Гистон Н2А

Сайт | Модель | Энзим | Функция | Ссылка

K5ac | Hs, Sc | Tip60, p300/CBP, Hat1 | Активация транскрипции | Yamamoto and Horikoshi, 1997; Kimura and Horikoshi, 1998; Verreault etal., 1998

K9bio | — | HCS-биотинидаза | Зависимая от ацетилирования и метилирования. Участвует в клеточной пролиферации, сайленсинге генов и в клеточном ответе на повреждение ДНК | Stanley et al., 2001; Kothapalli et al., 2005b; Chew et al., 2006

K7ac | Sc | Hat1 Esa1 | Активация транскрипции | Suka et al., 2001

K13bio | — | HCS-биотинидаза | Зависимая от ацетилирования и метилирования. Участвует в клеточной пролиферации, сайленсинге генов и клеточном ответе на повреждение ДНК | Stanley et al., 2001; Kothapalli et al., 2005b; Chew et al., 2006

K119ub1 | Dm. Hs | dRing, RING IB | Polycomb-сайленсинг, Реакция на УФ-повреждение | Wang et al., 2004; Kapetanaki et al., 2006

S121ph | Sc | Mec1 PIKK | Ответ на повреждение ДНК. | Теломерный сайленсинг | Wyatt et al., 2003; Harvey et al., 2005

T125ph | Sc | Mec1 PIKK | Ответ на повреждение ДНК. Теломерный сайленсинг | Wyatt et al., 2003

K126bio | Hs | HCS биотинидаза | Зависимая от ацетилирования и метилирования. Участвует в клеточной пролиферации, сайленсинге генов и клеточном ответе на повреждение ДНК | Stanley et al., 2001; Kothapalli et al., 2005b, Chew et al., 2006

K126su | Sc | Репрессия транскрипцииБлокирует ацетилирование и убиквитинирование гистонов | Nathan et al., 2006

K127bio | Hs | HCS-биотинидаза | Зависимая от ацетилирования и метилирования. Участвует в клеточной пролиферации, сайленсинге генов и клеточном ответе на повреждение ДНК | Stanley et al., 2001; Kothapalli et al., 2005b; Chew et al., 2006

S128ph | Sc | Mec1 PIKK | Ответ на повреждение ДНК. Теломерный сайленсинг | Downs et al., 2000; Redon et al., 2003; Wyatt et al., 2003; Downs et al., 2004

K130bio | Hs | HCS-биотинидаза | Зависимая от ацетилирования и метилирования. Участвует в клеточной пролиферации, сайленсинге генов и клеточном ответе на повреждение ДНК | Stanley et al., 2001; Kothapalli et al., 2005b; Chew et al., 2006

Дополнительные модификации Н2А:

S1ph, К4ас, K13me, K15ас, K21ас, K36ас, K74me, K75me, R77me, K95me, T120ph, карбонилирование Н2А (Pantazis and Bonner, 1981; Song et al., 2003; Alhara et al., 2004).

Гистон Н2В

Сайт | Модель | Энзим | Функция | Ссылка

К5ас | Hs | — | Активация транскрипции | Puerta et al., 1995; Galasinski et al., 2002

S10ph | Sc | Ste20 | Апоптоз | Ahn et al., 2005

S14ph | Hs, Mm | Mst1/krs2 киназа | Апоптоз. Соматическая гипермутация и рекомбинация с переключением классов | Ajiro, 2000; Cheung et al., 2003; Odegard et al., 2005

K16su | Sc | — | Репрессия генов | Nathan et al., 2006

K17su | Sc | — | Репрессия генов | Nathan et al., 2006

S33ph | Dm | CTK | Активация транскрипции | Maile et al., 2004

K120ub | Hs | — | Прогрессия по клеточному циклу в сочетании с SAGA для транскрипционной активации посредством метилирования H3, мейоз | Robzyk et al., 2000; Sun and Allis, 2002; Kao et al., 2004

K123ub | Sc | Rad6(E2)Brel(E3)-ub1 | Теломерный сайленсинг путем снижения метилирования гистонов по H3K4 и H3K79 | Emre et al., 2005

Дополнительные модификации Н2В:

E2am, K5me, K6su, K7su, K11ac, K12ас, K15ас, K16ас, K20ас, K23me, K24ас, S32ph, K43me, K85ас, R99me, K108ас, K116ас, Kарбонилирование Н2В, биотинилирование Н2В (Rouleau et al., 2004).

Гистон Н3

Сайт | Модель | Энзим | Функция | Ссылка

R2me | Hs Mm | CARM1-me2a | Экспрессия генов | Chen et al., 1999; Schurter et al., 2001

T3ph | Hs At | Haspin | Центромерная функция митотического веретена | Polioudaki et al., 2004; Dai et al., 2005

K4me | Sc | Setl-me3 | Сайленсинг rDNA, теломерный сайленсинг. Активация транскрипции | Briggs et al., 2001; Roguev et al., 2001; Nagy et al., 2002; Bryk et al., 2002; Bernstein et al., 2002; Santos-Rosa et al., 2002

K4me | Tt | ? | Активация транскрипции | Strahl et al. 1999

K4me | Hs | SET7/Set9-me1 | Активация транскрипции | H. Wang et al., 2001a; Nishioka et al., 2002a; Wilson et al., 2002; Zegerman et al., 2002

K4me | Ds Hs | MLLMLL2-me3 MLL3 | Активация Trithorax | Milne et al., 2002; Nakamura et al., 2002

K4me | Ds Hs | Ash1-me2 | Активация Trithorax | Beisel et al., 2002; Sanchez-Eisner et al., 2006

K4me | Hs | SMYD3-me3 | Активация транскрипции | Hamamoto et al., 2004

K9ac | Mm Sc | Meisetz-me3SAGA | Прогрессия мейотической профазы. Активация транскрипции | Hayashi et al., 2005 Grant et al., 1999

K9ac | Hs | SRC1 | Коактиватор ядерного рецептора | Spencer et al. 1997; Schubeler et al., 2000: Vaquero et al., 2004

K9ac | Dm | Активация транскрипции | Nowak et al., 2000

K9me | Mm, Hs | G9a-me1, me2 | Активация транскрипции. Импринтинг | Tachibana et al., 2001, 2002; Ogawa et al., 2002; Xin et al., 2003

K9me | Dm | Su(var)3-9-me2 | Доминантный модификатор PEV | Czermin et al., 2001; Schotta et al., 2002; Ebert et al., 2004

K9me | Mm | Suv39h1-me3 Suv39h2-me3 | Перипентрический гетерохроматин | O’Carroll et al., 2000; Rea et al., 2000; Lachner et al., 2001; Peters et al., 2001

K9me | Hs | SUV39H1-me3 | Rb-опосредованный сайленсинг | Nielsen et al., 2001; Vandel et al., 2001

K9me | Sp | Clr4-me1, me2 | Сайленсинг центромеры и типа спаривания | Bannister et al., 2001; Nakayama et al., 2001

K9me | Nc | Dim5-me3 | Метилирование ДНК | Tamaru and Selker, 2001

K9me | At | KRYPTONITE-me2 | Метилирование ДНК | Jackson et al., 2002, 2004

K9me | Hs | EuHMTase 1-me1, me2 | Репрессия транскрипции | Ogawa et al., 2002; Tachibana et al., 2005

K9me | Hs, Mm | ESET-me2, me3 | Репрессия транскрипции | Schultz et al., 2002; Yang et al., 2002; Dodge et al., 2004; Wang et al., 2004

K9me | Dm, Hs | Ash1-me2 | Активация Trithorax | Beisel et al., 2002

K9me | Hs | R1Z1-me2 | Супрессия опухоли и ответ на женские половые гормоны | Kim et al., 2003; Carling et al., 2004

S10ph | Sc | Snf1 | Активация транскрипции | Lo et al., 2001

S10ph | Dm | |il-1 | Транскрипционная ап-регуляция мужской Х-хромосомы | Jin et al., 1999; Y. Wang et al., 2001

S10ph | Hs | Rsk2 | Активация транскрипции немедленных ранних генов (в сочетании с ацетилированием H3K14) | Sassone-Corsi et al., 1999; Thomson et al. 1999;

S10ph | Hs | Msk1 | Активация транскрипции немедленных ранних генов (в сочетании с ацетилированием H3K14) | Cheung et al., 2000;

S10ph | Hs | Msk2 | Активация транскрипции немедленных ранних генов (в сочетании с ацетилированием H3K14) | Clayton et al. 2000

S10ph | Hs | IKKa | Транскрипционная ап-регуляция | Anest et al., 2003; Yamamoto et al, 2003

S10ph | Sc, Ce | Ipl1/AuroraB | Конденсация митотических хромосом | Hendzel et al., 1997; Wei et al.. 1999: Hsu et al., 2000

S10ph | An | NIMA | Конденсация митотических хромосом | De Souza et al., 2000

S10ph | Hs, Ce | Fyn kinase | UVB-индуцированный МАР-киназный путь | He et al., 2005

T11ph | Hs | Dlk/ZIP | Митоз-специфичное фосфорилирование | Preussetal., 2003

K14ac | Sc, Tt, Mm | Gcn5 | Активация транскрипции | Brownell et al., 1996; Kuo et al., 1996

K14ac | Hs, Dm TAF„230 TAF„250 | Активация транскрипции | Mizzen et al., 1996

K14ac | Hs | p300 | Активация транскрипции | Schiltz et al., 1999

K14ac | Hs | PCAF | Активация транскрипции | Schiltz et al., 1999

K14ac | Mm | SRC1 | Коактиватор ядерного рецептора | Spencer et al., 1997

R17me | Hs, Mm | CARM1 | Активация транскрипции (в сочетании с ацетилированием H3K18/23) | Chen et al., 1999; Schurter et al., 2001; Bauer et al., 2002; Daujat et al., 2002

K18ac | Sc | SAGA Ada Активация транскрипции | Grant etal., 1999

K18ac | Hs | p300 | Активация транскрипции | Schiltz etal., 1999

K18ac | Hs | СВР | Активация транскрипции (в сочетании с метилированием H3R17) | Daujat et al., 2002

K23ac | Sc | SAGA | Активация транскрипции | Grant etal., 1999

K23ac | Hs | СВР | Активация транскрипции (в сочетании с метилированием H3R17) | Daujat et al., 2002

R26me | Hs | CARM1 | Сайт метилирования in vitro | Chen et al., 1999; Schurter et al., 2001

K27me | Hs, Dm | E(z)/EZH2-me3 | Polycomb-репрессия Инактивация Х-хромосомы ранних В-клеток | Cao et al., 2002; Czermin et al., 2002; Kuzmichev et al., 2002; Muller et al., 2002; Su et al., 2003

S28ph | Hs | Aurora-В | Конденсация митотических хромосом | Goto et al., 1999, 2002

S28ph | Hs | MSK1 | UVB-индуцированное фосфорилирование | Zhong et al., 2001

K36me | Sc | Set2-me2 | Репрессия генов | Strahl et al., 2002; Kizer et al., 2005

K36me | Nc | Set2-me2 | Активация транскрипции | Adhvaryu et al., 2005

K36me | Sp | Set2-me2 | Элонгация транскрипции | Morris et al., 2005

K79me | Sc. Hs | Dot! /DOT! L-me2 | Теломерный сайленсинг, пахитенный checkpoint | Feng et al., 2002; Lacoste et al., 2002; Ng et al., 2002; van Leeuwen et al., 2002

Дополнительные модификации H3:

K14me, K23me, K27ас, T32ph, K37me, K56me, K64me, K115ас, K118ас, K118me, K122ас, R128me (Hyland et al., 2005).

Гистон Н4

Сайт | Модель | Энзим | Функция | Ссылка

S1ph | Hs, Sc | Casein kinase II | Реакция на повреждение ДНК | Ruiz-Carrillo et al., 1975; Cheung et al., 2005; van Attikum and Gasser, 2005

R3me | Hs, Sc | PRMT1 | Активация транскрипции | H. Wang et al., 2001 a,b

K5ac | It, Dm, Hs | Hatl | Откладка гистонов | Sobeletal., 1995; Parthunetal., 1996; Taplicket al., 1998; Turner, 2000; Kruhlak et al., 2001

K5ac | Sc | Esa1/NluA4 | Прогрессия по клеточному циклу | Smith etal., 1998; Allard etal., 1999; Clarke et al., 1999; Bird et al., 2002; Miranda et al., 2006

K5ac | Hs, Mm | ATF2 | Сиквенс-специфичный TF | Kawasaki et al., 2000a

K5ac | Hs p300 | Активация транскрипции | Turner and Fellows, 1989; Schiltz et al., 1999

K8ac | Hs, Mm | Y-ATF2 | Исключен из Xi. Сиквенс-специфичный транскрипционный фактор | Jeppesenetal., 1993: Choyetal., 2001; Kruhlak et al., 2001; Kawasaki et al., 2000b

K5ac | Hs | PCAF/p300 | Активация транскрипции | Turner and Fellows, 1989; Schiltz et al., 1999

К12ас | Sc, Hs | Hatl | Исключен из Xi. Откладка гистонов | Turner and Fellows, 1989; Jeppesenetal., 1993; Kleffetal., 1995; Sobeletal., 1995; Parthunetal., 1996; Chang et al., 1997; Kruhlak et al., 2001

К12ас | Sc | NuA4 | Прогрессия в митозе и в мейозе | Choy et al., 2001

K12bio | Hs | HCS Биотинидаза | Уменьшение реакции на двунитевые разрывы ДНК. Влияние на пролиферацию клеток | Stanley et al., 2001; Kothapalli et al., 2005a,b

К16ас | Mm | ? | Исключен из Xi. Зависимое от клеточного цикла ацетилирование | Ieppesen et al., 1993; Taplick et al., 1998

К16ас | Dm | MOF | Транскрипционная ап-регуляция мужской Х-хромосомы | Akhtar and Becker, 2000; Hsu et al., 2000

К16ас | Hs, Mm | ATF2 | Сиквенс-специфичный транскрипционный фактор | Turner and Fellows, 1989; Kawasaki et al., 2000a; Turner, 2000; Kruhlak et al., 2001; Vacquero et al., 2004

K20me | Mm, Dm | Suv4-20hl-me2, me3 Suv4-20h2-me2, me3 | Сайленсинг генов | Schotta et al., 2004

K20me | Hs, Dm | Pr-SET7/Set8-me1 | Транскрипционный сайленсинг, митотическая конденсация | Fang et al., 2002; Nishioka et al., 2002b; Rice et al., 2002

K20me | Dm | Ash1-me2 | Trithorax-активация в сочетании с метилированием H3K4 и H3K9 | Beisei et al., 2002

K59me | Sc | Формирование «молчащего» хроматина | Zhang et al., 2003

K59me | Su Hs | SUMO-1 SUMO-3 | Репрессия транскрипции | Shiio and Eisenman, 2003

Дополнительные модификации Н4:

K12me, S47ph, K31ubl, К59me, К77ас, К79ас, К79me, K91ub1, R92me (Hyland et al., 2005).

Гистон Н1

Сайт | Модель | Энзим | Функция | Ссылка

E2ar1 | Rn | PARP-1 | Участие в нейротрофной активности | Ogata et al., 1980; Visochek et al., 2005

T10ph | Hs | — | Митоз-специфичная транскрипционная активация Н1b | Chadee et al., 1995; Garcia et al., 2004; Sarg et al., 2006

E14ar1 | Rn | PARP-1 | Участие в нейротрофной активности Ogata et al., 1980; Visochek et al., 2005

S17ph | Hs | — | Интерфаза-специфичная транскрипционная активация Н1b Garcia et al., 2004; Chadee et al., 1995; Sarg et al., 2006

K26me | Hs | EZH2-me2 | Опосредует связывание НР1 Kuzmichev et al., 2004; Daujat et al., 2005

S27ph | Hs | — | Блокирует связывание НР1 | Garcia et al., 2004; Daujat et al., 2005

T137ph | Hs | — | Митоз-специфичная транскрипционная активация H1b | Chadee et al., 1995; Garcia et al., 2004; Sarg et al., 2006

T154ph | Hs | — | Митоз-специфичная транскрипционная активация H1b | Chadee et al., 1995; Garcia et al., 2004; Sarg et al., 2006

S172ph | Hs | — | Интерфаза-специфичная транскрипционная активация H1b | Chadee et al., 1995; Garcia et al., 2004; Sarg et al., 2006

S188ph | Hs | — | Интерфаза-специфичная транскрипционная активация H1b | Chadee et al., 1995; Garcia et al., 2004; Sarg et al., 2006

K213arl | Rn | PARP-1 | Участие в нейротрофной активности | Ogata et al., 1980; Visochek et al, 2005

Дополнительные модификации Н1:

К26ас, E114arn, убиквитинирование Н1, карбонилирование HI (Pham and Sauer, 2000: Rouleau et al., 2004).

Гистон H2AX

Сайт | Модель | Энзим | Функция | Ссылка

S139ph | Hs, Sc, Dm. XI | ATM DNA-PK | Репарация ДНК. Связана с М-фазой. Известна также как ?Н2АХ | Rogakou et al., 1998,1999; Burma et al., 2001 ; Stiff et al., 2004; Ichijima et al., 2005; Mukheijee et al., 2006

Дополнительные модификации H2AX: T136ph.

Гистон macroH2A

Сайт | Модель | Энзим | Функция | Ссылка

K17me | Hs | — | — | Chu et al., 2006

K115ub1 | Hs | — | — | Ogawa et al., 2005; Chu et al., 2006

K122me | Hs | — | — | Chu et al., 2006

T128ph | Hs | — | — | Chu et al., 2006

K238me | Hs | — | — | Chu et al., 2006

Гистон H3.3

Сайт | Модель | Энзим | Функция | Ссылка

K4me | Dm | me1, me2, me3 | Активация транскрипции | McKittrick et al., 2004

K9me | Dm | me1, me2 | Репрессия транскрипции | McKittnck et al., 2004

K9ac | Dm, Hs | — | Активация транскрипции | McKittrick et al., 2004; Hake and Allis, 2006

K14me | Dm | me1, me2 | McKittrick et al., 2004

K14ac | Dm, Hs | — | Активация транскрипции | McKittrick et al., 2004; Hake and Allis, 2006

K18aс | Hs | — | Активация транскрипции | Hake and Allis, 2006

K23ac | Hs | — | Активация транскрипции | Hake and Allis, 2006

K27me | Dm | me1, me2, me3 | Репрессия транскрипции | McKittrick et al., 2004

K36me | Dm, Hs | me1, me2, me3 | Активация транскрипции | McKittrick et al., 2004; Hake and Allis, 2006

K37me | Dm | me1, me2 | — | McKittrick et al., 2004

K79me | Dm, Hs | me1, me2 | Активация транскрипции | McKittrick et al., 2004; Hake and Allis, 2006

S31ph | Млекопитающие | — | Митоз-специфичное фосфорилирование | Hake et al., 2005

CEN-H3/ CENP-A

Сайт | Модель | Энзим | Функция | Ссылка

S7ph | Hs | — | Митоз | Zeitlin et al., 2001

Дополнительные модификации CENP-A: S17ph.

Сокращения для модельных организмов:

(An) Aspergillus nidulans, (At) Arabidopsis thaliana, (Ce) Caenorhabditis elegans, (Dm) Drosophila melanogaster, (Hs) Homo sapiens, (Mm) Mus musculus, (Nc) Neurospora crassa, (Rn) Rattus norvegicus, (Sc) Saccharomyces cerevisiae, (Sp) Schizosaccharomyces pombe, (Tt) Tetrahymena thermophila, (Xl) Xenopus laevis.

Модификации гистонов — по номенклатуре, предложенной Тернером (Turner, 2005).

В таблицах перечисляются все известные модификации гистонов и известные энзимы с первичными ссылками (до мая, 2006 г.). Дополнительные модификации с пока еще неизвестными функциями перечислены под таблицами. Эти модификации взяты из разных источников: обзорных статей, информации от Abeam Cambridge, UK и Upstate Charlottesville, USA, а также из неопубликованных данных лаборатории Рейнберга (Reinberg).

Эта таблица была составлена на основе оригинального варианта, взятого из (Lachner et al., 2003) и значительно расширенного Roopsha Sengupta и Mario Richter (Лаборатория Jenuwein, IMP Vienna). Д-р Patrick Trojer (Лаборатория Reinberg, HHMI, New Jersey) проверил содержимое таблиц.

Эта таблица была проверена и дополнена информацией, предоставленной д-ром Steven Gray (Dept, of Clinical Medicine, Institute of Molecular Medicine, St. James Hospital, Dublin).

ЛИТЕРАТУРА

Adhvaryu K.K., Morris S.A., Strahl B.D., and Selker E.U., 2005. Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Eukaryot. Cell 4: 1455-1464.

Ahn S.H., Cheung W.L., Hsu J.Y., Diaz R.L., Smith M.M., and Allis C.D., 2005. Sterile, 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 120: 25-36.

Aihara H., Nakagawa T., Yasui K., Ohta T., Hirose S., Dhomae N., Takio K., Kaneko M., Takeshima Y., Muramatsu M., and Ito T., 2004. Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. Genes Dev. 18: 877-888.

Ajiro K., 2000. Histone H2B phosphorylation in mammalian apop-totic cells. An association with DNA fragmentation. J. Biol. Chem. 275: 439-443.

Akhtar A., and Becker P.B., 2000. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5: 367-375.

Allard S., Utley R.T., Savard J., Clarke A., Grant P., Brandi C.J., Pillus L., Workman J.L., and Cote J., 1999. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esalp and the ATM-related cofactor Tralp. EMBO J. 18: 5108-5119.

Anest V., Hanson J.L., Cogswell P.C, Steinbrecher K.A., Strahl B.D., and Baldwin A.S., 2003. A nucleosomal function for IkB kinase-a in NF-KB-dependent gene expression. Nature 423: 659-663.

Bannister A.J., Zegerman P., Partridge J.E., Miska E.A., Thomas J.O., Allshire R.C., and Kouzarides T., 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120-124.

Bauer U.M., Daujat S., Nielsen S.J., Nightingale K., and Kouzarides T., 2002. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep. 3: 39-44.

Beisel C, Imhof A., Greene J., Kremmer E., and Sauer F., 2002. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash 1. Nature 419: 857-862.

Berger S.L., 2002. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12: 142-148.

Bernstein B.E., Humphrey E.X., Erlich R.L., Schneider R., Bouman P., Liu J.S., Kouzarides T., and Schreiber S.L., 2002. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. 99: 8695-8700.

Bird A.W., Yu D.Y., Pray-Grant M.G., Qiu Q., Harmon K.E., Me-gee P.C., Grant P.A., Smith M.M., and Christman M.F., 2002. Acetylation of histone H4 by Esal is required for DNA double-strand break repair. Nature 419: 411-415.

Briggs S.D., Bryk M., Strahl B.D., Cheung W.L., Davie J.K., Dent S.Y., Winston E, and Allis C.D., 2001. Histone H3 lysine 4 methylation is mediated by Setl and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15: 3286-3295.

Bryk M., Briggs S.D., Strahl B.D., Curcio M.J., Allis C.D., and Winston E., 2002. Evidence that Setl, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr. Biol. 12: 165-170.

Brownell J.E., Zhou J., RanalliT., Kobayashi R., Edmondson D.G., Roth S. Y., and Allis C.D., 1996. Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843-851.

Burma S., Chen B.P., Murphy M., Kurimasa A., and Chen D.J., 2001. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276: 42462-42467.

Cao R., Wang L., Wang H., Xia L., Erdjument-Bromage H., Tempst P., Jones R.S., and Zhang Y., 2002. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039-1043.

Carling T., Kim K.C., Yang X.H., Gu J., Zhang X.K., and Huang S., 2004. A histone methyltransferase is required for maximal response to female sex hormones. Mol. Cell. Biol. 24: 7032-7042.

Chadee D.N., Taylor W.R., Hurta R.A., Allis C.D., Wright J.A., and Davie J.R., 1995. Increased phosphorylation of histone HI in mouse fibroblasts transformed with oncogenes or constitutively active mitogen-activated protein kinase kinase. J. Biol. Chem. 270: 20098-20105.

Chang L., Loranger S.S., Mizzen C., Ernst S.G., Allis C.D., and Annunziato A.T., 1997. Histones in transit: Cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36: 469-480.

Chen D., Ma H., Hong H., Koh S.S., Huang S.M., Schurter B.T., Aswad D.W., and Stallcup M.R., 1999. Regulation of transcription by a protein methyltransferase. Science 284: 2174-2177.

Cheung R, Tanner K.G., Cheung W.L., Sassone-Corsi P., Denu J.M., and Allis C.D., 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5: 905-915.

Cheung W.L., Turner F.B., Krishnamoorthy T., Wolner B., Ahn S.H., Foley M., Dorsey J.A., Peterson C.L., Berger S.L., and Allis C.D., 2005. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr. Biol. 15: 656-660.

Cheung W.L., Ajiro K., Samejima K., Kloc M., Cheung P., Mizzen C.A., Beeser A., Etkin L.D., Chemoff J., Eamshaw W.C., and Allis C.D., 2003. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113: 507-517.

Chew Y.C., Camporeale G., Kothapalli N., Sarath G., andZempleni J., 2006. Lysine residues in N -terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J. Nutr. Biochem. 17: 225-233.

Choy J.S., Tobe B.T., Huh J.H., and Kron S.J., 2001. Yng2p-depen-dent NuA4 histone H4 acetylation activity is required for mitotic and meiotic progression. J. Biol. Chem. 276: 43653-43662.

Chu F., Nusinow D.A., Chalkley R.J., Plath K., Panning B., and Burlingame A.L., 2006. Mapping post-translational modifications of the histone variant MacroH2Al using tandem mass spectrometry. Mol. Cell. Proteomics 5: 194-203.

Clarke A.S., Lowell I.E., Jacobson S.J., and Pillus L., 1999. Esalp is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell. Biol., 19: 2515-2526.

Clayton A.L., Rose S., Barratt M.J., and Mahadevan L.C., 2000. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J., 19: 3714-3726.

Coffee B., Zhang E., Warren S.T., and Reines D., 1999. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat. Genet. 22: 98-101.

Czermin B., Melfi R., McCabe D., Seitz V., Imhof A., and Pirrotta V., 2002. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185-196.

Czermin B., Schotta C., Hulsmann B.B., Brehm A., Becker P.B., Reuter C., and Imhof A., 2001. Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2: 915-919.

Dai J., Sultan S., Taylor S.S., and Higgins J.M., 2005. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev., 19: 472-488.

Daujat S., Zeissler U., Waldmann T., Happel N., and Schneider R., 2005. HP1 binds specifically to Lys26-methylated histone HI.4, whereas simultaneous Ser27 phosphoiylation blocks HP1 binding. J. Biol. Chem. 280: 38090-38095.

Daujat S., Bauer U.M., Shah V., Turner B., Berger S., and Kouzarides T., 2002. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr. Biol. 12: 2090-2097.

De SouzaC.P., Osmani A.H., Wu L.P., Spotts J.L., and Osmani S.A., 2000. Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 102: 293-302.

Dodge J.E., Kang Y.K., Beppu H.. Lei H., and Li E., 2004. Histone H3-K9 methyltransferase ESET is essential for early development. Mol. Cell. Biol. 24: 2478-2486.

Downs J.A., Lowndes N.F., and Jackson S.P., 2000. A role for Sac-charomyces cerevisiae histone H2A in DNA repair. Nature 408: 1001-1004.

Downs J.A., Allard S., Jobin-Robitaille O., Javaheri A., Auger A., Bouchard N., Kron S.J., Jackson S.P., and Cote J., 2004. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16: 979-990.

Ebert A., Schotta G., Lein S., Kubicek S., Krauss V., Jenuwein T., and Reuter G., 2004. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 18: 2973-2983.

Emre N.C., Ingvarsdottir K., Wyce A., Wood A., Krogan N.J., Henry K.W., Li K., Marmorstein R., Greenblatt J.F., Shilatifard A., and Berger S.L., 2005. Maintenance of low histone ubiquitylation by UbplO correlates with telomere-proximal Sir2 association and gene silencing. Mol. Cell 17: 585-594.

Fang J., Feng Q., Ketel C.S., Wang H., Cao R., Xia L., Erdjument-Bromage H., Tempst P., Simon J.A., and Zhang Y., 2002. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine, 20-specific methyltransferase. Curr. Biol. 12: 1086-1099.

Feng Q., Wang H., Ng H.H., Erdjument-Bromage H., Tempst P., Struhl K., and Zhang Y., 2002. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12: 1052-1058.

Galasinski S.C., Louie D.E., Gloor K.K., Resing K.A., and Ahn N.G., 2002. Global regulation of post-translational modifications on core histones. J. Biol. Chem. 211: 2579-2588.

Garcia B.A., Busby S.A., Barber C.M., Shabanowitz J., Allis C.D., and Hunt D.E., 2004. Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry. J. Proteome Res. 3: 1219-1227.

Goto H., Yasui Y., Nigg E.A., and lnagaki M., 2002. Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells 1: 11-17.

Goto H., Tomono Y., Ajiro K., Kosako H., Fujita M., Sakurai M., Okawa K., Iwamatsu A., Okigaki T., Takahashi T, and lnagaki M., 1999. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem. 274: 25543-25549

Grant P.A., Eberharter A., John S., Cook R.G., Turner B.M., and Workman J.L., 1999. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274: 5895-5900.

Hake S.B. and Allis C.D., 2006. Histone H3 variants and their potential role in indexing mammalian genomes: The “H3 barcode hypothesis”. Proc. Natl. Acad. Sci. 103: 6428-6435.

Hake S.B., Garcia B.A., Kauer M., Baker S.P., Shabanowitz J., Hunt D.F., and Allis C.D., 2005. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc. Natl. Acad. Sci. 102: 6344-6349.

Hamamoto R., Furukawa Y., Morita M., Iimura Y., Silva F.P., Li M., Yagyu R., and Nakamura Y., 2004. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6: 731-740.

Harvey A.C., Jackson S.P., and Downs J.A., 2005. Saccharomyces cerevisiae histone H2A Seri22 facilitates DNA repair. Genetics 170: 543-553.

Hayashi K., Yoshida K., and Matsui Y., 2005. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438: 374-378.

He Z., ChoY.Y., Ma W.Y., Choi H.S., Bode A.M., and DongZ., 2005. Regulation of ultraviolet B-induced phosphorylation of histone H3 at serine 10 by Fyn kinase. J. Biol. Chem. 280: 2446-2454.

Hendzel M.J., Wei Y., Mancini M.A., Van Hooser A., Ranalli T., Brinkley B.R., Bazett-Jones D.P., and Allis C.D., 1997. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106: 348-360.

Hsu J.Y., Sun Z.W., Li X., Reuben M., Tatchell K., Bishop D.K., Grushcow J.M., Brame C.J., Caldwell J.A., Hunt D.E, et al., 2000. Mitotic phosphorylation of histone H3 is governed by Ipll/aurora kinase and Glc7/PPI phosphatase in budding yeast and nematodes. Cell 102: 279-291.

Hyland E.M., Cosgrove M.S., Molina H., Wang D., Pandey A., Cot-tee R.J., and Boeke J.D., 2005. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell. Biol. 25: 10060-10070.

Ichijima Y., Sakasai R., Okita N., Asahina K., Mizutani S., and Te-raoka H., 2005. Phosphoiylation of histone H2AXat M phase in human cells without DNA damage response. Biochem. Biophys. Res. Commun. 336: 807-812.

Jackson J.P., Lindroth A.M., Cao X., and Jacobsen S.E., 2002. Control of CpNpG DNA methylation by the KRYPTON ITE histone H3 methyltransferase. Nature 416: 556-560.

Jackson J.P., Johnson L., JasencakovaZ., ZhangX., PerezBurgos L., Singh P.B., Cheng X., Schubert I., Jenuwein T., and Jacobsen S.E., 2004. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromsoma 112: 308-315.

Jeppesen P. and Turner B.M., 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression Cell 74: 281-289.

Jin Y., Wang Y., Walker D.L., Dong H., Conley C., Johansen J., and Johansen K.M., 1999. JIL-1: A novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol. Cell 4: 129-135.

Kao C.F., Hillyer C., Tsukuda T., Henry K., Berger S., and Osley M. A., 2004. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev. 18: 184-195.

Kapetanaki M.G., Guerrero-Santoro J., Bisi D.C., Hsieh C.L., Rapic-Otrin V., and Levine A.S., 2006. The DDB1-CUL4AD-DB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl. Acad. Sci. 103: 2588-2593.

Kawasaki H., Taira K., and Yokoyama K., 2000. Histone acetyltransferase (HAT) activity of ATF-2 is necessary for the CRE-dependent transcription. Nucleic Acids Symp. Ser., 2000: 259-260.

Kawasaki H., Schiltz L., Chiu R., Itakura K., Taira K., Nakatani Y., and Yokoyama K.K., 2000. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405: 195-200.

Kim K.C., Geng L., and Huang S., 2003. Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res. 63: 7619-7623.

Kimura A. and Horikoshi M., 1998. Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells 3: 789-800.

KizerK.O., Phatnani H.P., ShibataY., Hall H., GreenleafAL., and Strahl B.D., 2005. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol. Cell. Biol. 25: 3305-3316.

Kleff S., Andrulis E.D., Anderson C.W., and Stemglanz R., 1995. Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270: 24674-24677.

Kothapalli N., Sarath G., and Zempleni J., 2005a. Biotinylation of K12 in histone H4 decreases in response to DNA double-strand breaks in human JAr choriocarcinoma cells. J. Nutr. 135: 2337-2342.

Kothapalli N., Camporeale G., Kueh A., Chew Y.C., Oommen A.M., Griffin J.B., and Zempleni J., 2005b. Biological functions of biotinylated histones. J. Nutr. Biochem. 16: 446-448.

Kruhlak M.J., Hendzel M.J., Fischle W., Bertos N.R., Hameed S., Yang X.J., Verdin E., and Bazett-Jones D.P., 2001. Regulation of global acetylation in mitosis through loss of histone acetyl-transferases and deacetylases from chromatin. J. Biol Chem. 276: 38307-38319.

Kuo M.H., Brownell I.E., Sobel R.E., RanalliT.A., Cook R.G., Edmondson D.G., Roth S.Y., and Allis C.D., 1996. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines Nature 383: 269-272.

Kuzmichev A., Jenuwein T., Tempst P., and Reinberg D., 2004. Different EZH2-containing complexes target methylation of histone HI or nucleosomal histone H3. Mol. Cell 14: 183-193.

Kuzmichev A., Nishioka K., Erdjument-Bromage H., Tempst P., and Reinberg D., 2002. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16: 2893-2905.

Lachner M., O’Carroll D., Rea S., Mechtler K., and Jenuwein T., 2001 Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116-120.

Lacoste N., Utley R.T., Hunter J.M., Poirier G.G., and Cote J., 2002. Disrupter of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase./. Biol. Chem. 277: 30421-30424.

Lo W.S., Duggan L., Emre N.C, Belotserkovskya R., Lane W.S., Shiekhattar R., and Berger S.L., 2001. Snfl — A histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293: 1142-1146.

Maile T., Kwoczynski S., Katzenberger R.J., Wassarman D.A., and Sauer F., 2004. TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304: 1010-1014.

McKittrick E., Gafken P.R., Ahmad K., and HenikoffS., 2004. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl. Acad. Sci. 101: 1525-1530.

Milne T.A., Briggs S.D., Brock H.W., Martin M.E., Gibbs D., Allis C.D., and Hess J.L., 2002. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10: 1107-1117

Miranda T.B., Sayegh J., Frankel A., Katz J.E., Miranda M., and Clarke S., 2006. Yeast Hsl7 (histone synthetic lethal 7) catalyses the in vitro formation of co-NG-monomethylarginine in calf thymus histone H2A. Biochem. J. 395: 563-570.

Mizzen C.A., Yang X.J., Kokubo T., Brownell J.E., Bannister A.J., Owen-Hughes T.. Workman J.. Wang L., Berger S.L., Kouzarides T., et al., 1996. The TAFn250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261-1270.

Morris S.A., Shibata Y., Noma K., Tsukamoto Y., Warren E., Temple B., Grewal S.L, and Strahl B.D., 2005. Histone H3 K36 methylation is associated with transcription elongation in Schizosac-charomyces pombe. Eukaryot. Cell 4: 1446-1454.

Mukheijee B., Kessinger C., Kobayashi J., Chen B.P., Chen D.J., Chatteijee A, and Burma S., 2006. DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA Repair 5: 575-590.

Muller J., Hart CM., Francis N.J., Vargas M.L., Sengupta A., Wild B., Miller E.L., O’Connor M.B., Kingston R.E., and Simon J.A., 2002. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197-208.

Nagy P.L., Griesenbeck J., Komberg R.D., and Cleary M.L., 2002. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl. Acad. Sci. 99: 90-94.

Nakamura T., Mori T., Tada S., Krajewski W., Rozovskaia T., Wassell R., Dubois G., Mazo A., Croce C.M., and Canaani E., 2002. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10: 1119-1128.

Nakayama J., Rice J.C., Strahl B.D., Allis C.D., and Grewal S.L, 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110—113.

Nathan D., Ingvarsdottir K., Sterner D.E., Bylebyl G.R., Dok-manovic M., Dorsey J.A., Whelan K.A., Krsmanovic M., Lane W.S., Meluh P.B., et al., 2006. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev., 20: 966-976.

Ng H.H., Xu R.M., Zhang Y., and Struhl K., 2002. Ubiquitination of histone H2B by Rad6 is required for efficient Dot 1 -mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277: 34655-34657.

Nielsen S.J., Schneider R., Bauer U.M., Bannister A.J., Morrison A., O’Carroll D., Firestein R., Cleary M., Jenuwein T., Herrera R.E., and Kouzarides T., 2001. Rb targets histone H3 methylation and HP1 to promoters. Nature 412: 561-565.

Nishioka K., Chuikov S., Sarma K., Erdjument-Bromage H., Allis C.D., Tempst P., and Reinberg D., 2002a. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16: 479-489.

Nishioka K., Rice J.C., Sarma K., Erdjument-Bromage H, Werner J., Wang Y., Chuikov S., Valenzuela P., Tempst P., Steward R., et al., 2002. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine, 20 of histone H4 and is associated with silent chromatin. Mol. Cell 9: 1201-1213.

Nowak S.J. and Corces V.G., 2000. Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev. 14: 3003-3013.

O’Carroll D., Scherthan H., Peters A.H., Opravil S., Haynes A. R., Laible G., Rea S., Schmid M., Lebersorger A., Jerratsch M., et al., 2000. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell. Biol., 20: 9423-9433

Odegard V.H., Kim S.T., Anderson S.M., Shlomchik M.J., and Schatz D.G., 2005. Histone modifications associated with somatic hypermutation. Immunity 23: 101-110.

Ogata N., Ueda K., Kagamiyama H., and Hayaishi O., 1980. ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites. J. Biol. Chem. 255: 7616-7620.

Ogawa H., Ishiguro K., Gaubatz S., Livingston D.M., andNakatani Y., 2002. A complex with chromatin modifiers that occupies E2F-and Myc-responsive genes in G0 cells. Science 296: 1132-1136.

Ogawa Y., Ono T., Wakata Y.. Okawa K.. Tagami H.. and Shibahara K.I., 2005. Histone variant macroH2Al.2 is mono-ubiquitinated at its histone domain. Biochem. Biophys. Res. Commun. 336: 204-209.

Pantazis P. and Bonner W.M., 1981. Quantitative determination of histone modification. H2A acetylation and phosphoiylation. J. Biol. Chem. 256: 4669-4675.

Parthun M.R., Widom J., and Gottschling D.E., 1996. The major cytoplasmic histone acetyltransferase in yeast: Links to chromatin replication and histone metabolism. Cell 87: 85-94.

Peters A.H., O’Carroll D., Scherthan H., Mechtler K., Sauer S., Schofer C, Weipoltshammer K., Pagani M., Lachner M., Kohlmaier A., et al., 2001. Loss of the Suv39h histone methyl-transferases impairs mammalian heterochromatin and genome stability. Cell 107: 323-337.

Pham A.D. and Sauer F., 2000. Ubiquitin-activating/conjugating activity of TAFn250, a mediator of activation of gene expression in Drosophila. Science 289: 2357-2360.

Polioudaki H., Markaki Y.. Kourmouli N., Dialynas G., Theodoro-poulos P.A., Singh P.B., and Georgatos S.D., 2004. Mitotic phosphorylation of histone H3 at threonine 3. FEES Lett. 560: 39-44.

Preuss U., Landsberg G., and Scheidtmann K.H., 2003. Novel mitosis-specific phosphorylation of histone H3 atThrl 1 mediated by Dlk/ZIP kinase Nucleic Acids Res. 31: 878-885.

Puerta C., Hernandez F., Lopez-Alarcon L., and Palacian E., 1995. Acetylation of histone H2A.H2B dimers facilitates transcription. Biochem. Biophys. Res. Cotnmun. 210: 409-416.

Rea S., Eisenhaber F., O’Carroll D., Strahl B.D., Sun Z.W., Schmid M., Opravil S., Mechtler K., Ponting C.P., Allis C.D., and Jenuwein T., 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593-599.

Redon C., Pilch D.R., Rogakou E.P., Orr A.H., Lowndes N.F., and Bonner W.M., 2003. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep. A: 678-684.

Rice J.C., Nishioka K., Sarma K., Steward R., Reinberg D., and Allis C.D., 2002. Mitotic-specific methylation of histone H4 Lys, 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev. 16: 2225-2230.

Robzyk K., Recht ]., and Osley M.A., 2000. Rad6-dependent ubiquitina-tion of histone H2B in yeast. Science 287: 501-504.

Rogakou E.P., Boon C., Redon C., and Bonner W.M., 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146: 905-916.

Rogakou E.R, Pilch D.R., Orr A.H., Ivanova VS., and Bonner W.M., 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273: 5858-5868.

Roguev A., Schaft D., Shevchenko A., Pijnappel W.W., Wilm M., Aasland R., and Stewart A.F., 2001. The Saccharomyces cerevisiae Setl complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J., 20: 7137-7148.

Rouleau M., Aubin R.A., and Poirier G.G., 2004. Poly(ADP-ribosyl) ated chromatin domains: Access granted. J. Cell Sci. 117: 815-825.

Ruiz-Carrillo A., Wangh L.J., and Allfrey V.G., 1975. Processing of newly synthesized histone molecules. Science, 190: 117-128.

Sanchez-Eisner T., Gou D., Kremmer E., and Sauer F., 2006. Noncoding RNAs of trithorax response elements recruit Drosophila Ashl to Ultrabithorax. Science 311: 1118-1123.

Santos-Rosa H., Schneider R., Bannister A. J., SherriffJ., Bernstein B.E., Emre N.C., Schreiber S.L., Mellor J., and Kouzarides T., 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419: 407-411.

Sarg B., Helliger W., Talasz H., Forg B., and Lindner H.H., 2006. Histone HI phosphorylation occurs site-specifically during interphase and mitosis: Identification of a novel phosphorylation site on histone HI. /. Biol. Chem. 281: 6573-6580

Sassone-Corsi P., Mizzen C.A., Cheung P., Crosio C, Monaco L., Jacquot S., Hanauer A., and Allis C.D., 1999. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285: 886-891.

Schiltz R.L., Mizzen C.A., Vassilev A., Cook R.G., Allis C.D., and Nakatani Y., 1999. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J. Biol. Chem. 274: 1189-1192.

Schotta G., Ebert A., Krauss V., Fischer A., Hoffmann J., Rea S., Jenuwein T., Dorn R., and Reuter G., 2002. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21: 1121-1131.

Schotta G., Lachner M., Sarma K., Ebert A., Sengupta R., Reuter G., Reinberg D.. and Jenuwein T., 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18: 1251-1262.

Schubeler D., Francastel C., Cimbora D.M., Reik A., Martin D.I., and Groudine M., 2000. Nuclear localization and histone acetylation: A pathway for chromatin opening and transcriptional activation of the human p-globin locus. Genes Dev. 14: 940-950.

Schultz D.C., Ayyanathan K., Negorev D., Maul G.G., and Rauscher F.J., III., 2002. SETDB1: A novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16: 919-932.

Schurter B.T., Koh S.S., Chen D., Bunick G.J., Harp J.M., Hanson B.L., Henschen-Edman A., Mackay D.R., Stallcup M.R., and Aswad D.W., 2001. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40: 5747-5756.

Shiio Y. and Eisenman R.N., 2003. Histone sumoylation is associated with transcriptional repression. Proc. Natl. Acad. Sci. 100: 13225-13230.

Smith E.R., Eisen A., GuW, Sattah M., Pannuti A., Zhou J., Cook R.G., Lucchesi J.C., and Allis C.D., 1998. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc. Natl. Acad. Sci. 95: 3561-3565.

Sobel R.E., Cook R.G., Perry C.A., Annunziato A.T., and Allis C.D., 1995. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. 92: 1237-1241.

Song O.K., Wang X., Waterborg J.H., and Stemglanz R., 2003. An Na-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J. Biol. Chem. 278: 38109-38112.

Spencer T.E., Jenster G., Burcin M.M., Allis C.D., Zhou J., Mizzen C.A., McKenna N.J., Onate S.A., Tsai S.Y., Tsai M.J., and O’Malley B.W., 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194-198.

Stanley J.S., Griffin J.B., and Zempleni J., 2001. Biotinylation of histones in human cells. Effects of cell proliferation. Eur. J. Biochem. 268: 5424-5429.

Stiff T., O’Driscoll M., Rief N., Iwabuchi K., Lobrich M., and Jeggo P.A., 2004. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64: 2390-2396.

Strahl B.D., Ohba R., Cook R.G., and Allis C.D., 1999. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. 96: 14967-14972.

Strahl B.D., Briggs S.D., Brame C.J., Caldwell J.A., Koh S.S., Ma H., Cook R.G., Shabanowitz J., Hunt D.E, Stallcup M.R., and Allis C.D., 2001.Methylation ofhistone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11: 996-1000.

Strahl B.D.. Grant P.A., Briggs S.D., Sun Z.W., Bone J.R., Caldwell J.A., Mollah S., Cook R.G., Shabanowitz J., Hunt D.E, and Allis C.D. 2002. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22: 1298-1306.

Su I.H., Basavaraj A., KrutchinskyA.N., HobertO., Ullrich A., Chait B.T., and Tarakhovsky A., 2003. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4: 124-131.

SukaN., SukaY., CarmenAA, Wu J., andGrunstein M., 2001. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8: 473-479.

SunX.J., Wei J., WuX.Y., Hu M., Wang L., Wang H.H., Zhang Q.H., Chen S.J., Huang Q.H., and Chen Z., 2005. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J. Biol. Chem. 280: 35261-35271.

Sun Z.W. and Allis C.D., 2002. Ubiquitination ofhistone H2B regulates H3 methylation and gene silencing in yeast. Nature 418: 104-108.

Sung Y.J. and Ambron R.T., 2004. PolyADP-ribose polymerase-1 (PARP-1) and the evolution of learning and memory. Bioessays 26: 1268-1271.

Swerdlow P.S., Schuster T., and Finley D., 1990. A conserved sequence in histone H2A which is a ubiquitination site in higher eucaryotes is not required for growth in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 4905-4911

Tachibana M., Sugimoto K., Fukushima T., and Shinkai Y., 2001. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 ofhistone H3. /. Biol. Chem. 216: 25309-25317.

Tachibana M., Ueda J., Fukuda M., TakedaN., Ohta T., Iwanari H., Sakihama T., Kodama T., Hamakubo T., and Shinkai Y., 2005. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev., 19: 815-826.

Tachibana M., Sugimoto K., Nozaki M.. Ueda J., Ohta T.. Ohki M., Fukuda M., Takeda N., Niida H., Kato H., and Shinkai Y., 2002. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryo-genesis. Genes Dev. 16: 1779-1791.

Takechi S. and Nakayama T., 1999. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem. Biophys. Res. Commun. 266: 405-410.

Tamaru H. and Selker E.U., 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277-283.

Taplick J., Kurtev V., Lagger G., and Seiser C., 1998. Histone H4 acetylation during interleukin-2 stimulation of mouse T cells. FEBS Lett. 436: 349-352.

Thomson S., Clayton A.L., Hazzalin C.A., Rose S., Barratt M.J., and Mahadevan L.C., 1999. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18: 4779-4793.

Turner B.M., 2000. Histone acetylation and an epigenetic code. Bioessays 22: 836-845.

Turner B.M.2005. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat. Struct. Mol. Biol. 12: 110-112.

Turner B.M. and Fellows G., 1989. Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179: 131-139.

van Attikum H. and Gasser S.M., 2005. The histone code at DNA breaks: A guide to repair? Nat. Rev. Mol. Cell Biol. 6: 757-765.

van Leeuwen F, Gafken P.R., and Gottschling D.E., 2002. Dotlp modulates silencing in yeast by methylation of the nucleosome core. Cell 109: 745-756.

Vandel L., Nicolas E., Vaute O., Ferreira R., Ait-Si-Ali S., and Trouche D., 2001. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell. Biol. 21: 6484-6494.

Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., and Reinberg D., 2004. Human SirTl interacts with histone HI and promotes formation of facultative heterochromatin. Mol. Cell 16: 93-105.

Verreault A., Kaufman P.D., Kobayashi R., and Stillman B., 1998. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hatl acetyltransferase. Curr. Biol. 8: 96-108.

Visochek L., Steingart R.A., Vulih-Shultzman I., Klein R., Priel E., Gozes I., and Cohen-Armon M., 2005. PolyADP-ribosylation is involved in neurotrophic activity. J. Neurosci. 25: 7420-7428.

Wang H., Cao R., Xia L., Erdjument-Bromage H., Borchers C., Tempst P., and Zhang Y., 2001a. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8: 1207-1217.

Wang H., Wang L., Erdjument-Bromage H., Vidal M., Tempst P., Jones R.S., and Zhang Y., 2004. Role ofhistone H2A ubiquitination in Polycomb silencing. Nature 431: 873-878.

Wang H., An W., Cao R., Xia L., Erdjument-Bromage H., Chatton B., Tempst P., Roeder R.G., and Zhang Y., 2003. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 ofhistone H3 to cause transcriptional repression. Mol. Cell 12: 475-487.

Wang H., Huang Z.Q., Xia L., Feng Q., Erdjument-Bromage H., Strahl B.D., Briggs S.D., Allis C.D., Wong J., Tempst P., and Zhang Y., 2001b. Methylation ofhistone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor Science 293: 853-857.

Wang Y., Zhang W., Jin Y, Johansen J., and Johansen K.M., 2001. The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105: 433-443.

Wei Y., Yu L., Bowen J., Gorovsky M.A., and Allis C.D., 1999. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97: 99-109.

Wilson J.R., Jing C, Walker P.A., Martin S.R., Howell S.A., Blackburn G.M., Gamblin S.J., and Xiao B., 2002. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111: 105-115.

Wyatt H.R., Liaw H., Green G.R., and Lustig A.J.. 2003. Multiple roles for Saccharomyces cerevisiae histone H2A in telomere position effect, Spt phenotypes and double-strand-break repair. Genetics 164: 47-64.

Xin Z., Tachibana M., Guggian M., Heard E., Shinkai Y, and Wag-staff J., 2003. Role ofhistone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J. Biol. Chem. 278: 14996-15000.

Yamamoto T. and Horikoshi M., 1997. Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J. Biol. Chem. 272: 30595-30598.

Yamamoto Y., Verma U.N., Prajapati S., Kwak Y.T., and Gaynor R.B., 2003. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423: 655-659.

Yang L., Xia L., Wu D.Y., Wang H., Chansky H.A., Schubach W.H., Hickstein D.D., and Zhang Y., 2002. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21. 148-152.

Zegerman P., Canas B., Pappin D., and KouzaridesT., 2002. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J. Biol. Chem. 217: 11621-11624.

Zeitlin S.G., Barber C.M., Allis C.D., and Sullivan K.E, 2001. Differential regulation of CENP-A and histone H3 phosphorylation in G2/M./. Cell Sci. 114: 653-661.

Zhang L., Eugeni E.E., Parthun M.R., and Freitas M.A., 2003. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112: 77-86.

Zhong S., Jansen C, She Q.B., Goto H., lnagaki M., Bode A.M., Ma W.Y., and Dong Z., 2001. Ultraviolet B-induced phosphorylation ofhistone H3 at serine 28 is mediated by MSK1. J. Biol. Chem. 276: 33213-33219.

Обзоры

Bannister A. J. and Kouzarides T., 2005. Reversing histone methylation. Nature 436: 1103-1106.

Berger S.L., 2002. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12: 42-148.

Davie J.R. and Spencer V.A., 2001. Signal transduction pathways and the modification of chromatin structure. Prog. Nucleic Acid Res. Mol. Biol. 65: 299-340.

Cosgrove M.S., Boeke J.D., and Wolberger C., 2004. Regulated nucleosome mobility and the histone code. Nat. Struct. Mol. Biol. 11: 1037-1043.

Dobosy J.R. and Selker E.U., 2001. Emerging connections between DNA methylation and histone acetylation. Cell. Mol. Life Sci. 58: 721-727.

Dunleavy E., Pidoux A., and Allshire R., 2005. Centromeric chromatin makes its mark. Trends Biochem. Sci. 30: 172-175.

Elgin S.C and Grewal S.L, 2003. Heterochromatin: Silence is golden. Curr. Biol. 13: R895-R898.

Emre N.C. and Berger S.L., 2004. Histone H2B ubiquitylation and deubiquitylation in genomic regulation. Cold Spring Harbor Symp. Quant. Biol. 69: 289-299.

Esteller M., 2006. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br. J. Cancer 94: 179-183.

Feinberg A. P. and Tycko B., 2004. The history of cancer epigenetics. Nat. Rev. Cancer 4: 143-153.

Fischer A., Hofmann I., Naumann K., and Reuter G., 2006. Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. J. Plant Physiol. 163: 358-368.

Fischle W., Wang Y., and Allis C.D., 2003. Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475-479.

Fischle W., Wang Y., and Allis C.D., 2003. Histone and chromatin cross-talk. Curr. Opin. Cell. Biol. 15: 172-183.

Grewal S.L and Elgin S.C., 2002. Heterochromatin: New possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12: 178-187.

Grunstein M., 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349-352.

Grunstein M., 1997. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol. 9: 383-387.

Grunstein M., 1998. Yeast heterochromatin: Regulation of its assembly and inheritance by histones. Cell 93: 325-328.

Henikoff S. and Ahmad K., 2005. Assembly of variant histones into chromatin. Annu. Rev. Cell Dev. Biol. 21: 133-153.

Hild M. and Paro R., 2003. Anti-silencing from the core: A histone H2A variant protects euchromatin. Nat. Cell Biol. 5: 278-280.

Jenuwein T and Allis C.D., 2001. Translating the histone code. Science 293: 1074-1080.

Kimmins S. and Sassone-Corsi P., 2005. Chromatin remodelling and epigenetic features of germ cells. Nature 434: 583-589.

Kurdistani S.K. and Grunstein M., 2003. Histone acetylation and deacetylation in yeast. Nat. Rev. Mol. Cell Biol. 4: 276-284.

Lachner M., O’Sullivan R.J., and Jenuwein T., 2003. An epigenetic road map for histone lysine methylation. J. Cell Sci. 116: 2117-2124.

Luger K. and Richmond T.J., 1998. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8: 140-146.

Mellone B.G. and Allshire R.C., 2003. Stretching it: Putting the CEN (P-A) in centromere. Curr. Opin. Genet. Dev. 13: 191-198.

Millar C.B., Kurdistani, S.K. and Grunstein M., 2004. Acetylation of yeast histone H4 lysine 16: A switch for protein interactions in heterochromatin and euchromatin. Cold Spring Harbor Symp. Quant. Biol. 69: 193-200.

Nightingale K.P., O’Neill L.P., and Turner B.M., 2006. Histone modifications: Signalling receptors and potential elements of a heritable epigenetic code. Curr. Opin. Genet. Dev. 16: 125-136.

Peterson CL. and Laniel M.A., 2004. Histones and histone modifications. Curr. Biol. 14: R546-551.

Reinberg D., Chuikov S., Famham P., Karachentsev D., Kirmizis A., Kuzmichev A., Margueron R. Nishioka K., PreissnerT.S., Sarma K., et al., 2004. Steps toward understanding the inheritance of repressive methyl-lysine marks in histones. Cold Spring Harbor Symp. Quant. Biol. 69: 171-182.

Sarma K. and Reinberg D., 2005. Histone variants meet their match. Nat Rev. Mol. Cell Biol. 6: 139-149.

Spencer V.A. and Davie J.R., 2000. Signal transduction pathways and chromatin structure in cancer cells. J. Cell. Biochem. Suppl. 35: 27-35.

Stemglanz R., 1996. Histone acetylation: Agateway to transcriptional activation. Trends Biochem. Sci. 21: 357-358.

Turner B.M., 2000. Histone acetylation and an epigenetic code. Bioessays 22: 836-845.

van Attikum H. and Gasser S.M., 2005. The histone code at DNA breaks: A guide to repair? Nat. Rev. Mol. Cell Biol. 6: 757-765.

Vaughn M.W., Tanurdzic M., and Martienssen R., 2005. Replication, repair, and reactivation. Dev. Cell 9: 724-725.

Wade P.A. and Wolffe A.P., 1997. Histone acetyltransferases in control. Curr. Biol. 1: R82-R84.

Wade P.A., Pruss D., and Wolffe A.P., 1997. Histone acetylation: Chromatin in action. Trends Biochem. Sci. 22: 128-132.

Zilberman D. and Henikoff S., 2005. Epigenetic inheritance in Arabidopsis: Selective silence. Curr. Opin. Genet. Dev. 15: 557-562.