно только при плотности энергии, не слишком сильно отстоящей от планковской. Или очень большой постоянной Хаббла, что то же самое. А это и будет значить, что идет инфляция.

Б. Ш.: Предположим такое. Пройдет несколько месяцев. «Планк» выдаст результаты по поляризации, и окажется, что результат BICEP2 объясняется пылью, а В-мода на уровне, доступном для нынешних установок, отсутствует. Тогда следующим перспективным уровнем окажется r ~ 0,5%, как это предсказывает модель Старобинского, хиггсовская инфляция и еще целый ряд моделей. Андрей Линде считает, что попадание предсказаний целого ряда очень разных моделей в одну точку — некая подсказка.

А. Д.: Да, вполне возможно, что подсказка…

Б. Ш.: Ну так вот, вдруг окажется, что реликтовых гравитационных волн на уровне нескольких процентов нет. Тогда придется ждать эксперимента PRISM, который достанет до уровня модели Старобинского и других. Но ждать придется довольно долго. Если так случится, будет ли это означать, что теория инфляции останется подвешенной на годы?

А. Д.: Да, останется подвешенной, в том смысле, что альтернативные модели останутся актуальными. Впрочем, в теории инфляции есть элемент, который не имеет реальных альтернатив. Это механизм генерации возмущений, рассчитанный Мухановым и Чибисовым, — усиление вакуумных квантовых флуктуаций скалярного поля. Другого механизма никто не предложил, и во всех альтернативных моделях используется именно он.

Б. Ш.: Перейдем к альтернативам. У многих на слуху экпиротическая модель. Пиротехническая, как назвал ее Андрей Линде. Есть еще модели с отскоком…

А. Д.: Экпиротическая модель и есть одна из моделей с отскоком. Там в чем проблема? Если при расширении вселенной рост возмущений происходит не очень быстро, то при сжатии перед отскоком он резко усиливается. И всё, за что борются, — несингулярное однородное состояние — ломается. Вселенная перед отскоком становится сильно неоднородной и хаотичной — совсем не то, что нужно, Это, кстати, давно известный результат Белинского, Лифшица и Халатникова. Чтобы этого избежать, придумали очень жесткое уравнение состояния: давление больше плотности энергии со знаком плюс.

Б. Ш.: Надо же такое придумать! Но Андрей говорил, что эту модель не спасает ничего — он считает это социологическим явлением, когда люди создают себе замкнутую экологическую нишу и цитируют друг друга.

А. Д.: Да, жесткое уравнение состояния не спасает — там остается неустойчивость по Ляпунову — малейшее отклонение начального параметра от требуемого значения растет и уводит систему совсем не туда, куда хочется.

Б. Ш.: Ну какая же альтернатива тогда жизнеспособна?

А. Д.: Моя любимая альтернатива — старт с конформной симметрии. Есть конформно-симметричные теории поля…

Б. Ш.: Инвариантные относительно растяжений масштаба?

А. Д.: Да, но не только. Там целый класс преобразований. Но, главное, там действительно нет выделенного масштаба.

Б. Ш.: Но квантовая механика-то есть? А если есть квантовая механика, у любой частицы с массой есть комптоновский радиус.

А. Д.: При конформной симметрии нет частиц с массой, которые, конечно, эту симметрию бы нарушили.

Б. Ш.: Ну, хорошо, но планковский размер-то есть! Вот и выделенный масштаб!

А. Д.: Планковский масштаб связан с гравитацией. Гравитация тоже нарушает конформную симметрию. Предполагается, что изначально пространство пустое и гравитации нет. Потом эта симметрия спонтанно нарушается — появляется гравитация, частицы и всё остальное.

Б. Ш.: Подожди, это происходит одновременно во всем пространстве? А как же проблема горизонта? Как причинно не связанные области узнают, что надо нарушать симметрию вместе с другими? Та же самая проблема, что стояла до инфляции.

А. Д.: А здесь опять конформная симметрия работает. Нет выделенного масштаба — нет проблемы горизонта!

Б. ШИ после нарушения симметрии оно разогревается и выходит на стадию Фридмана? А как получается, что оно правильно выходит — почему Вселенная «плоская» оказывается?

А. Д.: Точно так же. Радиус кривизны — уже выделенный масштаб. Нет выделенного масштаба — нет кривизны.

Б. Ш.: Очень круто! Дай прийти в себя… Я не могу спорить по поводу работоспособности тех или иных моделей в силу непрофессионализма в этом деле. Но хочу призвать в помощь старика Оккама. Мое утверждение: теория инфляции требует наименьших усилий по части привлечения новых сущностей. Более того, я бы отдал предпочтение тем моделям инфляции, которым новые сущности нужны в наименьшей степени. С этой точки зрения лидер — модель Старобинского, там вообще ничего не нужно, работают все существующие поля. А вот хиггсовскую инфляцию, я бы, наоборот, понизил в ранге. Там требуется особое взаимодействие поля Хиггса с гравитацией. При том, что общая теория относительности строилась как геометрическая теория — в основе был принцип универсальности: все формы материи равны перед гравитацией. А тут получается, что поле Хиггса равнее всех. Оккам был бы против. Инфляция со скалярным полем уже проще — есть идея великого объединения, где требуется подходящее поле, т.е. новая сущность тут более востребована. Ну и, конечно, модель Старобинского еще проще в этом плане. Я имею в виду идеологическую простоту с точки зрения критерия Оккама, а не техническую.

А. Д.: Это верно. Но все-таки везде свои проблемы. Та же модель Алексея. Почему именно R2, а не какая-то другая функция f(R)?

Б. Ш.: Ну, R2 — просто следующий член разложения.

А. Д.: На самом деле следующие члены типа R4 тоже могут быть большими. Впрочем, ладно, наверное это уже брюзжание. Модель хорошая. Но еще раз повторю: теория инфляции, какой бы привлекательной и многообещающей она ни была, не теорема. Ее нельзя считать окончательно и бесповоротно утвердившейся пока не зарегистрировали гравитационные волны. И до той поры надо продолжать попытки развивать альтернативы.

С точки зрения автора адвокат дьявола выполнил свою миссию лишь отчасти. Он не поколебал уверенности в том, что теория инфляции и есть ответ на вопрос «Откуда взялась Вселенная?» — слишком много у нее достоинств. С другой стороны, автор соглашается, что:

• риторика типа «доказано», «окончательно и бесповоротно» неправомерна;

• альтернативы в данном случае — полезное и правильное занятие. Даже если все они однажды будут отвергнуты. Останется опыт и возможные побочные продукты.

 

51. Вся картина, ее свет и тени

Попробуем просуммировать сказанное. Начнем с того, что нового мы знаем о нашей Вселенной в свете теории космологической инфляции.

Ее размер, скорее всего, конечен, но несомненно огромен. Формально для него мы можем лишь дать нижний предел: в сто раз больше, чем расстояние до горизонта. Мы знаем это из современных измерений кривизны Вселенной. Но в сто раз больше — это крайне маловероятно; скорее, в миллиарды или, скажем, на 20 или на 50 порядков больше. Мы понимаем это из характера космологической инфляции — это экспоненциальный процесс. Ее продолжительность неизвестна и до какой-то степени случайна, а продолжительность стоит в показателе степени. Если для создания Вселенной размером с ее наблюдаемую часть инфляция должна была продолжаться по меньшей мере 10-35 с, то при времени раздувания 210-35 с ее размер будет на 30 порядков больше наблюдаемого (цифры приблизительны). То есть мы с подавляющей вероятностью видим лишь «микроскопическую» часть Вселенной.

Экспоненциальность инфляции говорит и о том, что за горизонтом — то же самое, что мы видим: такая же крупномасштабная структура, такое же соотношение между обычной и темной матерями и темной энергией. По крайней мере, наш пейзаж скорее всего продолжается на расстояниях несравненно больших, чем размер горизонта. Однако нельзя дать голову на отсечение, что Вселенная вся одинакова. На момент инфляции вакуум всей Вселенной и целого огромного куста вселенных был одним и тем же — одного происхождения (см. выше аргумент Алексея Старобинского). Но если этот вакуум подвержен фазовым переходам с образованием разных доменов (как в том же ферромагнетике), то могут появиться области с разной физикой, отделенные друг от друга доменными стенками с огромной плотностью энергии (к том же движущимися с околос-ветовой скоростью). Но мы не знаем, так ли это, просто надо допускать и такую возможность, связанную с неизвестной нам физикой недоступных энергий. Огромный размер Вселенной и ее однородность — хорошо обоснованные предположения, тогда как домены и прочая экзотика, скорее, относятся к теневой стороне картины — это ближе к научным гаданиям.

Мы хорошо понимаем, откуда взялась структура Вселенной — стенки, пустоты (войды), сверхскопления, скопления галактик, сами галактики. Это опять же результат инфляции, точнее, микроскопических квантовых флуктуаций во время инфляции. Понятно, как эти флуктуации растянулись в пространстве, как выросла их амплитуда — это всё хорошо считается, и результат соответствует тому, что мы видим в современной Вселенной, и тому, что мы видим на карте реликтового излучения. Здесь все концы с концами великолепно сходятся, хотя был драматический момент, когда казалось, что их не свести. Напомним, что важную роль в сведении концов сыграла темная материя, которую мы также наблюдаем в галактиках по их динамике и по гравитационному линзированию. Мы неплохо знаем свойства темной материи и точно знаем, сколько ее есть во Вселенной, но не знаем, как она связана с обычной материей.

То же самое с темной энергией. Мы точно знаем ее плотность, знаем, как она влияет на Вселенную, и в будущем сможем уточнить ее состояние — это вакуум или меняющееся скалярное поле. Но мы опять же не знаем, как связана темная энергия с известными частицами и полями. То есть мы прекрасно видим темную материю и темную энергию, понимаем их роль важнейших элементов конструкции Вселенной, но не знаем, из чего они сделаны.

Кроме объяснения структуры Вселенной, инфляция дает ключ к пониманию ее происхождения. Теперь мы можем довольно четко ответить на часто задаваемый вопрос: «Что было до Большого взрыва?» Правильный ответ: была космологическая инфляция. Именно благодаря ей Вселенная и возникла. А что было до инфляции?

В принципе, для того, чтобы инфляция сделала свое дело, достаточно 10-35 с. Но она могла продолжаться сколько угодно времени — это следует из очень простых соображений. Мы можем «отмотать» время назад, пока есть классическое пространство-время, а в процессе инфляции оно существует. Правда, когда-нибудь мировая линия, протянутая назад через Большой взрыв, назад сквозь инфляцию, упрется в планковское состояние (или сингулярность, если пользоваться терминами классической теории), где понятие времени теряется. То есть цепочка вопросов «а что было до того», «что было еще раньше» рвется. Исчезает это «раньше». Как далеко по времени назад от Большого взрыва можно провести эту самую мировую линию? Может быть, до 10-30 с, что с точки зрения инфляции есть огромное время. А может быть, до миллиардов лет. Каждая мировая линия, протянутая назад, конечна, но, по-видимому, всегда найдется другая, уходящая дальше в прошлое. Это и есть математическое определение бесконечности, в данном случае — бесконечного прошлого. О бесконечном будущем мы уже писали. Впрочем, это уже, скорее, из области фантазий. Чтобы делать обоснованные утверждения в данном случае, нужна квантовая гравитация, которой, по сути, нет.

Мы уверенно говорим о космологической инфляции, не зная многих важных вещей. Мы не знаем, что такое «мотор» инфляции — ин-флатон. Это должно быть некое скалярное поле, но мы его не можем ощутить и исследовать, не можем получить квант этого поля, подобно бозону Хиггса, поскольку его масса должна быть огромной.

Впрочем, есть еще модель Старобинского, в которой никакого специального инфлатона не нужно. Это еще одно из ее преимуществ. Напомним, там условие для инфляции создает кривизна пространства, деформирующая вакуум подобно эффекту Казимира, от чего у него появляется большая плотность энергии. Чтобы дать старт инфляции, на языке модели Старобинского нужна большая и достаточно однородная кривизна пространства в некоторой области. На языке инфлатона нужно поле с высоким значением, достаточно однородное в такой же области. Дальше всё идет одинаково.

Конечно, физическая основа инфляции остается тенью в нашей картине мира, мы не знаем, какая именно физическая сущность играет роль ее «мотора». Тем не менее, большинство физиков уверено, что такая сущность есть и выполнила работу, часто приписываемую Богу, — создание Вселенной среди бесконечного множества других вселенных, как похожих на нашу, так и совершено невообразимых. Почему мы уверены в теории инфляции?

• Теория хорошо и просто отвечает на тяжелые, почти метафи-зичские вопросы про исключительную точность и сбалансированность «начального толчка», давшего жизнь большой однородной Вселенной, — слишком хорошо, чтобы оказаться неверной. Она же великолепно объясняет происхождение затравочных неоднородностей, из которых возникли галактики и крупномасштабная структура.

рованность «начального толчка», давшего жизнь большой однородной Вселенной, — слишком хорошо, чтобы оказаться неверной. Она же великолепно объясняет происхождение затравочных неоднородностей, из которых возникли галактики и крупномасштабная структура.

• Теория находит подтверждение в современных данных по реликтовому излучению — не только в первом приближении (спектр флуктуаций почти плоский), но и во втором — спектр все-таки чуть-чуть отличается от плоского именно так, как предсказывается.

• Современное ускоренное расширение Вселенной воочию показывает, что механизм инфляции работает, мы его непосредственно наблюдаем, правда, совсем в другом масштабе.

• Конкурирующие теории существуют, но все они требуют новых сущностей, и ни одна из них не может сравниться с теорией инфляции в простоте и естественности.

Можно ли считать теорию признанной окончательно и бесповоротно? Здесь мнения расходятся. Кто-то считает, что аргументов за нее более чем достаточно. Кто-то считает, что давать Нобелевскую премию за теорию инфляции еще рано — надо подождать открытия реликтовых гравитационных волн. И обязательно найдется какой-нибудь новый фред хойл, который откажется принимать теорию инфляции до гробовой доски.

Итак, теория инфляция объясняет, откуда взялась Вселенная, и ее неоднородности, эволюционировавшие в наблюдаемую структуру. Что она может сказать по поводу других вселенных?

То, что эти другие вселенные могут существовать, следовало допустить уже тогда, когда Вселенная получила статус физического объекта, описываемого уравнениями общей теории относительности. Настойчивый намек на огромное число вселенных дал антропный принцип — способ осмыслить тот факт, что физические константы удивительно хорошо подогнаны под существование жизни. Причем этот принцип намекал не только на то, что вселенных очень много, но и на то, что они разные, с разными физическими константами. И вот теория инфляции прямо показывает, как это бесконечное множество вселенных получается: раз стартовав, инфляция не останавливается никогда, плодя новые и новые вселенные.

Ясная картина заканчивается густой тенью вблизи планковского масштаба. Из этой тени проступает красивая многообещающая конструкция — теория струн, но нет никаких доказательств того, что эта конструкция реальна. Впрочем, не совсем так — теория стала реальной интересной областью математики, обретя собственное существование, не зависящее от физики. Теория струн, в частности, привлекательна тем, что в ней содержится та самая случайность, которая дает почти бесконечное разнообразие вселенных, подводя фундамент под антропный принцип. Это же самое разнообразие делает невозможной проверку ее предсказаний — мы находимся в одной из 10500 реализаций теории струн, неизвестно, в какой.

Видимо, для того, чтобы высветить эту затененную часть картины мира, потребуется новый прорыв. Возможно, кто-нибудь из читателей его дождется.

 

52. Внешнее пространство. Вместо эпилога

Писатель Дурдам Збинь, поднимаясь по бесконечному тоннелю в тесной барокамере, испытывал смешанные чувства. Он выиграл право первым взглянуть во внешнее пространство благодаря книге и снятому по ней фильму «Смерть снаружи», где как раз живописалось это самое пространство и путешествия в нем.

Пространство было населено исполинскими, но легкими и проницаемыми светящимися космомедузами, которые питались светом Внешиса (эта ласковая аббревиатура была изобретена Дурдам Збинем и являлась предметом его гордости) и испарениями миров, передвигались с помощью магнитных полей, пронизывающих пространство. Эти существа были восхитительно красивы и безобидны, всё пространство чуть светилось голубоватым светом мириадов космомедуз.

Миры, покрытые ледяными панцирями, в несметном количестве совершали шествие вокруг Внешиса. Некоторые были связаны с аттракторами -маленькими черными центрами сильного тяготения, вращаясь вокруг них и вместе вокруг центрального светила. Европиане выходили во внешнее пространство через скважину сквозь ледяной панцирь в кораблях, которые в земных терминах можно охарактеризовать, как космические аквариумы высокого давления, и передвигались в нем с помощью ядерной энергии.

Экспедиции европиан достигли ледяной поверхности других миров, и на одной из них они услышали стуки изнутри. Стуки, будучи расшифрованы, оказались мольбой о помощи: в этом мире извергался вулкан и выбросил огромное количество ядовитого жидкого вещества, которое скопилось в куполе, протаявшем во льду. Вещество постепенно растворялось в воде и отравляло весь океан. Его жители уже начали гибнуть. Единственный шанс к спасению этого мира был в помощи извне. Надо было пробить лёд над мешком с ядовитой жидкостью, чтобы вода выдавила ее во внешнее пространство.

А у европиан на борту как раз был мощнейший кумулятивный гиперзаряд, предназначенный для проникновения в другие миры через лёд. И они решили использовать его во спасение. Естественно, по законам жанра, оказалось, что у гиперзаряда не работает дистанционный триггер. Поэтому командир приказал всем взлететь на корабле, подорвал заряд вручную и погиб. Фильм, снятый по книге, венчала сцена, в которой скорбящая команда наблюдает огромный газовый фонтан зловонно-зеленого цвета, бьющий из спасенного мира.

И вот, автор всего этого, испытывая смешанные чувства, поднимался по скважине, чтобы первым увидеть внешнее пространство. Чувства были смешанными, поскольку, с одной стороны, это было захватывающе интересно. С другой стороны, писатель понимал, что участвует в постановке, в которой ему надлежит сыграть роль шута: наверняка рабочие и технари уже всё видели, но молчат ради сценария, в котором от него требовалось лишь сморозить какую-нибудь глупость на публику. А сами будут потешаться!

И Дурдам Збинь думал, что же он скажет. Ну, шут так шут, но он должен хорошо сыграть роль. Может быть, там лишь непроницаемая тьма. Но сказать что-то надо, ведь миллионы хотят услышать от него хорошие важные слова. У него в голове крутилось фраза: «Один беглый взгляд — прозрение всего Мира»,- но изречение казалось слишком напыщенным и глуповатым. Надо что-то попроще. Что-то попроще…

Раздался металлический грохот. Барокамера остановилась. Жидкость вокруг, вскипела и вскоре исчезла. Остались только стенки тоннеля, между ними и барокамерой — жуткая пустота. Камера медленно продолжила подъем. Выключилось электрическое освещение, но остался слабый свет, и это точно был свет снаружи. Режиссер сказал через наушники, что трансляция включена. А свет снаружи становился чуть ярче. Что же сказать?! Сейчас он увидит… И он увидел!

— Са-арс-сы-ынь о-ох-хряс-сна-ая!

— Э-э-э! Трансляция включена, миллионы слушают, дети слушают, как можно! — закричал в наушниках режиссер.

— Дурдам Збинь, кажется, увидел нечто о-очень необычное… — смущенно промямлил ведущий.

— Сейчас, сейчас, извините… — тряся головой, отреагировал Дурдам Збинь. — Он огромный! Он просто гигантский и потрясающий. Как огромная чаша,огромная полосатая чаша!

— Кто он, что за чаша?

— Это должен быть Большой Аттрактор — как раз там. Потрясающе!

— Почему чаша? Он должен быть шаром.

— Да, похоже, шар — граница нерезкая. Наверное, я вижу только освещенную часть, Но он не просто полосатый! Там вихревые дорожки, как след подкрашенной струи гоночного снаряда — чудесные завитки, а еще овальные пятна между дорожками. Это невозможно объяснить! Всё такое огромное! Это надо видеть!

— А какого он цвета?

— Там все цвета, только неяркие, приглушенные. Бежевый, бурый, красноватый, голубоватый. Овальные пятна почти белые. И там еще желтый полукруг маленький… О! Это не просто полукруг, это шарик — нижняя освещенная половина желтая, верхняя — черная на фоне Аттрактора. И какие-то темные крапины на нем. Это, наверное, и есть Первый мир.

— Зритель задает вопрос: «А как там насчет космомедуз?»

— Не надо смеяться над старым честным писателем, — он чуть было не сказал «дураком». — Я старался, как мог, и не думал, что придется отдуваться… Впрочем, погодите, там что-то есть… Точно! Са… Ого! Огоньки! Много! Очень много. Как люминетки в брачный сезон — их мириады! Тоже есть яркие, но гораздо больше слабых. Только они жестче люминеток. Везде — везде, а в этом окне особенно — еще больше. Что это такое?! Они не движутся. А там, где темная часть Аттрактора, их нет ни одной. Они, наверное, все дальше его, много дальше… Подождите, дайте прийти в себя. Дайте посмотреть на всё это молча!

На этом мы оставляем Дурдам Збиня с его потрясением. Ему еще предстоит обратить внимание на бледно-серебристую, всхолмленную белыми ровными грядами внешнюю поверхность Мира и рассказать о ней.

На этом мы также оставляем и европиан в целом, не потому, что их дальнейшая история неинтересна, как раз наоборот. Просто их дальнейший процесс познания Вселенной в общих чертах повторяет наш.

Благодаря своим «дальнозорам» на твердой поверхности, но без атмосферных помех, они сразу перескакивают почти на уровень «Хаббла» в инструментальном отношении, правда, оказываются пока далеко позади нас по части осмысления увиденного.

Наша космологическая эпопея, если сравнивать ее с этапами познания окружающего мира вымышленными европианами, скорее, аналогична их открытиям Солнца по еле ощутимому свету, а также Юпитера и галилеевых спутников по движениям ледяного панциря. Это тоже прорыв за край мира, но не столь буквальный, как прокладка скважины через препятствие. Перед нами тоже своеобразный панцирь: эпоха рекомбинации, «сфера» реликтового излучения, по которой мы реконструируем более далекие горизонты. Наш сюжет еще не завершен, зато уже понятно, что осталось, понятно, как сделать последний шаг: увидеть следы гравитационных волн.

А возможен ли в будущем такой прорыв, когда перед нами разом откроются новые горизонты, словно и мы пробурили какой-то панцирь? История науки показывает, что зарекаться от новых прорывов не стоит. Сейчас мы не видим предпосылок, разве что суперструны, подобно паззлу, вдруг сложатся в отчетливую картину. Но, скорее всего, это будет что-то другое, более неожиданное. И это точно не будет прорывом в некое «внешнее» пространство — скорей во «внутреннее» или какое-то еще, для которого рано подбирать эпитет.

У космологии есть серьезный недостаток: она не зрелищна. Ни разу в ее длинной истории, продолжавшейся десятки лет, не было открывшейся панорамы, когда бы у очевидцев вырвалось неконтролируемое восклицание, подобное тому, каким челябинские мужики встретили метеорит. Может быть, отдельные ученые испытали потрясение, например, впервые увидев акустический пик на спектре угловых гармоник реликтового излучения. Тогда появилась громкая метафора «Лицо Бога» или «Улыбка Бога» — это по поводу карты реликта с неоднородностями нужной амплитуды. Но чтобы испытать при этом восторг и потрясение, надо много знать и заранее напрягать голову. Если же внезапно вывалить на неподготовленного человека квинтэссенцию нашей истории, пусть в виде короткого фильма с самыми раскомпьютерными эффектами, реакцией будет, скорее, ступор, чем потрясение, скорее, неприятие, чем восторг.

Это не значит, что всё безнадежно, что современная космология с ее панорамой останется достоянием лишь горстки яйцеголовых. Конечно, современная картина мира во всей ее красе доступна меньшинству. Но это меньшинство составляет многие миллионы. То же самое можно сказать про серьезную музыку, настоящую и сложную. Ее восприятие требует постоянных целенаправленных душевных усилий — усилий с разных сторон, как со стороны исполнителя, так и со стороны слушателя. Эти усилия достойно вознаграждаются.

Поэтому просьба к тем читателям, кто, словно выковыривая изюм, вычитывал из этой книги лишь эпизоды про европиан, вернуться и попытаться прочесть другие фрагменты. Это усилие окупится не с первой, так со второй или с третьей попытки пониманием того, что такое Вселенная и откуда она взялась вместе с бесконечным числом других, как похожих на нашу, так и совершенно немыслимых.