Создав богатый запас различных первичных преобразователей, наши друзья приступают к рассмотрению использования сигналов, вырабатываемых первичными преобразователями. Для этого, оказывается, полезно улучшить технические характеристики знакомых Незнайкину усилителей и, в частности, расширить их полосу пропускания как в сторону высоких, так и в сторону очень низких (и даже нулевой) частот. В конце беседы Любознайкин открывает своему другу «секрет», который сотни тысяч технических специалистов познали… и, несомненно, забыли, потому что никогда не видели, какую пользу можно из него извлечь.

Незнайкин — Итак, дорогой Любознайкин, я надеюсь, что на этот раз ты не станешь больше говорить о преобразователях, ибо от них меня уже тошнит.

Любознайкин — Не беспокойся, Незнайкин, сегодня мы перейдем к другой части нашей схемы — к промежуточному преобразователю, иначе говоря, к вопросу о преобразовании вырабатываемого первичным преобразователем сигнала. Мы начнем с преобразования, касающегося лишь величины сигнала, иначе говоря с усиления.

Н. — Ну это не займет у нас много времени. Я знаю все усилители, кроме электрометрического.

В области верхних частот

Л. — Скромность всегда тебя украшала. Ты знаешь, как делают для радиоприемника усилитель низкой частоты, предназначенный для воспроизведения звуковых частот от 30 гц до 15 кгц. Но при усилении других сигналов может возникнуть потребность намного расширить полосу пропускания как в сторону низких, так и в сторону высоких (верхних) частот. Я поставил бы тебя в трудное положение даже одним вопросом, если бы спросил, что ты сделаешь, чтобы увеличить верхний предел частот, пропускаемых усилителем на резисторах.

Н. — Дай немного подумать. Я полагаю, что ты хочешь поговорить об усилителе, схему которого я нарисовал на рис. 37.

Рис. 37. В этом усилительном каскаде усиление на низких частотах снижается вследствие увеличения реактивного сопротивления конденсатора С 1 и особенно С 2 .

Л. — Да, он прекрасно подходит для нашей беседы. Расскажи мне, пожалуйста, о его возможностях.

Н. — Усиление на верхних частотах ограничено тем, что параллельно резистору R 2 включена паразитная емкость С, шунтирующая его и снижающая результирующее сопротивление.

Л. — Совершенно верно. А как избавиться от этого?

Н. — Прежде всего я попытался бы уменьшить паразитную емкость путем предельного укорочения соединительных проводников и правильным подбором ламп.

Л. — Ты поступаешь разумно. Но возможности избранного тобою пути довольно ограничены. Может быть, тебе и удалось бы наполовину уменьшить эту паразитную емкость и тем самым вдвое увеличить полосу пропускания, но как расширить ее еще больше?

Н. — А! Вспомнил, можно воспользоваться коррекцией, компенсирующей шунтирование емкостью С резистора R 2 .

Коррекция — не выход из положения

Л. — Я не могу тебе сказать, что это неправильно, но коррекция представляет собой прием, позволяющий несколько расширить полосу пропускания, и поэтому она совершенно не характерна для широкополосного усилителя. Ты совершаешь ту же самую ошибку, что и 99 % радистов. В моем телевизоре имеется усилитель, правильно усиливающий частоты от 10 гц до 10 Мгц; в нем, конечно, имеется коррекция, но и без нее мой усилитель очень хорошо пропускал бы частоты до 5 Мгц, а вот усилитель в моем электрофоне, разумеется, на такой подвиг не способен: уже на 300 кгц он теряет 90 % своего усиления. Следовательно, между двумя усилителями есть существенное различие. Я полагаю, что ты сам найдешь ответ. Почему мешает тебе эта паразитная емкость С?

Н. — Я уже объяснил тебе: она шунтирует резистор и на высоких частотах снижает значение результирующего сопротивления.

Л. — Я хотел бы внести некоторые уточнения. Предположим, что емкость С равна 16 пф (чтобы упростить расчеты ее реактивного сопротивления), тогда ее сопротивление равно 1 Мом на 10 кгц, 100 ком на 100 кгц, 10 ком на 1 Мгц и 1 ком на 10 Мгц. Предположим, что сопротивление резистора R 2 = 100 ком. Скажи, пожалуйста, на какой частоте начнет тебе мешать емкость С?

Н. — Для этого следовало бы рассчитать результирующее (полное) сопротивление включенных параллельно резистора R 2 и конденсатора С. Но я могу тебе сказать, что на частоте 10 кгц влияние емкости С с ее реактивным сопротивлением 1 Мом на входное сопротивление устройства, близкое к 100 ком, будет очень мало.

Л. — Я бы даже сказал, что ее воздействие на полное сопротивление практически равно нулю (не больше 0,5 %). Но посмотри, Незнайкин, проходящий по емкости С ток на 90° опережает ток, проходящий по R 2 . Я обозначил эти токи стрелками (рис. 38), а вернее векторами, характеризующими их амплитуду и фазу. Для определения полного тока построим прямоугольник, сторонами которого являются две названные стрелки. Диагональ прямоугольника соответствует стрелке, характеризующей полный ток. Но на частоте 10 кгц максимальный ток I с , проходящий через конденсатор, в 10 раз меньше тока, проходящего через резистор. Диагональ прямоугольника при этом настолько близка к его большей стороне, что их можно спутать. Если ты слышал о теореме Пифагора…

Рис. 38. К R и С приложено одно и то же напряжение, протекающий через конденсатор С ток  I с на 90° опережает I R (ток, протекающий через резистор). Полный ток  I представляет собой векторную сумму токов  I с и I R .

Н. — Хм, очень немного и, по правде сказать, плохо понял.

Л. — Эта теорема гласит, что диагональ прямоугольника (или гипотенуза прямоугольного треугольника, который представляет собой половину прямоугольника) равна корню квадратному из суммы квадратов его сторон. В нашем случае одна сторона равна 10, а другая — 1, следовательно, сумма квадратов составит 101, а корень квадратный — 10,05.

Н. — Очень любопытно, в самом деле, наличие паразитной емкости на частоте 10 кгц никак не сказывается на коэффициенте усиления.

Амплитуда — не фаза

Л. — Емкость С в этом случае не оказывает заметного влияния на коэффициент усиления, но влияет на вносимый усилителем сдвиг фазы. Посмотри: общий ток (диагональ) находится в фазе с приложенным к сетке напряжением U c = U вх , тогда как напряжение на выходе, естественно, находится в фазе с током, проходящим по резистору R 2 (большая сторона). Как ты видишь, между ними уже имеется сдвиг по фазе, пренебрегать которым нельзя (здесь около 6°). Когда же реактивное сопротивление емкости С будет всего лишь в 3 раза больше сопротивления R 2 (т. е. на частоте 33 кгц), образованный стрелками прямоугольник все еще будет довольно вытянутым и его диагональ всего лишь на 5 % длиннее большой стороны. Иначе говоря, проходящий по резистору ток будет составлять 95 % общего тока, коэффициент усиления еще составит 95 % коэффициента усиления на низкой частоте. Но сдвиг фазы станет очень значительным (больше 18°).

Н. — Если ты будешь так продолжать, то дойдешь до того, что скажешь мне, что влияние С на коэффициент усиления так никогда и не почувствуется!

Л. — Вовсе нет. Когда реактивное сопротивление С достигнет величины R 2 , т. е. 100 ком, прямоугольник, о котором я говорил, станет квадратом. Сторона квадрата равна всего лишь 0,7 его диагонали (1:√2), коэффициент усиления в этом случае снизится до 0,7 своего значения на низких частотах, сдвиг фазы увеличится до 45°, т. е. мы достигли так называемой «граничной» частоты, на которой коэффициент усиления снижается на 30 % от своего максимального значения. Говорят, что он снизился на 3 дб и…

Н. — С децибелами я немного не в ладах.

Децибелы

Л. — И вместе с тем это очень просто. Белы (обычно пользуются десятыми долями этой величины) выражаются десятичным логарифмом отношения мощностей.

Н. — Ну вот, я сделал большой шаг вперед. Для начала логарифмы, к которым особой любви я не чувствую, а в дополнение еще история с отношением мощностей, когда мы имеем дело с усилением по напряжению и…

Л. — Правильно, Незнайкин, здесь имеется определенная трудность, но мы ее устраним. Для начала я вернусь к определению. Когда две мощности Р 1 и Р 2 не равны, говорят, что одна превосходит другую на n бел, т. е.

Иначе говоря, когда одна мощность в 10 раз больше другой, говорят, что она больше на 1 бел [или 10 децибел (дб)]. Если Р2 в 1000 раз больше P 1 , говорят, что Р 2 на 3 бел (логарифм 1000 равен 3), или на 30 дб больше P 1 .

Н. — Странная идея, я предпочел бы сказать «в тысячу раз больше». Ну, наконец, можно согласиться, если так принято… Но как все это применить к усилителю, который не предназначен для передачи мощности?

Л. — Представь себе усилитель, на вход которого поступает напряжение с постоянной амплитудой при различных частотах. На частоте f 1 он дает на выходе напряжение 1 в, которое выделяется на постоянном резисторе в 1 ом. Согласен ли ты, что в этом случае выходная мощность равна 1 вт?

Н. — Потому что мы имеем ток в 1 а при напряжении 1 в.

Л. — Хорошо. Предположим, что на частоте f 2 входное напряжение на том же резисторе снижается до 0,5 в; какова будет мощность?

Н. — Мощность будет 0,5 вт…

Л. — Незнайкин!!! Какую колоссальную глупость ты произвел на свет божий! Что мне с тобой делать?!

Н. — Ой, ой! Да, я вижу: напряжение равно 0,5 в, следовательно, ток 0,5 а, а мощность всего лишь 0,25 вт. Я должен был вспомнить, что мощность пропорциональна квадрату напряжения…

Л. — И мощность в 4 раза меньше первой. А так как логарифм этого числа 0,6, мы можем сказать, что вторая мощность на 0,6 бел (или 6 дб) меньше первой, и, следовательно, мы можем сказать про усилитель, что его коэффициент усиления снизился на 6 дб.

Н. — Я начинаю, понимать. Когда говорят: «Коэффициент усиления по напряжению снизился на р дб», то перед числом р подразумевается фраза: «Настолько, что выходная мощность усилителя с нагрузкой с постоянным сопротивлением снизилась на…». Это примерно так же, когда кондуктор автобуса объявляет: «Северный… занимайте места!», так как он подразумевает: «Пассажиры, едущие в направлении Северного вокзала…»

«Точка 3 дб»

Л. — Я увел тебя в другую сторону, но поздравляю с тем, что ты так хорошо понял. Но вернемся к нашему примеру. Если коэффициент усиления по напряжению снизился до 0,7, то как это выразить в децибелах?

Н. — Попробуем разобраться. Выходное напряжение снизилось до 0,7, следовательно, выходной ток (на постоянном выходном сопротивлении) снизился во столько же раз, значит выходная мощность снизилась до 0,7 х 0,7 = 0,49 (округленно скажем до 0,5 первоначальной величины). Мощность уменьшилась в 2 раза. Посмотрев в поданную тобой таблицу логарифмов, я вижу, что логарифм 2 почти равен 0,3. Мощность снизилась на 0,3 бел, т. е. на 3 дб… Постой, ведь это как раз та цифра, которую ты недавно мне назвал!

Когда «эффект конденсатора» становится преобладающим

Л. — Превосходно! Теперь представь себе, что произойдет в анодной нагрузке нашей лампы (рис. 39) на частотах выше той, которой соответствует потеря усиления в 3 дб. Ток, который проходит по С (т. е. по паразитной емкости, шунтирующей резистор R 2 ). больше тока, проходящего по резистору R 2 . Основное влияние начинает оказывать ток I с ; отношение I R /I полн быстро снижается, это же происходит и с усилением.

Рис. 39. Полный ток, протекающий R через и С , поступает на лампу. (Здесь показано условно принятое направление движения тока.)

Можно, например, сказать, что на частоте 1 Мгц, когда реактивное сопротивление С в 10 раз меньше сопротивления R 2 , анодная нагрузка лампы состоит только из С; следовательно, усиление может упасть в 10 раз (на самом деле падение усиления несколько меньше и коэффициент 10 справедлив для пентода, внутреннее сопротивление которого можно считать бесконечно большим по сравнению с сопротивлением R 2 ).

Н. — Значит, конденсатор С начинает серьезно мешать, когда его реактивное сопротивление падает ниже сопротивления R 2 ?

Л. — Именно это я пытаюсь заставить тебя сказать уже на протяжении четверти часа. Ну, так что же надлежит сделать, чтобы паразитная емкость не мешала на возможно более высокой частоте?

Н. — Уменьшить С.

Л. — Правильно, но это ты мне уже говорил. Что еще можно сделать?

Н. — Но я ничего не вижу. Может быть уменьшить величину R 2 ?

Низкие сопротивления нагрузки

Л. — Наконец-то!.. Конечно, Незнайкин, нужно уменьшить R 2 , чтобы реактивное сопротивление С (которое снижается с увеличением частоты) стало меньше сопротивления R 2 на как можно более высокой частоте. Широкополосные усилители обычно рассчитываются на низкое сопротивление анодной нагрузки. В нарисованном тобой усилителе усиление снижается на 3 дб на частоте 100 кгц. А если бы сопротивление нагрузки было не 100 ком, а 1 ком, снижение усиления на 3 дб произошло бы только на частоте 10 Мгц.

Н. — А уменьшив нагрузку до 10 ом, мы расширили бы полосу до 1000 Мгц!

Л. — В принципе ты прав. Но я готов поспорить с тобой на что угодно, что при анодной нагрузке с сопротивлением 10 ом усиление твоей лампы по напряжению будет значительно меньше единицы.

Н. — Какой ужас! Об этом-то я и не подумал. Но скажи, пожалуйста, ведь и с нагрузкой 1 ком усиление тоже не очень большое?

Полоса и усиление

Л. — Увы! Всякая медаль имеет свою оборотную сторону. Для улучшения дела используют пентоды с большой крутизной, что позволяет и при низком сопротивлении анодной нагрузки получить не такое уже малое усиление. Кроме того, используют известные коррекции, о которых ты уже мне говорил. В частности, можно включить небольшую катушку последовательно анодной нагрузке — параллельная коррекция (рис. 40, а); можно включить эту катушку последовательно с конденсатором связи — последовательная коррекция (рис. 40, б) или применить оба вида коррекции — комбинированная коррекция (рис. 40, в). С помощью этих коррекций, если они хорошо отрегулированы, удается почти удвоить полосу пропускания.

Рис. 40. Высокочастотную коррекцию усилителя можно осуществить с помощью катушки, включенной последовательно с анодной нагрузкой ( а — параллельная коррекция), катушки, включенной последовательно с цепочкой связи между двумя каскадами ( б — последовательная коррекция), или с помощью двух катушек ( в — комбинированная коррекция).

Н. — И до какой частоты можно дойти при использовании всех этих средств?

Л. — Без особого труда удается сделать усилители с верхней границей до 30 или 50 Мгц. Можно еще больше расширить полосу, но для этого требуется особый усилитель, получивший название «усилителя с распределенным усилением»; это своего рода длинная линия с включенной в нее лампой, но о нем мы говорить не будем.

Н. — А можно ли устранить сдвиг фазы в такой широкой полосе частот?

Л. — Это невозможно, да, впрочем, и не нужно. Достаточно, чтобы сдвиг фазы был пропорционален частоте, но это не всегда легко осуществить.

Низкие частоты

Н. — Я догадываюсь, что последует дальше: после рассказа о способах расширения полосы пропускания усилителя в сторону высоких частот вполне логично заняться расширением полосы в сторону низких частот.

Л. — Правильно. Поэтому скажи мне, что ограничивает усиление твоего усилителя на низких частотах.

Н. — Нет ничего легче! Ограничения вносят реактивные сопротивления конденсаторов, особенно конденсаторов С 1 и С2 в твоей схеме на рис. 37. конденсатор С 1 вводит отрицательную обратную связь, а С 2 плохо связывает два каскада. При желании бороться с этими неприятными явлениями я могу увеличить емкость этих конденсаторов.

Л. — Согласен, но возможности этого пути весьма ограниченны. Емкость конденсатора С 1 и так достигает нескольких микрофарад и значительно увеличить ее невозможно, даже если ты доведешь ее до 100 и особенно до 1000 мкф, то неизбежные в таких конденсаторах токи утечки могут влиять на напряжение смещения. Но перейдем к конденсатору С 2 ; я не советую тебе превышать 1 мкф, ибо в противном случае он станет слишком громоздким, а это приведет к значительным паразитным емкостям, не говоря уже о неизбежном токе утечки, который может сделать положительной сетку следующей лампы. Как видишь, этот путь не дает хороших результатов. Чтобы конденсатор С1 не мешал, его лучше вообще убрать.

Изменим смещение

Н. — Как так? Ведь тогда потенциал катода перестанет быть постоянным и лампа не станет усиливать.

Л. — Позволь мне внести поправку: усиление уменьшится, но лампа будет продолжать усиливать. Своими действиями мы ввели напряжение (напряжение катод — корпус, вернее его переменную составляющую), которое вычтется из входного напряжения, т. е. создастся отрицательная обратная связь. А как ты знаешь, отрицательная обратная связь снижает усиление, но одновременно уменьшает искажения и шум, а также дает нам другие выгоды.

Н. — Я высокого мнения о положительных качествах отрицательной обратной связи, но тем не менее очень прискорбно потерять часть усиления, тем более что оно и без того значительно урезано из-за применения низкоомной анодной нагрузки, позволяющей пропустить высокие частоты.

Л. — Мы можем избежать потерь. Для начала можно соединить катод лампы с корпусом, а отрицательное напряжение смещения подать на сетку лампы…

Н. — И из нашей эпохи прогресса электроники ты возвращаешь меня к первым дням истории радио.

Л. — Незнайкин, эволюция техники знает любопытные примеры возврата к прошлому. Но чтобы как-то скрасить возникшее грустное впечатление, я познакомлю тебя с современным прибором — диодом Зенера (стабилитроном).

Н. — Раз современный, значит полупроводниковый.

Л. — Твое заключение правильно, хотя и пришел ты к нему совершенно нелогичным путем. Диод Зенера представляет собой плоскостной кремниевый диод, который при подаче положительного напряжения смешения ведет себя, как все диоды из порядочной семьи: он пропускает ток при минимальном падении напряжения на диоде около 0,7 в, которое почти не зависит от проходящего по нему тока. При подаче напряжения смещения обратного знака, т. е. отрицательного, наш новый знакомый запирается, как и все другие диоды, но в отличие от них при достижении обратным напряжением некоторой величины U з ,именуемой «напряжением Зенера», обратный ток начинает очень быстро возрастать без существенного увеличения напряжения на выводах диода.

Н. — Это своего рода пробой?

Л. — О, нет! Это совсем другое явление: в диоде не возникает никаких повреждений, если только не превысили максимально допустимого относительно большого значения тока. Напряжения Зенера могут заключаться в пределах от 3 до 200 в. При этом наилучшими считаются диоды с напряжением Зенера 8 в.

Н. — Очень занятно, но какое отношение имеет этот полупроводниковый прибор к усилителям?

Л. — Незнайкин, ты просто лишился воображения. Включи такой диод между катодом и корпусом усилителя (рис. 41). Катод будет иметь положительный и почти постоянный потенциал, потому что напряжение на выводах диода Зенера практически не зависит от проходящего по диоду тока, т. е. от анодного тока. У тебя отпадает надобность в конденсаторе, а следовательно, исчезнут и низкочастотные искажения.

Рис. 41. Диод Зенера поддерживает между катодом и корпусом постоянное напряжение U K = | U 3 | (напряжение Зенера), которое не зависит от катодного тока. Этот метод катодного смещения пригоден для самых низких частот.

Н. — Вот это здорово! Любопытный пример сотрудничества полупроводниковых приборов и ламп, которые обычно выступают как смертельные враги.

Л. — Нет, Незнайкин, полупроводниковые приборы лампам не враги, и их можно заставить прекрасно работать вместе. А теперь, когда мы полностью устранили неприятности, которые чинил нам конденсатор С 1 , можно заняться и конденсатором С 2 .

Прямая связь

Н. — Я предполагаю, что мы и его уберем из схемы.

Л. — И ты не ошибся, но необходимо проявить осторожность. Что произойдет, если анод первой лампы соединить непосредственно с сеткой второй лампы?

Н. — Любознайкин, ведь уже давно я предложил это тебе, но ты совершенно справедливо возразил, что слишком положительная сетка следующей лампы притянула бы к себе все электроны.

Л. — Но теперь, когда я сделал катод следующей лампы еще более положительным, чем сетка, этого не случится. Предположим, что анодное напряжение для питания первой лампы равно 100 в, что напряжение на ее аноде 60 в; тогда, если мы хотим иметь напряжение смещения на сетке второй лампы -4 в, нам нужно будет подать на ее катод напряжение 64 в.

Н. — А система получилась совсем неглупая! Какова же нижняя граница усиливаемой частоты — я не вижу ничего, что могло бы ее ограничивать?

Л. — Совершенно правильно; нельзя видеть то, чего нет! Предельная частота просто равна нулю. Мы получили усилитель постоянного тока: если на вход подать постоянное напряжение, то и на выходе получим такое же.

Н. — Чудесно. Но я вижу в твоей схеме один серьезный недостаток. Напряжение на катоде второй лампы +64 в, следовательно, напряжение анода значительно выше. А если этот анод соединить с сеткой третьей лампы, положение еще ухудшится…

Связь с помощью батареи

Л. — В этом действительно заключается главный недостаток этой системы, которая применяется только для двух или максимум для трех каскадов. Но что ты скажешь о схеме на рис. 42?

Н. — Любопытно! Более или менее обычная схема, но меня удивляет эта батарея, включенная в цепочку связи между анодом Л 1 и сеткой Л 2 .

Рис. 42. Батарея с напряжением 64 в позволяет соединить сетку лампы Л 2 с анодом Л 1 и передавать постоянную составляющую.

Л. — Подумай. Она поддерживает на постоянном уровне разность потенциалов между анодом Л 1 и сеткой Л 2 ; потенциал сетки всегда —64 в относительно анода Л 1 и, следовательно, — 4 в относительно корпуса, когда потенциал анода Л 1 относительно корпуса составляет +60 в. Поэтому катод Л 2 можно соединить с корпусом.

Н. — Очень хитро. Это прекрасное решение проблемы создания многокаскадных усилителей постоянного тока.

Л. — Но оно далеко не идеальное. Прежде всего скажем, что батареи громоздки, много весят, дорого стоят, образуют с корпусом значительные паразитные емкости, а кроме того, истощаются.

Н. — Однако они ведь не отдают никакого тока.

Л. — О, знаешь ли ты, что иногда между рекламными заявлениями и реальной действительностью — целая пропасть. На каждый каскад требуется батарея и лучше заменить батарею небольшой неоновой лампой. Взгляни на схему рис. 43.

Рис. 43. Неоновая лампа Л 3 , поддерживаемая в ионизированном состоянии, подключена через резистор к источнику — Е и играет такую же роль, что и батарея на рис. 42.

Когда по маленькой неоновой лампе Л 3 протекает не очень большой ток, на ее выводах поддерживается постоянное напряжение. Сетку лампы Л 2 подключают к источнику достаточно высокого отрицательного напряжения через резистор R 2 , обладающий довольно большим сопротивлением. Таким образом заставляют ток проходить через лампу Л 3 , поддерживая газ в ней в ионизированном состоянии. Этот ток очень мал по сравнению с анодным током лампы Л 1 ; неоновая лампа играет роль батареи со схемы на рис. 42. Подобную систему применяют преимущественно в последних каскадах усилителей с прямой связью.

Н. — В принципе твоя неоновая лампа действует как диод Зенера; почему бы не заменить ее одним таким диодом?

Л. — Вообще-то можно, но в схемах с довольно высокими напряжениями и малыми токами предпочтение следует отдать не диодам Зенера, а неоновым лампам. Однако надо учесть, что они обладают одним недостатком: полученное на выводах лампы Л 3 напряжение не совсем постоянно, ибо содержит переменную составляющую (ее называют напряжением «дыхания» или «свиста»); из-за этой помехи данным способом не следует пользоваться в первых каскадах усилителей с характерными для них низкими напряжениями сигнала.

Связь с помощью делителя напряжения

Н. — Что же тогда делать с первыми каскадами?

Л. — Сейчас я расскажу тебе о методе, который годится для всех каскадов. Для облегчения восприятия воспользуюсь числовым примером. Предположим (рис. 44), что напряжение на аноде Л 1 равно +60 в.

Рис. 44. Ток, протекающий по резистору R 2 , создает падение напряжения 64 в и тем самым заменяет батарею, показанную на рис. 42.

Я соединяю анод этой лампы с сеткой следующей резистором R 2 сопротивлением 1 Мом, эта сетка через резистор R 3 сопротивлением 5 Мом подключена к потенциалу — 324 в. Так как сеточный ток в лампе Л 2 полностью отсутствует, один и тот же ток протекает по резисторам R 2 и R 3 (впрочем, этот ток по сравнению с анодным током лампы Л 1 очень невелик). Падение напряжения на выводах резистора R 3 в 5 раз больше падения напряжения на резисторе R 2 . Обрати внимание, что полное напряжение на цепочке из двух резисторов R 2 — R 3 составляет 60 в + 324 в = 384 в. В этих условиях падение напряжения составит 64 в на R2 и 320 в на R 3 , а потенциал сетки лампы Л 2 относительно корпуса будет —4 в. Как ты видишь, резистор R 2 в известной мере играет роль неоновой лампы (см. рис. 43) или батареи (см. рис. 42).

Н. — Здесь я с тобой, Любознайкин, не согласен. Падение напряжения на этом резисторе нестабильное: если потенциал анода Л 1 увеличится, то в такой же мере увеличится и падение напряжения на резисторе.

Л. — Совершенно верно, но падение напряжения изменится в 6 раз меньше, чем изменится анодное напряжение. Иначе говоря, резисторы R 2 и R 3 образуют делитель анодного напряжения с отношением 5:6. Разумеется, что в этом случае на сетке лампы Л 2 мы получим лишь 5/6 переменной составляющей с анода Л 1 , но будем иметь по крайней мере 64 в постоянного напряжения. На практике, конечно, не пользуются отрицательным напряжением — 324 в, а применяют принятые значения и соответствующим образом подбирают резисторы R 2 и R 3 .

Н. — Система неплохая. Создавая прямую связь, мы начали с батареи, перешли на неоновую лампу и закончили резистором, т. е. шли по пути упрощения. Но в схеме есть один элемент, который меня беспокоит; в цепи сетки лампы Л 2 последовательно включен резистор R 2 сопротивлением 1 Мом, но он неблагоприятно повлияет на усиление высоких частот.

Частотная коррекция делителя

Л. — Изображенная на рис. 44 схема, конечно, гибельна для высоких частот. Но обычно все можно благополучно устроить, включив параллельно резистору R2 небольшой конденсатор. Конденсатор нужно подобрать таким образом, чтобы произведение его емкости на сопротивление резистора R 2 было равно произведению паразитной емкости входа лампы Л 2 С вх на R 3 , тогда влияние резистора R 2 на высокие частоты будет устранено.

Если C·R 2 = C вх R з (или здесь С = 5·С вх ), то делитель напряжения R 2 ||C/R 3 ||Свх «апериодический» (он одинаково пропускает все частоты). Описанное сейчас мною решение считается классическим. Но мне больше нравится другое, более хитрое, которое радисты упорно не хотят знать. Я нашел это решение в одном известном иностранном журнале по электронике, который, по моему мнению, читают очень много специалистов (но вероятно, только я обратил внимание на сообщение о названном решении).

Н. — Скорее объясни мне суть дела: я сгораю от нетерпения узнать от тебя секрет.

Компенсация отводом от анодной нагрузки

Л. — Этот «секрет» напечатан более чем в 50 000 экземпляров. Он заключается в следующем.

В усилителе, схема которого изображена на рис. 44, стараются получить на сетке лампы Л2 переменную составляющую, которая была бы равна 5/6 того, что имеется на аноде лампы Л 1 . Представь себе, что я сделал анодную нагрузку не из одного резистора R 1 , а из двух последовательно соединенных резисторов R' 1 и R'' 1 (рис. 45). Я могу так подобрать эти резисторы, чтобы сумма их сопротивлений имела такую же величину, что и R 1 , а их величины соотносились бы между собой, как R 2 и R 3 .

R' 1 :R" 1 = R 2 :R 3

Иначе говоря, в нашем конкретном случае должно быть:

R" 1 = 5·R' 1

В общей для обоих резисторов точке А переменная составляющая равна 5/6 той, которая имеется в точке В (благодаря делителю напряжения R' 1 — R" 1 ). Эту переменную составляющую с помощью конденсатора С достаточной емкости мы передадим на сетку лампы Л 2 (точка D); таким образом мы заставим потенциал точки D иметь переменную составляющую, равную 5/6 переменной составляющей в точке В, а именно к этому мы и стремимся.

Н. — Четыре твоих резистора образуют два делителя напряжения с одним и тем же коэффициентом; можно ли сказать, что это мост Уитстона?

Л. — Совершенно верно, а теперь я расскажу тебе о преимуществах этой системы. Прежде всего обрати внимание на то, что конденсатор С не обязательно должен иметь точно определенную емкость; достаточно, чтобы она была большой по сравнению с паразитной емкостью входа лампы Л 2 С вх . В схеме же на рис. 44 нужно было подбирать емкость С в зависимости от паразитной емкости С вх , следовательно, требовался подстроечный конденсатор. Однако величина С вх может изменяться при замене лампы и даже у одной лампы при изменении смещения. В схеме на рис. 45 нет ничего похожего. Отпадает необходимость подключать к сетке полупеременный конденсатор (а это всегда сопряжено с неприятностями: такой конденсатор занимает много места, а кроме того, может привести к самовозбуждению схемы). В нашей же схеме достаточно раз и навсегда подогнать резисторы, и все готово; регулировка схемы останется хорошей при любом напряжении смещения и даже при замене лампы Л 2 . Обычно я ставлю керамический конденсатор емкостью от 220 до 470 пф, он очень маленький и удобно размещается при монтаже.

Рис. 45. Чтобы показанную на рис. 44 связь сделать апериодической, соединяют конденсатором С точки А и D , замыкая накоротко диагональ уравновешенного моста, так как R' 1 : R" 1 = R 2 : R 3

Н. — Любознайкин, ты настолько меня убедил, что я намерен вступить почетным членом в «Ассоциацию по Распространению Схем с Прямой Связью с Отводом от Анодной Нагрузки» (АРСПСОАН).

Л. — Пока ограничься вступлением в «Ассоциацию Людей, Которые, Возвращаясь Домой, Не Будят Своих Родственников», потому что сейчас уже час ночи, а я не хочу, чтобы твоя мама меня ругала.