Эпигенетика

Эллис Чарльз Дэвид

Дженювейн Томас

Рейнберг Дэнни

Глава 2. Краткая история эпигенетики

 

 

Gary Felsenfeld

National Institute of Diabets and Digestive and Kidney, National Institute of Heath, Bethesda, Maryland 20892-054

 

1. Введение

История эпигенетики связана с исследованиями эволюции и развития. Но за последние 50 лет значение самого термина «эпигенетика» претерпело эволюцию, сопоставимую с резко возросшим пониманием молекулярных механизмов, лежащих в основе регуляции экспрессии генов у эукариот. Наше современное рабочее определение выглядит следующим образом: «Изучение митотически и (или) мейотически наследуемых изменений в генной функции, которые нельзя объяснить изменениями в нуклеотидной последовательности ДНК» (Riggs et al., 1996). Однако до 1950-х годов слово «эпигенетика» использовали в совершенно другом смысле — для обозначения всех событий развития, ведущих от оплодотворенной зиготы к зрелому организму, то есть всех регуляторных процессов, которые, начиная с генетического материала, формируют конечный продукт (Waddington 1953). Эта концепция берет свое начало в гораздо более ранних исследованиях в области клеточной биологии и эмбриологии, начиная с конца XIX столетия, которые заложили фундамент нашего сегодняшнего понимания взаимоотношений между генами и развитием. Долгое время среди эмбриологов шли горячие споры о природе и локализации компонентов, ответственных за реализацию плана развития организма. В своих попытках осмыслить большое число остроумных, но в конечном счете противоречивых экспериментов по манипулированию с клетками и зародышами эмбриологи разделились на две школы: на тех, кто думал, что каждая клетка содержит преформированные элементы, которые в ходе развития лишь увеличиваются в размерах, и тех, кто полагал, что этот процесс включает химические реакции между растворимыми компонентами, которые и реализуют сложный план развития. Эти воззрения сфокусировались на относительном значении ядра и цитоплазмы в процессе развития. Вслед за открытием существования хромосом, сделанным Флемингом в 1879 году, опыты, проведенные многими исследователями, в том числе Вильсоном и Бовери, дали надежное доказательство того, что программа развития находится в хромосомах. В конечном счете, Томас Гент Морган (Morgan, 1911) привел наиболее убедительные доказательства этой идеи, продемонстрировав генетическое сцепление нескольких генов Drosophila с Х-хромосомой.

Начиная с этого момента, был достигнут быстрый прогресс в создании линейных карт хромосом, в которых отдельные гены были локализованы в специфических сайтах на хромосомах Drosophila (Sturtevant, 1913). Конечно, оставались без ответа классические вопросы «эпигенеза»: какие молекулы внутри хромосом несут генетическую информацию, каким образом они направляют программу развития и как эта информация передается при клеточном делении. Было известно, что в хромосомах присутствуют и нуклеиновая кислота, и белки, но их относительный вклад не был очевиден; конечно, никто не верил, что нуклеиновая кислота одна может нести всю информацию о развитии. Более того, оставались более старые вопросы о возможном вкладе цитоплазмы в процессы развития. Данные генетики Drosophila (см. ниже) заставляли считать, что наследуемые изменения в фенотипе могут происходить без соответствующих изменений в «генах». Характер этих дискуссий резко изменился, когда ДНК была идентифицирована как основной носитель генетической информации. В конечном счете оказалось полезным переопределить эпигенетику таким образом, чтобы различать те наследуемые изменения, которые возникают в результате изменений в нуклеотидной последовательности ДНК, и те, которые с ними не связаны.

 

2. Ключи от генетики и биологии развития

Что бы ни происходило с этим определением, с начала 20-го столетия неуклонно накапливались идеи и научные данные, лежащие в основе современного понятия «эпигенетика». В 1930 году Герман Меллер (Muller, 1930) описал у Drosophila класс мутаций, которые он назвал «eversporting displacements» («eversporting» в данном случае обозначает высокую частоту фенотипического изменения). Эти мутанты были связаны с хромосомными транслокациями (displacements), но «даже тогда, когда все части хроматина, по всей видимости, были представлены в нормальной дозе, — хотя и были ненормально расположены относительно друг друга, — фенотипический результат не всегда был нормальным». В некоторых из этих случаев Меллер наблюдал мух, у которых были пятнистые глаза. Он думал, что это, вероятно, обусловлено «генетическим разнообразием различных клеток, формирующих глаз», но дальнейший генетический анализ привел его к тому, чтобы связать необычные свойства с хромосомной перестройкой; он сделал вывод, что «с этим как-то связаны, скорее, хромосомные участки, влияющие одновременно на различные признаки, чем отдельные гены или гипотетические ”генные элементы”». На протяжении последующи× 10–20 лет убедительные данные, полученные во многих лабораториях (см. Hannah, 1951), подтвердили, что эта пятнистость, мозаичность возникает тогда, когда перестройки ставят рядом ген белых глаз и гетерохроматиновые районы.

В течение этого периода хромосомные перестройки всех типов были объектом огромного внимания. Было очевидно, что гены не являются полностью независимыми сущностями; на их функционирование может влиять их локализация в геноме — как было многократно продемонстрировано на многих мутантах Drosophila, которые приводили к мозаицизму, а также на других мутантах, связанных с транслокациями в эухроматиновые районы, у которых можно было наблюдать эффекты положения более общего типа (не мозаичного). Стала также ясной — главным образом благодаря работам МакКлинток (McClintock, 1965) — роль перемещаемых элементов в генетике растений.

Вторая линия доказательств берет свое начало в исследованиях процессов развития. Было очевидно, что во время развития имеет место дивергенция фенотипов среди дифференцирующихся клеток и тканей, и оказалось, что такие различные особенности фенотипа, однажды установившись, могут клонально наследоваться делящимися клетками. Хотя на этом этапе стало понятно, что существует клеточноспецифичное программирование и что оно может быть передано дочерним клеткам, было не столь очевидно, каким образом это происходит.

Был придуман и рассмотрен целый ряд механизмов В частности, для исследователей-биохимиков клетка характеризовалась многочисленными взаимозависимыми биохимическими реакциями, которые поддерживают ее идентичность. Например, в 1949 году Макс Дельбрюк (Delbrbck, цит. в Jablonka and Lamb, 1995) предположил, что простая пара биохимических цепей реакций, каждая из которых продуцирует в качестве промежуточного вещества ингибитор другого пути, могла бы в результате давать систему, способную переключаться между двумя устойчивыми состояниями. Несколько позже были обнаружены реальные примеры таких систем — в Lac-опероне Escherichia coli (Novick and Wemer, 1957) и в переключении фага между лизогенным и литическим состояниями (Ptashne, 1992). Функционально эквивалентные модели можно придумать и для эукариот. Предметом живого интереса и дискуссий был, конечно, сравнительный вклад ядра и цитоплазмы в передачу дифференцированного состояния в развивающемся эмбрионе; самостабилизирующаяся цепь биохимических реакций предположительно должна была поддерживаться при делении клетки. Второй тип эпигенетической передачи был четко продемонстрирован у Paramecium и других инфузорий, у которых картина расположения ресничек могла варьировать у отдельных особей и наследоваться клонально (Beisson and Sonnebom, 1965). Результатом изменения этого кортикального паттерна с помощью микрохирургии была передача нового паттерна последующим поколениям. Было высказано предположение, что сходные механизмы работают и у многоклеточных организмов, у которых локальные цитоплазматические детерминанты влияют на организацию клеточных компонентов таким образом, что эта организация может передаваться при клеточном делении (Grimes and Aufderheide, 1991).

 

3. Во всех соматических клетках организма ДНК одинакова

Хотя морфология хромосом показывала, что все соматические клетки обладают полным набором хромосом, было далеко не очевидно, что все соматические клетки сохраняют полный набор ДНК, присутствующий в оплодотворенном яйце. Не было даже ясно, вплоть до работ Эвери, МакЛеода и МакКарти в 1944 году (Avery et al., 1944) и Херши и Чейза (Hershey and Chase, 1952), что свободная от белков молекула ДНК может нести генетическую информацию; последний вывод получил очень сильную поддержку, когда в 1953 году Уотсон и Крик (Watson and Crick, 1953) расшифровали структуру ДНК. Работы Бриггса и Кинга (Briggs and King, 1952) на Rana pipiens и Ласки и Гердона (Laskey and Gurdon, 1970) на Xenopus продемонстрировали, что результатом введения ядра из ранних эмбриональных клеток в денуклеированные ооциты может быть развитие эмбриона. Но даже в 1970 году Ласки и Гердон могли говорить, что «предстоит еще доказать, что соматические клетки взрослого животного имеют гены помимо тех, которые необходимы для их собственного роста и дифференцировки». В статье, содержавшей это утверждение, они продолжали показывать, что в первом приближении ДНК ядра соматической клетки при введении в денуклеированную яйцеклетку способна направлять эмбриогенез. Теперь было ясно, что программа развития и специализация репертуара экспрессии, наблюдаемая в соматических клетках, должны включать сигналы, которые не являются результатом какой-то делеции или мутации в нуклеотидной последовательности ДНК зародышевого пути, когда эта ДНК передается соматическим клеткам.

Конечно, существуют способы, посредством которых ДНК соматических клеток может стать отличающейся от ДНК зародышевого пути с соответствующими последствиями для фенотипа клетки: например, как показали работы Барбары МакКлинток и других генетиков растений, мобильные элементы могут изменять картину экспрессии в соматических клетках. Аналогичным образом, генерация разнообразия антител связана с перестройками ДНК в линии соматических клеток. Эта перестройка (или, точнее, ее последствия) может рассматриваться как своего рода эпигенетическое событие, сопоставимое с ранними наблюдениями эффекта положения мозаичного типа, описанного Меллером. Однако значительная часть работ по эпигенетике в последние годы была сосредоточена на системах, в которых не происходило никаких перестроек ДНК, и, следовательно, акцент делался на модификациях оснований и на белках, образующих комплексы с ДНК в ядре.

 

4. Роль метилирования ДНК

Инактивация Х-хромосомы явилась одной из первых моделей эпигенетического механизма этого рода (Ohno et al., 1959; Lyon, 1961); в соматических клетках «молчащая» Х-хромосома явно выбиралась случайным образом, и не было никаких данных об изменениях в самой нуклеотидной последовательности ДНК. Отчасти для объяснения этого типа инактивации Риггс (Riggs, 1975) и Холлидей и Пью (Holliday and Pugh, 1975) предположили, что в качестве эпигенетической метки могло бы выступать метилирование ДНК. Ключевыми моментами этой модели были представления о том, что сайты метилирования являются палиндромными и что за метилирование немодифицированной ДНК и ДНК, уже метилированной по одной нити, отвечают разные ферменты. Постулировали, что первое событие метилирования происходит значительно труднее, чем второе; однако, коль скоро первая нить модифицирована, комплементарная нить будет быстро модифицирована в том же палиндромном сайте. Метальная метка, имевшаяся на родительской нити, после репликации могла бы копироваться на дочернюю нить, и в результате происходила бы надежная передача метилированного состояния следующему поколению. Вскоре после этого Берд воспользовался тем, что главной мишенью метилирования у животных является последовательность CpG (Doskocil and Sorm, 1962), для того чтобы предложить использовать чувствительные к метилированию ферменты рестрикции как способ выявления метилированного состояния. Последующие исследования (Bird, 1978; Bird and Southern, 1978) показали затем, что эндогенные сайты CpG были либо полностью неметилированы, либо полностью метилированы. Предсказания, сделанные на основе этой модели, были, таким образом, подтверждены: тем самым был установлен механизм эпигенетической передачи метальной метки посредством полуконсервативного воспроизведения картины метилирования.

В годы, последовавшие за этими открытиями, огромное внимание было уделено эндогенным паттернам метилирования ДНК, возможной передаче этих паттернов через зародышевый путь, роли метилирования ДНК в сайленсинге генной экспрессии, возможным механизмам инициации или ингибирования метилирования в полностью неметилированном сайте и идентификации энзимов, ответственных за метилирование de novo и за поддержание метилирования на уже метилированных сайтах. Хотя значительный объем метилирования ДНК, наблюдаемый у позвоночных, связан с повторяющимися и ретровирусными последовательностями и может служить для поддержания этих последовательностей в перманентно «молчащем» состоянии, не может быть никаких сомнений в том, что во многих случаях эта модификация обеспечивает основу для эпигенетической передачи состояния генной активности. Наиболее четко это продемонстрировано на таких импринтированных локусах (Cattanach and Kirk, 1985), как локус Igf2/H19 мыши или человека, где одна аллель маркирована метилированием ДНК, которое в свою очередь контролирует экспрессию с обоих генов (Bell and Felsenfeld, 2000; Hark et al., 2000). В то же самое время было ясно, что это не может быть единственным механизмом для эпигенетической передачи информации. Например, как отмечено выше, эффект положения мозаичного типа наблюдали за много лет до этого у Drosophila — организма, который обладает крайне низким уровнем метилирования ДНК. Более того, в последующие годы генетики, работавшие с Drosophila, идентифицировали группы генов Polycomb и Trithorax, которые, по-видимому, участвуют в постоянном «запирании» («locking in») состояния активности кластеров генов в ходе развития (либо «выключеного», либо «включенного», соответственно). Тот факт, что эти состояния стабильно передавались в ходе клеточного деления, позволял предполагать, что в основе этого лежит эпигенетический механизм.

 

5. Роль хроматина

Многие годы признавалось, что белки, связанные с ДНК в эукариотном ядре, особенно гистоны, могут участвовать в модификации свойств ДНК Задолго до начала работ по метилированию ДНК Стедман и Стедман (Stedman and Stedman, 1950) предположили, что гистоны могут действовать как общие репрессоры экспрессии генов. Они писали, что поскольку все соматические клетки организма имеют одно и то же число хромосом, они имеют одинаковый генетический набор (хотя, как отмечается выше, это оставалось не доказанным еще несколько лет). Понимание тонкой природы модификаций гистонов было в далекой перспективе, так что Стедманы оперировали предположением, что разные типы клеток в организме, чтобы генерировать наблюдаемые различия в фенотипе, должны обладать различными типами гистонов. Гистоны действительно могут снижать содержание транскриптов до уровней гораздо ниже тех, что наблюдаются для неактивных генов у прокариот. Последующая работа была направлена на способность хроматина служить матрицей для транскрипции и на решение вопроса о том, ограничена ли эта способность специфичным для клеточного типа образом. В работе 1963 года Боннер (Bonner et al, 1963) приготовил хроматин из продуцирующей глобулин ткани растения гороха и показал, что, когда добавляли PH К-полимеразу из Е. coli и получающийся в результате транскрипт транслировали в системе in vitro, можно было выявить глобулин Такой результат был специфичен для данной ткани. С пришествием методов гибридизации в таких экспериментах in vitro можно было исследовать популяции транскриптов (Paul and Gilmour, 1968); они оказались специфичными для той конкретной ткани, из которой был получен хроматин. Другие результаты позволяли предполагать, что эта специфичность отражает ограничения в доступе к сайтам инициации транскрипции (Cedar and Felsenfeld, 1973). Тем не менее, был период, когда все полагали, что гистоны являются супрессорными белками, которые пассивно подавляют экспрессию генов. С этой точки зрения, активация гена означает просто «сдирание» с него гистонов; считалось, что коль скоро это сделано, транскрипция будет осуществляться почти как у прокариот. Имелись, однако, некоторые данные о том, что в эукариотических клетках нет более или менее протяженных районов открытой ДНК (Clark and Fesenfeld, 1971). Более того, даже если модель «голой» ДНК является правильной, было неясно, каким образом принимается решение о том, какие из покрытых гистонами участков должны быть очищены.

Решение этой проблемы началось еще в 1964 году, когда Олфри (Allfrey et al., 1964) высказал спекулятивное соображение, что с активацией генов могло бы коррелировать ацетилирование гистонов и что «активный» хроматин не обязательно должен быть лишен гистонов. В последующее за этим десятилетие наблюдался огромный интерес к изучению взаимоотношений между модификациями гистонов и экспрессией генов. Были идентифицированы иные, чем ацетилирование, модификации (метилирование и фосфорилирование), но их функциональное значение оставалось неясным. Исследовать эту проблему стало гораздо легче после открытия Корнбергом и Томасом (Kornberg and Thomas, 1974) структуры нуклеосомы, фундаментальной субъединицы хроматина. Определение кристаллической структуры нуклеосомы, сначала с разрешением 7 Е, а потом с разрешением 2.8 Е также дало важную структурную информацию, в частности данные о вытягивании аминотерминальных «хвостов» гистонов за пределы кора «ДНК — белковый октамер», что делало очевидной их доступность для модификаций (Richmond et al., 1984; Luger et al., 1997). Начав в 1980 году и продолжив свои исследования на протяжении еще нескольких лет, Грунштейн (Grunstein) и его сотрудники (Wallis et al., 1980; Durrin et al., 1991), применив генетический анализ на дрожжах, смогли показать, что аминотерминальные «хвосты» гистонов имеют важное значение для регуляции экспрессии генов и для формирования «молчащих» доменов хроматина.

Окончательная привязка к детальным механизмам началась с того, что Эллис (Allis) (Brownell et al., 1996) показал, что ацетилтрансфераза гистонов из Tetrahymena гомологична регулятору транскрипции у дрожжей, белку Gcn5; это явилось прямым доказательством того, что ацетилирование гистонов связано с контролем экспрессии генов. С тех пор, конечно, произошел буквально взрыв открытий модификаций гистонов, а также переоценка роли тех из них, которые уже были известны прежде.

Все это еще не было ответом на вопрос о том, каким образом сайты для модификации выбираются in vivo. Было показано, например (Pazin et al., 1994), что Gal4-VP16 может активировать транскрипцию с реконструированной хроматиновой матрицы зависимым от АТФ образом. Активация сопровождалась репозиционированием нуклеосом, и было высказано предположение, что это является критическим событием в обеспечении доступности промотора. Для более полного понимания значения этих открытий потребовалась идентификация АТФ-зависимых комплексов ремоделинга нуклеосом, таких как SW1/SNF и NURF (Peterson and Herskowitz, 1992; Tsuiyama and Wu, 1995), и понимание того, что в подготовке хроматиновой матрицы к транскрипции участвуют и модификации гистонов, и ремоделинг нуклеосом.

Оставалось неясным, каким образом, с использованием этих механизмов, информация о состоянии активности могла бы передаваться при клеточном делении; была, таким образом, неясна их роль в эпигенетической передаче информации. Следующим важным шагом стало понимание того, что модифицированные гистоны рекрутируют специфичным в отношении данной модификации образом белки, которые могут влиять на локальные структурные и функциональные состояния хроматина. Было, например, обнаружено, что метилирование лизина 9 в гистоне H3 приводит к рекрутированию белка НР1 гетерохроматина (Bannister et al., 2001; Lachner et al., 2001; Nakayama et al., 2001). Более того, HP1 мог рекрутировать энзим (Suv39hl), отвечающий за метилирование. Это привело к созданию модели воспроизведения сайленсированного состояния хроматина по всему данному участку посредством процессивного [processive] механизма (рис. 2.1а). В равной степени важно, что это обеспечило разумное объяснение того, каким образом это состояние может быть передано и сохранено в цикле репликации (рис. 2.16). Были предложены аналогичные механизмы для воспроизведения активного состояния, включающие метилирование лизина 4 в гистоне H3 и рекрутирование белков группы Trithorax (Wysocka et al., 2005).

Были предложены различные типы механизмов воспроизведения, которые зависели не от модифицированных, а от вариантных гистонов (Ahmad and Henikoff, 2002; McKittrick et al., 2004). Гистон H3 включается в хроматин только во время репликации ДНК. Напротив, вариант этого гистона, H3.3, отличающийся от H3 четырьмя аминокислотами, включается в нуклеосомы не зависящим от репликации образом и имеет тенденцию накапливаться в активном хроматине, где он обогащается «активными» модификациями гистонов (McKittrick et al., 2004). Предположили, что для поддержания активного состояния достаточно присутствия H3.3 и что после репликации остается достаточно H3.3 для поддержания активного состояния, хотя он и разбавляется вдвое. Последующая транскрипция приводила бы к замещению нуклеосом, содержащих H3, вариантом H3.3, воспроизводя таким образом это активное состояние в следующем поколении.

 

6. Все механизмы взаимосвязаны

В этих моделях в конечном счете начала замыкаться связь между модифицированными или вариантными гистонами, активацией специфических генов и эпигенетикой, хотя, конечно, многое еще остается сделать. В то время как эти механизмы дают нам какие-то представления о том, как состояние гетерохроматина может поддерживаться, они не объясняют, каким образом структуры «молчащего» хроматина устанавливаются впервые. Лишь недавно стало ясно, что это связано с продукцией РНК-транскриптов, особенно с повторяющихся последовательностей, которые подвергаются процессингу в малые РНК благодаря действию таких белков, как Dicer, Argonaute и РНК-зависимая РНК-полимераза. Впоследствии эти РНК рекрутируются в гомологичные сайты ДНК как часть комплексов, включающих компоненты группы белков Polycomb, инициируя таким образом формирование гетерохроматина. Сейчас имеются также данные о том, что для поддержания по крайней мере некоторых гетерохроматиновых районов требуются те же механизмы. В известном смысле эти устойчивые циклические цепи реакций напоминают предложенную Дельбрюком модель 50-летней давности — модель устойчивого биохимического цикла, поддерживающего данное состояние организма.

Рис. 2.1. Механизмы поддержания паттерна метилирования ДНК и модификаций гистонов в ходе репликации ДНК

(а) механизм поддержания паттерна метилирования ДНК в ходе репликации ДНК. Во время репликации отдельные нити ДНК, со специфическим паттерном метилирования в остатках CpG или CpXpG, спариваются с нитью вновь синтезированной, неметилированной ДНК. CpG на одной нити имеет соответствующий CpG на другой. Поддерживающая ДНК-метилтрансфераза распознает полуметилированный сайт и метилирует цитозин на новой нити, так что паттерн метилирования не нарушается; (б) общий механизм для поддержания модификаций гистонов в ходе репликации. Модифицированный гистоновый «хвост» (m) взаимодействует с белком-связкой (pb — a protein binder), имеющим сайт связывания, специфичный для данной модификации, pb. в свою очередь, имеет специфический сайт для энзима (е), который выполняет эту модификацию гистона, т. е. в свою очередь, может затем модифицировать соседнюю нуклеосому. Во время репликации вновь откладывающиеся гистоны, которые перемежаются с родительскими гистонами, могут таким образом приобретать данную родительскую модификацию. Сходный механизм мог бы обеспечить воспроизведение, распространение модификаций гистонов с модифицированного на немодифицированный участок на любой стадии клеточного цикла

Мы знаем теперь бесчисленные примеры эпигенетических механизмов, работающих в организме. Кроме импринтинга во многих локусах и описанной выше аллель-специфичной и случайной инактивации Х-хромосомы существуют эпигенетические явления, связанные с экспрессией антител, где селективно подавляется перестройка генов иммуноглобулина в одной хромосоме, и с выбором для экспрессии генов рецепторов индивидуальных одорантов в обонятельных нейронах (Chess et al., 1994; Shykind et al., 2004). У Drosophila гены группы Polycomb ответственны за установление домена «молчащего» хроматина, который поддерживается на протяжении всех последующих клеточных делений. Эпигенетические изменения отвечают также за парамутации у растений, при которых одна аллель может вызывать наследуемое изменение в экспрессии гомологичной аллели (Stam et al., 2002). Это пример эпигенетического состояния, которое наследуется как митотически, так и мейотически — феномен, хорошо документированный у растений, но лишь изредка встречающийся у животных (Jorgensen, 1993). Значительная часть доказательств существования описанных выше механизмов получена в работах по сайленсированию локуса типа спаривания и центромерных последовательностей у Schizosaccharomyces pombe (Hall et al., 2002). Кроме того, было показано, что структура конденсированного хроматина, характерная для центромер у таких разных организмов, как мухи и люди, может быть передана через ассоциированные с центромерой белки, а не через нуклеотидную последовательность ДНК. Во всех этих случаях нуклеотидная последовательность ДНК остается интактной, но ее способность к экспрессии подавляется. Весьма вероятно, что во всех случаях это опосредуется метилированием ДНК, модификациями гистонов или обоими этими механизмами; в некоторых случаях мы уже знаем, что это действительно так. Наконец, представление об эпигенетической передаче кортикальных «паттернов», описанных выше для парамеций, распространилось теперь на прионные белки, которые поддерживают и воспроизводят свое альтернативное состояние фолдинга в дочерних клетках

Хотя все это было представлено в виде последовательного рассказа, более правильным был бы взгляд на эти события, как на ряд параллельных и перекрывающихся попыток определить и объяснить эпигенетические явления. Определение термина «эпигенетика» изменилось, но вопросы относительно механизмов развития, поставленные более ранними поколениями ученых, остались прежними. Современная эпигенетика все еще обращается к этим центральным вопросам. Семьдесят лет прошло с тех пор, как Меллер описал явление, называемое сейчас эффектом положения мозаичного типа. Доставляет удовольствие проследить этот медленный прогресс от наблюдения фенотипов, через элегантные генетические исследования, к современному анализу и решению проблем на молекулярном уровне. Вместе с этими знаниями пришло понимание того, что в действительности эпигенетические механизмы могут отвечать за значительную часть фенотипа сложных организмов. Как нередко случается, наблюдение, показавшееся вначале хотя и интересным, но, возможно, маргинальным по отношению к главным проблемам, оказывается центральным, хотя для осознания этого может понадобиться много времени.

 

Литература

Ahmad K. and HenikoffS. 2002. The histone variant H3. 3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell. 9: 1191–1200.

Allfrey V. G., Faulkner R., and Mirsky A. E. 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. 51: 786–794.

Avery O. T., MacLeod CM., and McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79: 137–158.

Bannister A., Zegerman P., Partridge J., Miska E., Thomas J., Allshire R., and Kouzarides T. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.

Beisson J. and Sonnebom T. M. 1965. Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia. Proc. Natl. Acad. Sci. 53: 275–282.

Bell A. C. and Felsenfeld G. 2000. Methylation of a CTCF-dependent boundary controls imprinted expression of the lgf2 gene. Nature 405: 482–485.

Bird A. P. 1978. Use of restriction enzymes to study eukaryotic DNA methylation. II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J. Mol. Biol. 118: 49–60.

Bird A. P. and Southern E. M. 1978. Use of restriction enzymes to study eukaryotic DNA methylation. I. The methylation pattern in nbosomal DNA from Xenopus laevis. J. Mol. Biol. 118: 27–47.

Bonner J., Huang R. C., and Gilden R. V. 1963. Chromosomally directed protein synthesis. Proc. Natl. Acad. Sci. 50: 893–900.

Briggs R. and King T. J. 1952. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc. Natl. Acad. Sci. 38: 455–463.

Brownell J. E., Zhou J., Ranalli T, Kobayashi R., Edmondson D. G., Roth S. Y., and Allis C. D. 1996. Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.

Cattanach B. M. and Kirk M. 1985. Differential activity ol maternally and paternally derived chromosome regions in mice. Nature 315: 496–498.

Cedar H. and Felsenfeld G. 1973. Transcription of chromatin in vitro J. Mol. Biol. 77: 237–254.

Chess A., Simon I., Cedar H., and Axel R. 1994. Allelic inactivation regulates olfactory receptor gene expression. Cell 78: 823–834.

Clark R. J. and Felsenfeld G. 1971. Structure of chromatin. Nat. New Biol. 229: 101–106.

Doskocil J. and Sorm F. 1962. Distribution of 5-methylcytosine in pyrimidine sequences of deoxyribonucleic acids. Biochim. Biophys. Acta 55: 953–959.

Durrin L. K., Mann R. K., Kayne P. S., and Grunstein M. 1991. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65: 1023–1031.

Grimes G. W. and Aufderheide K. J. 1991. Cellular aspects of pattern formation: The problem of assembly. Monogr. Dev. Biol. 22: 1-94.

Hall I. M., Shankaranarayana C. D., Noma K., Ayoub N., Cohen A., and Grewal S. I. 2002. Establishment and maintenance of a heterochromatin domain. Science 297: 2215–2218.

Hannah A. 1951 Localization and function of heterochromatin in Drosophila melanogaster. Adv. Genet. 4: 87-125.

Hark A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M., andTilghman S. M. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405: 486–489.

Hershey A. D. and Chase M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36: 39–56.

Holliday R. and Pugh J. E. 1975. DNA modification mechanisms and gene activity during development. Science 187: 226–232.

Jablonka E. and Lamb M. J. 1995. Epigenetic inheritance and evolution: The Lamarckian dimension Oxford University Press, New York, p. 82.

Jorgensen R. 1993. The germinal inheritance of epigenetic information in plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 339: 173–181.

Komberg R. D. and Thomas J. 0. 1974. Chromatin structure; oligomers of the histones. Science 184: 865–868.

Lachner M., O’Carroll D., Rea S., Mechtler K., and Jenuwein T. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

Laskey R. A. and Gurdon J. B. 1970. Genetic content of adult somatic cells tested by nuclear transplantation from cultured cells. Nature 228: 1332–1334.

Luger K., Mader A. W., Richmond R. K., Sargent D. F., and Richmond T. J. 1997. Crystal structure of the nucleosome core particle at 2. 8 E resolution. Nature 389: 251–260.

Lyon M. F. 1961. Gene action in the X-chromosome of the mouse. Nature 190: 372–373.

McClintock B. 1965. The control of gene action in maize. Brookhaven Symp. Biol. 18: 162–184.

McKittnck E., Gafken P. R., Ahmad K., and HenikoffS. 2004. Histone H3. 3 is enriched in covalent modifications associated with active chromatin. Proc. Natl. Acad. Sci. 101: 1525–1530.

Morgan T. 1911. An attempt to analyze the constitution of the chromosomes on the basis of sex-linked inheritance in Drosophila. J. Exp. Zool. 11: 365–414. Muller H. J. 1930. Types of visible variations induced by X-rays in Drosophila. J. Genet. 22: 299–334.

Nakayama J., Rice J. C., Strahl B. D., Allis C. D., and Grewal S. I. 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113.

Novick A. and Weiner M. 1957. Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. 43: 553–566.

Ohno S., Kaplan W. D., and Kinosita R. 1959. Formatipn of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp. Cell Res. 18: 415–418.

Paul J. and Gilmour R. S. 1968. Organ-specific restriction of transcription in mammalian chromatin. J. Mol. Biol. 34: 305–316.

Pazin M. J., Kamakaka R. T., and Kadonaga J. T. 1994. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266: 2007–2011.

Peterson C. L. and Herskowitz 1. 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68: 573–583.

Ptashne M. 1992. A genetic switch: Phage X and higher organisms, 2nd edition. Blackwell Science, Maiden, Massachusetts and Cell Press, Cambridge, Massachusetts.

Richmond T. J. Finch J. T., Rushton B., Rhodes D., and Klug A. 1984. Structure of the nucleosome core particle at 7 E resolution. Nature 311: 532–537.

Riggs A. D. 1975. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14: 9-25.

Riggs A. D. and Porter T. N. 1996. Overview of epigenetic mechanisms. In Epigenetic mechanisms of gene regulation (ed. V. E. A. Russo et al.), pp. 29–45. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Riggs A. D., Martienssen R. A., and Russo V. E. A. 1996. Introduction. In Epigenetic mechanisms of gene regulation (ed. V. E. A. Russo et al.), pp. 1–4. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Shykind B. M., Rohani S. C., O’Donnell S., Nemes A., Mendelsohn M., Sun Y., Axel R., and Bamea G. 2004. Gene switching and the stability of odorant receptor gene choice. Cell 117: 801-815.

Stam M., Belele C, Dorweiler J., and Chandler V. 2002. Differential chromatin structure with a tandem array 100 kb upstream of the maize bl locus is associated with paramutation. Genes Dev. 16: 1906–1918.

Stedman E. and Stedman E. 1950. Cell specificity of histones Nature 166: 780–781.

Sturtevant A. 1913. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14: 43–59.

Tsukiyama T. and Wu C. 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83: 1011–1020.

Waddington C. H. 1953. Epigenetics and evolution. Symp. Soc. Exp. Biol. 7: 186–199.

Wallis J. W., Hereford L., and Grunstein M. 1980. Histone H2B genes of yeast encode two different proteins. Cell 22: 799–805.

Wysocka J., Swigut T., Milne T. Dou Y., Zhang X., Burlingame A., Roeder R., Brivanlou A., and Allis CD. 2005. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121: 859–872.