Проникнув в глубь вещества, Любознайкин посвящает своего друга в тайны протонов, нейтронов и других элементарных частиц, а также в тайны ядерных излучений. Сразу же после этого он переходит к преобразователям, чувствительным к этим излучениям (счетчики Гейгера, ионизационные камеры, сцинтилляционные счетчики); начав разговор о частицах, наши друзья добрались и до процессов, происходящих с ионами в растворах. Незнайкин узнает, что такое pH , характеризующее кислотность раствора, его окисляющие свойства, а также с помощью каких преобразователей можно измерить это число.

Незнайкин — Дорогой Любознайкин, я совершенно обескуражен. Я попытался прочитать статью о «ядерных явлениях» (как ты их называешь) и был буквально подавлен лавиной таких незнакомых терминов, как бета-лучи, нейтроны, изотопы, электрон-вольты, бетатрон…

Любознайкин — Я не стану объяснять значения всех этих терминов, но ты сам увидишь, что все это не так ужасно, как тебе кажется. Прежде всего я попрошу тебя напомнить мне, как устроены ядра атомов.

Строение атома

Н. — Это маленькие шарики, заряженные положительно и содержащие в себе почти всю массу атома.

Л. — Правильно, но об атомных ядрах известно намного больше. Они состоят из частиц двух типов: протонов — мельчайших зернышек с положительным зарядом, и нейтронов — мельчайших зернышек с такой же массой, но не имеющих электрического заряда. Заряд протона равен заряду электрона, но имеет противоположный знак. Само собой разумеется, что в ядре нейтрального атома имеется столько же протонов, сколько электронов вращается вокруг этого ядра. Количество протонов называется «атомным номером». Например, наиболее простое по своему устройству ядро водорода состоит всего лишь из одного протона, вокруг которого вращается один электрон.

Следовательно, атомный номер водорода 1. Но существует также и другой водород, именуемый тяжелым водородом (или дейтерием). В природе он существует в виде очень небольшой примеси к простому водороду (на 1 000 атомов простого водорода не более 1 атома тяжелого). Ядро этого тяжелого водорода состоит из одного протона и одного нейтрона (рис. 28).

Рис. 28. Ядро простого водорода состоит только из одного протона. В ядре тяжелого изотопа водорода дейтерия кроме протона имеется еще один нейтрон. У атомов обоих типов водорода вокруг ядра вращается только один электрон.

Каждый такой атом, как и атом простого водорода, имеет только один электрон. Дейтерий имеет более высокую плотность, чем легкий водород, но обладает почти идентичными химическими свойствами. В периодической таблице элементов Менделеева легкий водород и дейтерий располагаются вместе, и именно поэтому дейтерий и легкий водород называют изотопами от греческих слов «изос» (тот же) и «топос» (место).

Существуют и другие атомы, ядра которых содержат одинаковое количество протонов (имеют один и тот же атомный номер), но могут существовать в двух формах. Эти формы отличаются одна от другой по количеству нейтронов, объединенных с протонами в ядре. Например, хлор с атомным номером 17 (17 протонов в ядре и 17 электронов вокруг ядра) имеет два типа атомов: у одних ядро состоит из 17 протонов и 18 нейтронов (общее число частиц в ядре 35), а у других ядро состоит из 17 протонов и 20 нейтронов (общее число частиц в ядре 37). Эти два типа хлора, строго идентичные с точки зрения химии, и являются изотопами.

Смесь изотопов

Н. — А из каких атомов состоит газ, который называют «хлором», с 18 или 20 нейтронами?

Л. — Он содержит примерно 3/4 атомов с 18 нейтронами и 1/4 атомов хлора с 20 нейтронами.

Н. — Изменяется ли это соотношение в зависимости от происхождения хлора?

Л. — Нет. Это одно из наиболее любопытных известных явлений природы; соотношение двух изотопов строго одинаково как в хлоре, добытом из соли Индийского океана, так и в хлоре калиевой соли, добываемой в шахтах Эльзаса.

Н. — Можно ли разделить эти изотопы?

Л. — Да, можно, но чрезвычайно трудно. В таком разделении изотопов заключается значительная часть работы современных ядерных производств: разделение природного урана на изотоп 235 (92 протона и 143 нейтрона) и изотоп 238 (92 протона и 146 нейтронов). Изотоп 235 единственный радиоактивный изотоп урана, т. е. такой, ядра которого распадаются самопроизвольно. В природном уране его содержится всего лишь 0,7 %.

В принципе, Незнайкин, большинство веществ, которые называют «простыми», на самом деле состоят из смеси изотопов, но их так трудно разделить, что лишь в начале XX века установили, что они представляют собой смесь. Прими во внимание, что с точки зрения химии эти изотопы строго идентичны, и ты поймешь, почему их так недавно открыли.

Мир частиц

Н. — Теперь я достаточно хорошо понимаю, что такое изотопы. Но я хотел бы также узнать, что представляют собой бета-частицы и другие…

Л. — Именно об этом я и хочу рассказать. Так называемые радиоактивные вещества отличаются определенной неустойчивостью: их ядра самопроизвольно распадаются, и мелкие кусочки ядра разлетаются во все стороны. Такими осколками ядер могут быть нейтроны (испускание нейтронов), иногда электроны (тогда говорят, что мы имеем дело с бета-лучами или β). Случается также, что из ядра вылетают группы, состоящие из четырех частиц: двух нейтронов и двух протонов. Эти группы называют альфа-частицами α или «гелионами», а поток этих частиц называют альфа-лучами.

Ядерные явления сопровождаются также гамма-излучением (γ), которое аналогично свету (или, вернее, рентгеновским лучам) и проявляет волновые свойства.

Н. — Как я вижу, это излучение совсем не похоже на другие; это своего рода свет, а не поток частиц.

Л. — О! Знаешь, между излучением частиц и излучением светового типа разница не столь уж велика. Они различаются между собой скорее всего проникающей способностью. Альфа-лучи далеко не уходят — их путь в воздухе всего несколько миллиметров. Бета-лучи способны уйти дальше и пройти сквозь лист алюминия и даже через тонкий стальной лист (чем меньше плотность вещества, тем легче проходит через него ядерное излучение). Гамма-лучи обладают высокой проникающей способностью. Все эти три вида излучения обладают ионизирующими свойствами, т. е. они способны вызвать ионизацию газа. При прохождении через газ они могут разделить молекулы газа на нейтральные с точки зрения электричества части (ионы) и сделать газ проводником. Они могут также вызвать конденсацию паров воды, когда последние охлаждены ниже температуры, в которой (при данной концентрации) должна происходить конденсация. Пар может находиться в этом неустойчивом состоянии перенасыщения…

Н. — … как вода, которую удается охладить на несколько градусов ниже нуля без превращения в лед.

Л. — Прекрасное сравнение. Такой пар может быстро превратиться в воду, если через него пройдут ядерные α, β или γ-лучи, что можно наблюдать по образованному мелкими капельками воды следу.

Н. — Если я правильно понял, α, β и γ-лучи можно различить по их проникающей способности?

Л. — Да, этой идеей можно воспользоваться, но обычно предпочитают пропускать излучение через магнитное поле: альфа-лучи (очень тяжелые положительно заряженные частицы) несколько отклоняются в одну сторону; бета-лучи (очень легкие частицы с отрицательным зарядом) сильно отклоняются в другую сторону, а гамма-лучи вообще не отклоняются (рис. 29).

Рис. 29. Магнитное поле Н не отклоняет гамма-лучи, немного отклоняет альфа-лучи и сильно отклоняет (в противоположную сторону) бета-лучи.

Нейтроны тоже не отклоняются магнитным полем. Пучок нейтронов не обладает также ионизирующим свойством и не конденсирует паров воды; его обнаруживают косвенными методами.

Н. — А могут ли эти лучи, наподобие рентгеновских, пронизать человеческое тело?

Л. — Да, за исключением α-лучей. Как и рентгеновские лучи, они в больших дозах чрезвычайно вредны для человека и живых существ, поэтому очень важно уметь их обнаруживать.

Измерение излучения

Н. — Ты, вероятно, используешь для этой цели конденсацию водяных паров, находящихся в состоянии «отсроченной конденсации»?

Л. — Такой пар называют «перенасыщенным». Его действительно можно использовать, и именно таким образом изучали радиоактивность лет тридцать назад. Камеру, содержащую пар, называют «камерой Вильсона». Но нам лучше было бы воспользоваться свойством ядерных излучений делать газ проводником электричества. Для этого газ нужно поместить в закрытый сосуд (называемый ионизационной камерой) между двух электродов, к которым приложено определенное напряжение. Теперь достаточно замерить проходящий через ионизационную камеру ток — он пропорционален интенсивности излучения, давлению газа и объему камеры (в предположении, что весь газ в камере подвергается воздействию излучения).

Н. — Ты собираешься измерить ток амперметром?

Л. — О, разумеется нет! Даже у самого чувствительного из микроамперметров стрелка отклонилась бы только в случае использования гигантской камеры, подверженной чудовищному облучению. На практике приходится сталкиваться с токами порядка миллионной доли микроампермера или даже еще меньше. Эти токи пропускают (рис. 30) через резисторы с чрезвычайно большими сопротивлениями (несколько тысяч или миллионов мегом), а разницу потенциалов на их выводах замеряют уже упоминавшимся электрометрическим усилителем, о котором мы еще будем говорить.

Рис. 30. Ядерные частицы, проходя через ионизационную камеру, ионизируют находящийся там газ, в результате чего начинает проходить очень небольшой ток. Падение напряжения, создаваемое этим током, измеряют на резисторе с очень большим сопротивлением.

Н. — Значит, твой метод с ионизационной камерой совсем нечувствительный?

Л. — Чувствительность мала, но она позволяет измерять излучения в очень широком диапазоне интенсивностей: от таких, которые человек без особого вреда выдерживает десятки часов до могущих убить его в одну минуту.

Н. — В последнем случае я предпочел бы держать ионизационную камеру на конце длинного шеста!

Счетчик Гейгера — Мюллера

Л. — Нередко делают еще лучше — измерения поручают проводить управляемым по радио роботам. При измерении менее интенсивных излучений применяют счетчики Гейгера — Мюллера, в которых ионизирующие свойства используются иначе, чем в ионизационной камере.

Н. — Что это за инструмент?

Л. — Он чрезвычайно прост и представляет собой запаянную колбу, заполненную газом с низким давлением. В колбе находится металлическая трубочка, в которой проходит изолированный от нее провод (рис. 31). Если создать некоторую разность потенциалов между проводом и трубочкой, то получим…

Рис. 31. Счетчик Гейгера — Мюллера . Трубочка с натянутой по ее оси проволокой помещена в колбу, заполненную газом с низким давлением. Ионизация, вызываемая каждой ядерной частицей, приводит к электрическому пробою газа.

Н. — … ионизационную камеру.

Л. — Действительно, сходство большое, и наш счетчик можно было бы использовать как ионизационную камеру. Но приложенная разность потенциалов относительно велика — она близка к той, которая требуется для начала электрического разряда газа в колбе. Если ядерная частица пройдет через газ, она может вызвать электрический разряд.

Н. — Точно так же, как и в ионизационной камере.

Л. — Нет, и по двум причинам. Во-первых, разность потенциалов между двумя электродами достаточно высока, чтобы под воздействием местной ионизации, вызванной ядерной частицей, лавинообразно ионизировался весь газ в колбе и возник электрический разряд. Во-вторых, мы не ставим задачу измерять возникающий электрический ток, а стараемся лишь установить, сколько раз в секунду произошло это явление.

Н. — Так, значит, нам нужно сосчитать импульсы, а их может быть очень много. Это не очень практично. Но ты мне сказал, что ионизация становится общей под воздействием напряжения труба — провод, а как же она тогда гаснет?

Л. — Полезное замечание. Действительно, если не предпринять специальных мер, она не погаснет. Для этой цели можно использовать электронную схему, называемую схемой гашения, которая после импульса ионизации значительно снижает напряжение на выводах счетчика и тем самым вызывает деионизацию. Но наилучшее решение заключается во введении в находящийся в колбе газ небольшого количества паров спирта или брома; тяжелые молекулы примеси своей инерцией вызовут деионизацию газа в счетчике сразу же после его ионизации, получится самогасящийся счетчик. Посмотри, я принес с собой такой счетчик. Я подаю на него питание, а к выводам резистора, по которому протекает ток центрального проводника, подключен вход усилителя. Громкоговоритель на выходе усилителя позволит нам услышать импульсы. Я подношу к нашему счетчику кусочек уранита (руды, содержащей радий и уран); слышишь, как часто следует один за другим щелчки?

Н. — Да, но звук производит странное впечатление, это не музыкальная нота. Несомненно причина в том, что звук порождается импульсами, а не синусоидами.

Л. — Совсем нет, Незнайкин. Распады ядер атомов подчиняются только закону случая. Может случиться так, что в одну секунду произойдет только один распад, а в следующую — десять. Эти импульсы следуют один за другим так же неравномерно, как стучат капли дождя по крыше. Но тем не менее можно установить средний темп в виде количества ударов в минуту (если за минуту происходит достаточное количество распадов, чтобы мог проявиться закон больших чисел).

Н. — А теперь убери подальше свой уранит. Постой, здесь наверное спрятано какое-то радиоактивное вещество — щелчки продолжаются, правда они стали очень редкими.

Космические лучи

Л. — То, что ты слышишь сейчас, Незнайкин, космические лучи, таинственные лучи, возникающие в верхних слоях атмосферы под воздействием прилетающих из звездного пространства частиц и падающих на нас, как непрерывный довольно слабый дождь. Они аналогичны гамма-излучению, но обладают большей проникающей способностью: несколько метров бетона не останавливает и 10 % космических лучей. Они причиняют много хлопот при измерениях, так как избавиться от них невозможно и приходится производить измерения с учетом наличия этих лучей, как если бы мы захотели производить измерения света, не имея возможности добиться в помещении полной темноты.

Н. — Но тебе не следовало этого мне говорить. Непрерывно пронизывающие меня насквозь лучи не способствуют хорошему настроению.

Л. — Успокойся, Незнайкин. Космические лучи пронизывают тебя точно так же, как всегда пронизывали все человечество, но мы себя от этого хуже не чувствуем.

Н. — Ну, ладно, но скажи мне, какие лучи можно обнаружить твоим счетчиком?

Л. — Все лучи, обладающие ионизирующими свойствами и достаточной проникающей способностью, чтобы достичь трубочки счетчика: все виды гамма-лучей, бета-лучи с достаточной проникающей способностью (особенно, если стенка колбы счетчика тонкая) и даже некоторые виды альфа-лучей, если на конце счетчика сделано тонкое окошко из пропускающего эти лучи материала, например из слюды. Во всяком случае счетчик Гейгера — Мюллера представляет собой высокочувствительный измерительный прибор: он начинает вырабатывать импульсы, значительно учащенные по сравнению с импульсами, вызываемыми космическими лучами, уже при очень низких уровнях радиации, не представляющих никакой опасности для человека, например при радиации от небольшого количества радиоактивной руды. Поэтому эти счетчики используют в геологической разведке и в научных исследованиях для обнаружения излучения.

Сцинтилляционный счетчик

Н. — Так, значит, счетчик Гейгера — Мюллера самый чувствительный прибор для обнаружения ядерных излучений?

Л. — Нет, его рекорд по чувствительности побит сцинтилляционным счетчиком.

Н. — Что это за прибор? Мне кажется, что ты уже упоминал о нем, когда рассказывал о фотоэлементах с умножением электронов?

Л. — Действительно. Здесь используется кристалл или кусочек специальной пластмассы, обладающей свойством давать вспышку света при попадании ядерной частицы. Этот кристалл помещается рядом с фото катодом фотоумножителя (рис. 32).

Рис. 32. Ядерные частицы проходят через черную бумагу или тонкий слой металла (их задача не пропустить свет) и попадают на кристалл. На каждую частицу кристалла воздействуют вспышкой света, обнаруживаемой фотоумножителем, на который наклеен кристалл.

Фото катод закрыт от воздействия постороннего света черной бумагой или каким-либо иным непрозрачным слоем, через который должны пройти частицы прежде, чем попасть на кристалл. Ток фото у множителя складывается из серии импульсов, средний ритм следования которых и замеряется. Этот метод настолько чувствителен, что он позволяет обнаруживать радиоактивные руды с движущегося автомобиля или с самолета, пролетающего над обследуемой местностью. Кроме того, сцинтилляционный счетчик на каждую частицу вырабатывает импульс, пропорциональный ее энергии, тогда как у счетчика Гейгера все импульсы одинаковые. Это свойство позволяет производить измерение энергетического спектра изучаемых частиц.

Об измерениях в ядерной технике можно было бы, разумеется, написать целые тома, но я полагаю, что для себя мы уже исчерпали эту тему.

Н. — Я с тобою не согласен и пока еще не чувствую себя истощенным… Ты ничего не рассказал ни об обнаружении нейтронов, ни об использовании изотопов, ни об ином, кроме техники безопасности, использовании измерений радиоактивности, как, например, в геологической разведке или в научных исследованиях.

Л. — Постараюсь ответить на твои вопросы по порядку. Начну с нейтронов; установлено, что, сталкиваясь с атомом бора, они вызывают серию ядерных реакций, сопровождающихся гамма-излучением. Поэтому для обнаружения нейтронов достаточно покрыть пластинку борной кислотой и поместить ее рядом с ионизационным или сцинтилляционным счетчиками.

Н. — В самом деле, это представляется мне очень простым.

Использование изотопов

Л. — Радиоактивные изотопы представляют собой вещества, искусственно создаваемые путем бомбардировки нормальных атомов колоссальным потоком нейтронов, получаемым, например, в ядерном реакторе. Эти нейтроны могут проникнуть в атом и врасти в его ядро. Полученный таким образом новый изотоп часто бывает неустойчивым и радиоактивным. Он повсюду сопровождает нормальное вещество, но испускает ядерные лучи, которые позволяют его заметить. Например, при нейтронном облучении в реакторе куска стали, скажем, поршневого кольца, образуются атомы радиоактивного изотопа железа. Измеряя радиоактивность масла, используемого для смазки двигателя, в котором установлено такое кольцо, можно определить степень его износа. С помощью радиоактивных изотопов удалось нанести на атомы своеобразную метку, и атомы перестали быть анонимными, как раньше. Метка позволяет посредством физических измерений следить за атомами, точно так же как кольцо с номером на лапке позволяет опознать почтового голубя. Таким же образом можно проследить распределение йода (к которому подмешано небольшое количество радиоактивного изотопа йода) при заболевании щитовидной железы; если обвести вокруг тела больного счетчиком Гейгера, то он покажет, где сосредоточен радиоактивный, а следовательно, и обычный йод. Я думаю, что этим я ответил на твой третий вопрос. Попутно отмечу, что радиоактивные изотопы используются для просвечивания непрозрачных для обычного света предметов.

Так, например, ты можешь измерить уровень жидкости в непрозрачном стальном баке, если с одной стороны поместить источник радиоактивного излучения, а другой стороны — счетчик Гейгера (рис. 33); чем выше уровень жидкости, тем сильнее поглощается излучение. Таким же образом можно измерить толщину выходящего из прокатного стана стального листа — достаточно лишь определить, какая часть ядерного излучения прошла через этот стальной лист.

Рис. 33. Даже в непрозрачном баке можно измерить уровень жидкости. В зависимости от высоты уровня жидкость больше или меньше поглощает ядерное излучение источника; прошедшее излучение измеряется счетчиком.

Н. — Этот метод представляется многообещающим.

Л. — У меня нет времени, а то я рассказал бы тебе об обнаружении изъянов в толще металла, об очистке, о медицинских и многих других областях использования радиоактивных изотопов. В заключении этого раздела я хочу рассказать тебе о преобразователях, чувствительных к химическому — воздействию.

Электрохимия ионов

Н. — Но в химии я не так-то силен.

Л. — Беда не велика. Тебе сейчас достаточно лишь знать, что химические реакции представляют собой не что иное, как электрические взаимодействия между различными ионами (сейчас я говорю только о химии растворов). Кислотой называют вещество, которое в растворе освобождает водородные ионы Н+, т. е. водородные атомы, потерявшие свой электрон.

Н. — Следовательно, это протоны.

Л. — Совершенно верно. И эти протоны горят желанием возвратить утерянный электрон, и чаще всего они забирают его у отрицательных ионов, обладающих избытком электронов. Например, в растворах имеются ионы, именуемые гидроксильной группой ОН-, состоящие из одного атома кислорода, одного атома водорода и одного лишнего электрона. Эти ионы стремятся соединиться с ионами Н+.

Рис. 34. Если к двум опущенным в воду электродам приложить разность потенциалов, то ионы Н + направятся к катоду, где получат недостающий им электрон и превратятся в водород. Это явление называется электролизом (ионы ОН - отдают свой заряд на аноде и разлагаются с выделением кислорода).

Н. — и что получается в результате?

Л. — Просто-напросто вода Н2О — нейтральное соединение. Молекулы воды в свою очередь имеют некоторую тенденцию распасться на ионы Н+ и ОН-, но таких молекул крайне мало: чистая вода очень плохо проводит электрический ток.

Протекающую реакцию записывают следующим образом:

Двойная стрелка обозначает, что реакция может протекать в обоих направлениях, но происходит она преимущественно в направлении справа налево. На основе одного химического закона можно доказать, что произведение количества содержащихся в воде ионов Н+ (концентрация, обозначается | Н+|) на количество содержащихся в воде ионов ОН- (обозначается | ОН-|) всегда постоянно и равно | Н+| х | ОН-| = 10-14.

Н. — В самом деле, не очень много! Это составляет одну стотысячную одной миллиардной! Как же обозначают цифрами такие концентрации?

Л. — Их выражают в «грамм-ионах на литр» (г·ион/л), т. е. числом, показывающим, сколько раз 1 г ионов Н+или 17 г ионов ОН- содержится в литре (что соответствует 6·1023 настоящих ионов). Само собой разумеется, что взвесить ионы нельзя, так как нет возможности получить их в свободном состоянии. Но их количество можно определить косвенными методами. Например, можно возвратить ионам Н+ недостающие им электроны, в результате чего получится газ водород (рис. 34), объем которого можно замерить, а это даст нам и вес (примерно 1 г на 11 л).

Показатель pH

Н. — По твоему уравнению диссоциации количество ионов Н+ должно точно соответствовать количеству ионов ОН-. Разве не так?

Л. — Да, если бы я не добавил в воду постороннее вещество. Ну и раз ты находишься на верном пути, скажи мне, какова концентрация ионов Н+ в чистой воде.

Н. — Это можно рассчитать. Если | Н+| = | ОН-|, а их произведение равно 10-14, то концентрация каждого из названных ионов составляет 10-7.

Л. — Прекрасно. Если теперь я добавлю в воду кислоту, которая высвобождает большое количество ионов Н+, то концентрация ионов ОН- снизится, потому что произведение | Н+| х | ОН-| остается равным 10-14. Чем больше ионов Н+, тем более выраженный кислотный характер приобретает раствор. Теперь принято измерять количество ионов Н+ в растворе и обозначать его логарифмом в сопровождении значка Н+, эту величину называют водородным показателем pH раствора.

Н. — О! Опять логарифмы! Они приводят меня в ужас.

Л. — Все это не так страшно. Запомни только логарифмы некоторых чисел:

Н. — Значит, логарифм всего лишь показатель степени числа 10?

Л. — Видишь, ты сам это понял. Когда говорят, что pH раствора, например, 6, это означает, что концентрация ионов Н+ в этом растворе составляет 10-6. Ты знаешь, что очень чистая вода имеет показатель pH, равный 7. У кислых растворов показатель pH меньше 7…

Н. — Нет, ты ошибаешься! В кислых растворах концентрация ионов Н+ выше.

Л. — Подожди, Незнайкин, разве ты не согласен, что 10-2 (или 0,01) все же больше, чем 10-7 (или 0,0000001)?

Н. — Согласен, ты прав. Но скажи, пожалуйста, до какого уровня может опуститься показатель pH в очень кислых растворах?

Л. — При pH = 0 в растворе в каждом литре содержится 1 грамм-ион Н+. А так как концентрация этих ионов может быть немного выше, то величина pH может спуститься несколько ниже нуля — почти до —1.

И наоборот, в основных (или щелочных) растворах, куда добавили ионов ОН-, концентрация ионов Н+ опускается ниже уровня 10-7 и может дойти до 10-14 (когда на каждый литр раствора приходится 1 грамм-ион ОН-) и показатель pH может достичь 14.

Иногда показатель может еще повышаться почти до 15, но эти случаи носят скорее характер исключения, чем правила.

Измерение pH

Н. — Но тогда величину pH совершенно невозможно измерить?

Л. — Почему ты думаешь, что при высоких значениях pH, иначе говоря у щелочных растворов, труднее измерить этот показатель?

Н. — Да потому, что даже с помощью точных измерительных приборов невозможно измерить количество ионов, когда в литре их всего лишь 10-12 или того меньше.

Л. — Ты совершенно прав, если пользоваться химическими методами (они бессильны уже при pH = 3). На практике же пользуются электрическими измерениями. Установили, что, когда тонкая перегородка из специального стекла разделяет два раствора с pH соответственно pH1 и рН2 (рис. 35), образуется электрическая батарея, э. д. с. которой примерно равна:

E = E 0 + 0,06·(рН1 - рН 2 ),

где Е 0 — постоянная величина, зависящая от нескольких факторов.

Рис. 35. Разделяя тонкой стеклянной перегородкой (из стекла, с не очень хорошими свойствами изолятора) два раствора с разными pH , вызывают появление разности потенциалов, которая пропорциональна разности pH этих растворов.

Когда хотят измерить pH какого-нибудь раствора, в него опускают небольшой шарик из специального стекла, в который налит кислый раствор с известным pH и опущена платиновая проволочка. Это приспособление называют стеклянным электродом.

Н. — Любознайкин! Все имеет свой предел, ну, хватит надо мною смеяться! Ведь стекло прекрасный изолятор (к счастью для электронных ламп). Как можно сделать электрод из стекла, которое не проводит электрического тока?

Л. — Конечно из обычного нельзя, но ведь я тебе сказал, что для этой цели берут специальное стекло. Но даже такое стекло совершенно не годится для электрической проводки в твоей квартире. Высокое сопротивление стеклянного электрода — большой недостаток этого весьма практичного приспособления. Сопротивление составляет от 50 Мом до нескольких тысяч мегом.

Н. — Иначе говоря, это не проводник, а плохой изолятор. А как измеряют потенциал раствора?

Л. — Для этого в раствор опускают другой, так называемый эталонный электрод, который обычно состоит из цепочки: хлористый калий, хлористая ртуть (каломель), ртуть и платина. Этот каломельный электрод вместе с платиновой проволочкой и стеклянным электродом образуют электрический элемент, э. д. с. которого и замеряют. Электродвижущая сила элемента связана с pH исследуемого раствора линейной зависимостью

E = A + 0,06·рН,

т. е. изменяется на 60 мв на каждую единицу pH. Постоянная величина А зависит от каломельного электрода и от концентрации известного раствора в колбочке из специального стекла. Завод-изготовитель указывает эту величину в паспорте электродов.

Н. — Значит, нам остается всего лишь измерить электродвижущую силу этой батареи, и дело в шляпе!

Л. — Мне очень нравится твое «всего лишь…» Представь себе, какие проблемы возникают при измерении с точностью лучше 1 мв напряжения на клеммах батареи, внутреннее сопротивление которой может превышать 1000 Мом, Это удается осуществить лишь с помощью специального так называемого электрометрического усилителя.

Н. — Опять!.. Я начинаю думать, что фотоэлемент и электрометрический усилитель представляют собой два краеугольных камня электроники.

Окислительно-восстановительный потенциал

Л. — В нашей следующей беседе мы рассмотрим устройство электрометрических усилителей, которые действительно играют довольно важную роль в электронике. Но прежде чем мы доберемся до них, нам предстоит поговорить еще об одной важной величине в химии растворов — об окислительно-восстановительном потенциале (или о потенциале Редокса). Знаешь ли ты, что такое окислитель?

Н. — Да, в свое время мне объяснили, что окислителями называют вещества, способные выделить кислород или забрать из воды водород, чтобы выделить из нее кислород.

Л. — Приведенное тобой определение было совершенно правильно лет пятьдесят тому назад. Но и сейчас, к сожалению, его можно найти во многих современных книгах. На самом же деле общее и более правильное определение следующее: окислитель в растворе — это ион, который может сообщить другим ионам или атомам положительные заряды (или, вернее, забрать электроны). Так например, ионы железа, лишенные трех электронов и поэтому обладающие тремя положительными зарядами, имеют тенденцию захватить электрон и превратиться в ионы только с двумя положительными зарядами

Н. — Почему так? Почему бы им не захватить сразу три электрона и не стать опять порядочным металлическим железом?

Л. — Это тоже возможно, но ионы железа «жаждут» заполучить первый недостающий электрон и в значительно меньшей степени два других. Иначе говоря, ионы двухвалентного железа обладают определенной стабильностью, не свойственной ионам трехвалентного железа. Или, проще говоря, ионы трехвалентного железа голодны на электроны, но, проглотив первый электрон, они изрядно успокаиваются.

Н. — Хорошо, но в твоей формуле содержится еще кое-что, что меня удивляет. Почему реакция обратима?

Л. — Это очень просто, если ионы двухвалентного железа окажутся рядом с более голодным, чем ион трехвалентного железа, «пожирателем электронов» (окислителем), то произойдет реакция в направлении справа налево.

Н. — Мне очень понравилось выражение ионы, «голодные на электроны», но это определение носит скорее качественный характер. Как узнать, что один ион более голоден на электроны, чем другой?

Л. — Что я слышу, Незнайкин? Ты просишь меня перейти к количественному определению! Но успокойся, это, впрочем, очень просто. Если свести вместе ионы трехвалентного железа и ионы двухвалентного олова (с двумя положительными зарядами), то ионы трехвалентного железа будут восстановлены до состояния ионов двухвалентного железа, пока остаются ионы двухвалентного олова, которые могут окислиться до ионов четырехвалентного олова (с четырьмя положительными зарядами)

На этот раз реакция необратима, и она продолжается до полного исчезновения одного из исходных компонентов.

И, наоборот, если свести вместе ионы двухвалентного железа и ионы четырехвалентного церия (с четырьмя положительными зарядами), то они будут восстановлены до состояния ионов трехвалентного церия (с тремя положительными зарядами) и полностью окислят ионы двухвалентного железа

Следовательно, смесь ионов двух- и трехвалентного железа может окислять ионы двухвалентного олова и восстанавливать ионы четырехвалентного церия. Это показывает, что смесь Fe++/Fe+++ более жадна на электроны, чем смесь Sn++/Sn++++, но менее жадна, чем смесь Се+++/Се++++.

Каждую из этих смесей характеризуют потенциалом, который носит название окислительно-восстановительного потенциала и представляет собой просто-напросто разность между потенциалом опущенного в раствор индифферентного электрода и потенциалом этого раствора.

Н. — Почему пользуются индифферентным электродом?

Л. — Чтобы он обменивался с раствором только электронами, но не ионами. Для этого, как правило, берут платину; измеряют разность потенциалов «между платиновой проволочкой и раствором. Измерение производят с помощью эталонного электрода, чаще всего из каломели (рис. 36). Разность потенциалов может быть от —1 в (энергичные восстановители) до +2 в (очень сильные окислители).

Рис. 36. Для измерения окислительно-восстановительного потенциала раствора в этот раствор впускают индифферентный электрод из платины и эталонный электрод.

Н. — И для этих измерений тебе, естественно, понадобится электрометрический усилитель?

Л. — На этот раз нет. Внутреннее сопротивление электрода из каломели мало, внутреннее сопротивление раствора тоже, и поэтому можно ограничиться хорошим контролером. Но способный на сложную работу может выполнить и более простую, и поэтому обычно пользуются электрометрическим усилителем, который служит для измерения pH.

Н. — Мне в голову пришла идея, она, вероятно, идиотская, но тем не менее я хочу тебе рассказать о ней. По сути дела эти ионы Н+, иначе говоря протоны, жаждут захватить электроны, чтобы вновь стать водородом из порядочной семьи. Нельзя ли рассматривать их как небольшие окислители?

Л. — Они и есть окислители. Воздействие кислоты, иначе говоря ионов Н+, на металл представляет собой реакцию окисления металла. Можно связать теорию окисления с теорией воздействия кислоты, но это увело бы нас слишком далеко от нашей темы. Но ты видишь, насколько расширились твои «допотопные» представления об окислении?

Старые методы измерения pH

Н. — Просто безмерно. Но я полагаю, что показатель pH появился всего лишь несколько лет тому назад: ведь до широкого вторжения в нашу жизнь электроники, которая одна позволяет использовать стеклянный электрод, измерять этот показатель было невозможно.

Л. — И тем не менее это удавалось осуществить. Сначала пользовались красящими веществами, состав и цвет которых изменялись в зависимости от величины pH, как, например, метилоранж (гелиантин), имеющий красный цвет в среде с pH ниже 3 и желтый цвет в среде с pH выше 5. Использовали также так называемый водородный электрод, состоящий из платиновой проволочки, покрытой губчатой платиной и платиновой чернью (порошкообразный металл), на который непрерывно подают газообразный водород. Этот электрод обладает низким внутренним сопротивлением, но он неудобен в работе и чувствителен ко многим вносящим помехи явлениям, от которых свободен стеклянный электрод.

Существуют также бумаги, покрытые смесью красящих, веществ, которые при попадании на них капли раствора принимают окраску от красной до фиолетовой в диапазоне pH от 1 до 10.

Величину pH измеряют путем сравнения полученной окраски с эталонной цветной шкалой. Но в этом случае ты ограничен точностью в одну единицу, тогда как правильно проведенные измерения электрическим методом позволяют получить точность до одной сотой единицы pH.

Н. — А разве так важно знать pH с точностью до одной сотой?

Л. — Очень важно. Например, показатель pH крови имеет строго постоянную величину и даже очень ничтожные изменения свидетельствуют о серьезном заболевании.

Н. — О, как жалко, что у меня нет рН-метра для наблюдения за моим здоровьем!..