Оптический флюорит

Юшкин Николай Павлович

Волкова Наталия Владимировна

Маркова Галина Александровна

Флюорит — один из удивительных минералов, широко применяющийся в металлургии, химической промышленности, в производстве керамики, в строительной индустрии. Уникальные оптические свойства флюорита легли в основу создания широкого класса исследовательских оптических приборов и технических устройств. В нашей стране была успешно решена проблема создания искусственных кристаллов оптического флюорита, полностью заменившего природные кристаллы.

 

АКАДЕМИЯ НАУК СССР

Ответственный редактор доктор геолого-минералогических наук В. П. ПЕТРОВ

 

Введение

XX век в технике — это прежде всего век новых материалов. Среди них важная роль принадлежит кристаллам. Кристаллы, которые использовались раньше главным образом как украшения в ювелирных изделиях или как каменный эквивалент богатства, стали теперь деталями различных приборов и технических устройств: оптических, механических, электрических. Это не только традиционные микроскопы, телескопы, спектральные приборы, режущий и обрабатывающий инструмент, полупроводниковая техника. На кристаллической основе созданы такие новые устройства, как лазеры, мазеры, сцинтилляторы, пьезодатчики и др. Кристаллы начинают широко использоваться в новейшей вычислительной технике. Кристаллам принадлежит будущее.

Одним из удивительных кристаллических материалов является оптический флюорит. Его высокая прозрачность в самом широком волновом диапазоне от далекой ультрафиолетовой до инфракрасной области спектра, достаточная механическая прочность и твердость, устойчивость к действию воды и многих агрессивных веществ сделали этот материал практически незаменимым во многих типах оптических приборов.

Уникальные оптические свойства флюорита были установлены на природных кристаллах, иногда вырастающих на стенках полостей во флюоритовых рудных телах. Природные кристаллы долгое время были и тем исходным техническим материалом, из которого изготавливались оптические детали (линзы, призмы и т. п.) определенной формы и размеров. Однако ограниченность запасов природных кристаллов, их относительно небольшие размеры, невозможность получения крупных моноблочных, несклеенных деталей заставили искать пути замены дефицитного природного флюорита. Была разработана технология получения искусственных монокристаллов флюорита, довольно быстро доведенная до промышленных масштабов.

Сейчас во многих странах создана настоящая индустрия искусственного оптического флюорита. На специальных заводах изготавливают монокристаллы любых размеров (до метровых), любой формы — дисковидной, пластинчатой, призматической, сложной фигурной, почти точно соответствующих размерам и форме тех деталей, которые из них будут получать, чтобы свести до минимума потери материала на обработку. Можно изготовить кристаллы с заранее заданными свойствами — либо прозрачные во всем спектре, либо «гаснущие» для света определенных длин волн, бесцветные или яркоокрашенные в любой цвет, с устойчивой или легко снимаемой и меняемой окраской, с люминесценцией или без нее.

«Через несколько десятков лет геологи не будут больше с опасностью для жизни взбираться на вершины Альп, Урала или Кавказа в погоне за кристаллами, не будут добывать их в безводных пустынях Южной Бразилии или в наносах Мадагаскара. Я уверен, что мы будем по телефону заказывать нужные куски кварца на государственном заводе» [Ферсман, 1953, с. 125]. Так писал замечательный минералог, поэт камня, А. Е. Ферсман в 1935 г. Сегодня его мечты осуществились, и не только в отношении кварца или флюорита. Алмазы, гранаты, рубины, сапфиры, шпинели, изумруды, александриты — сотни самых различных минералов поставляют лаборатории и заводы нашей промышленности.

Но прежде чем достичь такого положения, был долгий и настойчивый поиск, упорный труд ученых и специалистов разных направлений — геологов, физиков, химиков. На примере оптического флюорита особенно ярко видно, как оправдывался этот тяжелый труд, как сбывались надежды искателей, мечтавших раскрыть тайну рождения кристаллов, создать по подобию природных механизмов кристаллообразования производственные процессы.

Мы хотим рассказать не только об удивительном произведении природы — кристаллах оптического флюорита, но и о сложном и многообразном комплексе проблем, которые пришлось решить, чтобы эти кристаллы прочно и надежно вошли в современное оптическое производство. Авторы много лет занимаются изучением природных и созданием искусственных монокристаллов флюорита. Но основа книги не результат именно нашего труда, а успехи всех минералогов, кристаллогенетиков и технологов-ростовиков, чей труд вложен в создание промышленности искусственного флюорита.

 

Природа оптических свойств флюорита

Трудно найти минерал более универсального применения, чем флюорит — природное соединение кальция и фтора, фтористый кальций. Он является главным источником фтора и фтористых соединений для химической промышленности, которые используются буквально везде: от фреона в холодильниках и высокооктанового топлива до производства алюминия и даже космической техники [Петров, 1976]. Без флюорита как лучшего флюса невозможен современный металлургический процесс. Он широко применяется в цементной промышленности, в стекольном и эмалевом производстве, используется в электродуговой сварке для электродных покрытий и приготовления флюсов. Кроме того, он является одним из важнейших оптических материалов, о чем будет идти речь ниже.

Флюорит (fluore, нем. — течь) получил свое наименование из-за своего важного свойства снижать температуру плавления металлов в смесях с ним и придавать текучесть шихте. Пожалуй, впервые под близким к современному названию «флюорес» флюорит описан в знаменитом «Диалоге о металлах» Г. Бауэра (Агриколы). У этого научного названия минерала много синонимов, по-разному звучащих на разных языках, но смысл их один и тот же, и лучше всего он выражен в русском бытовом названии «плавиковый шпат». Оно отражает сразу оба главных качества флюорита: и способность быть металлургическим флюсом-плавиком, и оптическое совершенство («шпат», а шпаты от немецкого «spalten» — раскалывать — неметаллические минералы с совершенной спайностью).

Исключительно важное значение флюорита в современной технике, особенно в оптическом приборостроении, определяется совокупностью его свойств, которые детально охарактеризованы в специальной литературе [Степанов, Феофилов, 1957; Воронкова и др., 1965; Справочник..., 1980]. Здесь мы остановимся лишь на оптических свойствах.

Рис. 1. Зависимость показателя преломления (n) от длины волны (λ) для флюорита и ряда других кристаллических материалов

Рис. 2. Спектральное пропускание (T) флюорита в ультрафиолетовой, видимой и инфракрасной областях спектра

Флюорит оптически изотропен, т. е. все его оптические свойства не зависят от направления в кристалле. Он характеризуется относительно низким показателем преломления (n), который имеет (при 19° С) следующие значения для различных длин волн (λ):

n λ, мкм n λ, мкм
1,6421 1,1311 1,47635 0,2288
1,5152 0,1819 1,30756 9,724

Показатель преломления мало зависит от длины волны (рис. 1), для него характерен типичный для щелочно-галоидных кристаллов ход частной дисперсии. Температурный коэффициент показателя преломления (dn/dt) варьирует от —6,2∙10-6/°С для λ = 0,2288 мкм до —5,6∙10-6/°С для λ = 9,724 мкм; минимальное значение установлено для λ = 0,852 мкм и равно —10,6∙10-6/°С.

Рис. 3. Границы спектрального пропускания различных оптических материалов

Особенно важным свойством флюорита является его высокая прозрачность в широком спектральном диапазоне: от 0,125 мкм в вакуумной ультрафиолетовой (УФ) (шумановской) до 11 мкм в инфракрасной (ИК) областях спектра (рис. 2). На рис. 3 приведены сравнительные данные о диапазонах пропускания. Среди различных оптических материалов нет ни одного, для которого так удачно, как для флюорита, сочетались бы оптические характеристики. Только немногие искусственные кристаллы имеют более коротковолновую границу пропускания — это кристаллы фтористого лития LiF, фтористого магния MgF2, дигидрофосфата аммония NH4H2PO4(ADP). Но они либо имеют двойное лучепреломление, либо характеризуются низкой твердостью, либо водо- и кислотонеустойчивы (табл. 1), что ограничивает их применение в оптическом приборостроении. Ряд материалов, имеющих в ИК-области более длинноволновую границу пропускания, чем у фтористого кальция, уступают ему по пропусканию в УФ-диапазоне и могут использоваться исключительно в спектральных приборах для ИК-области. Это бромистый калий KBr, бромистый цезий CsBr, йодистый калий KI, KRS-5 (состава TlBr — TlI).

Таблица 1. Оптические характеристики некоторых кристаллов

Кристалл Показатель преломления n D Твердость, кг/мм 2 Растворимость в воде, г/100 г Коэффициент линейного расширения α∙10 6
CaF 2 1,4338 120 1,31∙10 -3 19,5
NaF 1,336 60 4,2
NaCl 1,54432 18 26,0 42
LiF 1,3915 99 0,27 41
MgF 2 n 0 = 1,3777 415 7,6∙10 -3 11
n e = 1,3895

Все оптические характеристики флюорита высокостабильны. Эти особые свойства определяют незаменимость оптического флюорита при создании высококорректированных оптических систем (апохроматов, планапохроматов), обеспечивающих высокое качество изображения и ограничение хроматических аберраций. Вместе с тем прозрачность и достаточно большая дисперсия флюорита в УФ-области спектра обусловливают его использование в объективах современных ультрафиолетовых микроскопов и при изготовлении призменной оптики в вакуумных приборах (спектрографах, монохроматорах и др.).

Благоприятные механические, технические и эксплуатационные характеристики кристаллов флюорита в сочетании с прозрачностью в широком спектральном диапазоне, высокой оптической однородностью, отсутствием двойного лучепреломления, люминесценции, высокой радиационной устойчивостью и лучевой прочностью определяют и ряд новых его практических применений в тепловидении и фурье-спектроскопии, астрономии, космической технике, в квантовой и силовой оптике и т. д.

Области практического применения оптического флюорита непрерывно расширяются, в связи с чем энергично возрастают и потребности в этом уникальном оптическом материале.

Свойства флюорита, в том числе и оптические, определяются его конституцией, т. е. химическим составом и кристаллической структурой.

Рис. 4. Различные модели кристаллической структуры флюорита

Объяснение в тексте

Флюорит (по химической номенклатуре — фтористый кальций CaF2) состоит из атомов кальция (51,33%) и фтора (48,67%), закономерно упакованных по принципу гранецентрированной кубической кристаллической решетки. Это значит, что если мы соединим мысленно все взаимодействующие друг с другом атомы по кратчайшим расстояниям между ними прямыми линиями, то получим регулярную пространственную решетку, которая состоит из бесконечного множества совершенно одинаковых элементарных ячеек, как бы размножающихся в пространстве. Кристаллохимики называют такие ячейки параллелепипедами повторяемости.

Элементарная ячейка флюорита представляет собой куб, разделенный на восемь маленьких кубиков — октантов. Ионы кальция (Ca2+) располагаются по вершинам большого куба и по центрам каждой из его граней, а ионы фтора (F-) — в центрах каждого октанта. Каждый ион фтора оказывается, таким образом, окруженным четырьмя ионами кальция (FCa4), располагающимися по вершинам тетраэдра, который называется координационным, а каждый ион кальция находится внутри координационности куба, образованного восемью ионами фтора (CaF8).

Если изобразить ионы кальция и фтора разноцветными шариками, то элементарная ячейка флюорита будет выглядеть так, как показано на рис. 4, а. На первый взгляд кажется, что в ней слишком много ионов кальция. Но нужно учесть, что каждый ион кальция в вершинах ячейки принадлежит восьми ячейкам, а располагающийся на грани — двум ячейкам. Так что «собственных» ионов кальция здесь всего (1 : 8∙8+1 : 2∙6), ионов фтора — восемь, а число формульных единиц CaF2 в ячейке z — четыре. Если шарики, изображающие ионы, «раздуть» до их истинных размеров, характеризуемых эффективными радиусами (Са2+ = 1,04 Å, F- = l,33 Å), то получим более близкую к реальной, хотя и менее наглядную модель структуры флюорита (см. рис. 4, б). Структуру флюорита можно изобразить также в виде анионных полиэдров — Ca-кубов или катионных F-тетраэдров. Размер ребра элементарной ячейки α0 = 5,46295±0,00010 Å.

Рассмотренная схема кристаллической структуры флюорита является идеальной. Реальная структура несколько сложнее, и это связано прежде всего с тем, что во флюорит, кроме кальция и фтора, в тех или иных количествах входят атомы некоторых других элементов. Ионы F- могут частично замещаться кислородом О2-, но основные вариации химического состава связаны с изоморфными замещениями Са2+ на Ag+, Cd2+, Ge2+, Cu+, Hg2+, In3+, Mn2+, Sn2+, Sr2+, Sb3+, Tl3+, Pb4+, Th4+, U4+ и особенно на двух- и трехвалентные ионы редкоземельных элементов — TR2+(Sm2+, Eu2+, Yb2+ и др.) и TR3+(Y3+, Се3+, La3+, Lu3+ и др). Элементы-примеси присутствуют во флюорите обычно в незначительных количествах, однако содержание редких земель иногда может достигать десятков процентов. Максимально возможное содержание TRF3 во флюорите, не разрушающее его структуру, 50%. Механизм замещения двухвалентного кальция трехвалентным иттрием или другими редкими землями довольно своеобразный. Ионные радиусы этих элементов близки друг другу (Y3+ = 0,97 Å, Са2+ = 1,04 Å), и при вхождении YF3 в структуру CaF2 иттрий занимает места ионов кальция. При этом две трети ионов фтора заполняют все тетраэдрические позиции, которые им и положено занимать, а одна треть их входит в октаэдрические пустоты между катионами кальция, бывшие в CaF2 незаполненными. В результате такого изоморфизма «с заполнением пространства» плотность и показатель преломления иттрофлюорита по сравнению с флюоритом повышаются, увеличивается параметр элементарной ячейки до α0 = 5,50 Å. При замещении кальция трехвалентными ионами редкоземельных элементов происходит компенсация избыточного заряда эквивалентными количествами ионов О2-, Na+ и других элементов по схемам

Ca2+ + F- → TR3+ + O2-,

2Ca2+ → TR3+ + Na+ и т. п.

Вхождение изоморфных примесей во флюорит изменяет многие его структурно-чувствительные физические свойства.

Большое влияние на свойства флюорита оказывают структурные дефекты. Структура кристаллов флюорита, как и вообще любых других кристаллов, всегда содержит множество локальных нарушений (точечных, линейных, плоскостных, объемных), возникающих в процессе кристаллизации в результате «ошибок» при встраивании в кристалл кристаллообразующих частиц, вхождении чужеродных примесных элементов, захвате включений и т. п.

Для кристаллов флюорита характерны все типы точечных дефектов. К простейшим точечным дефектам относятся вакансии, образующиеся в результате того, что в узлах решетки отсутствуют ионы кальция (такие дефекты называются дефектами Шоттки). Другой тип точечных дефектов (дефекты Френкеля) образуется, когда атом (ион) из узла решетки перемещается в междоузлие. Вызываемые ими нарушения в решетке строго локализованы — размеры их сравнимы с межатомными расстояниями. К точечным дефектам также относятся комплексы из небольшого числа простейших дефектов, если размеры нарушений не превышают нескольких межатомных расстояний. Такие комплексы иногда называют кластерами.

Точечные дефекты, располагаясь в целом хаотически, способны к упорядоченному расположению вдоль определенных кристаллографических направлений. Вследствие этого возникает анизотропия, особенно выраженная, если дефекты создаются примесями, например оптическая анизотропия в кубических кристаллах, в том числе в кристаллах флюорита.

Миграция дефектов по кристаллу, усиливающаяся с повышением температуры, приводит к их дальнейшему объединению и образованию более крупных, макроскопических, областей нарушений, влияющих на первичные свойства кристалла. Структурные дефекты могут быть причиной явлений, не характерных для идеального кристалла флюорита, — окраски, интенсивной люминесценции и др. В то же время, зная природу этих свойств, можно целенаправленно изменять их, вводя в структуру дефекты нужного «сорта». На этом основано, например, использование кристаллов фтористого кальция, легированных Sm2+, Dy2+, Nd3+, Er3+ в лазерной технике, а также в мазерах.

Основными линейными дефектами являются дислокации, образующиеся в результате сдвига атомных слоев друг относительно друга на одно межатомное расстояние. Дислокации могут быть краевыми, представляющими собой край «оборванной» в результате сдвига атомной плоскости, и винтовыми (фото 1, см. вкл.), в которых линия, последовательно соединяющая атомы один за другим, является винтовой. Вблизи дислокации кристалл сильно деформирован, причем если ширина деформированной зоны соответствует размерам точечного дефекта, то длина ее может достигать миллионов межатомных расстояний — дислокация как бы пронизывает кристалл насквозь. Плотность дислокаций, определяемая как число дислокационных линий, пересекающих площадку в 1 см2 в кристалле, может достигать в сильно деформированных кристаллах 1012. В хороших оптических кристаллах фтористого кальция она составляет 104 и менее на 1 см2. Плотностью дислокаций, их распределением и перемещением внутри кристалла определяются механические свойства флюорита.

Объемными дефектами являются блочность, мозаичность, широко проявляющиеся как на природных, так и на искусственных кристаллах флюорита (фото 2, см. вкл.), участки с внутренними напряжениями, скопления включений и т. п.

Дефектность структуры флюорита оказывает большое влияние на его оптические свойства. Примеси редкоземельных элементов, вакансии и другие точечные дефекты приводят к снижению пропускания в УФ-области спектра, появлению полос поглощения в видимом диапазоне и окрашенности кристаллов.

Природа разнообразной окраски и люминесценции флюорита детально рассмотрена в ряде работ [Пшибрам, 1959; Архангельская, 1970; Марфунин, 1974, 1975; Платонов, 1976; Таращан, 1978]. Простейшим центром окраски является F-центр (Farbe, нем. — цвет), представляющий собой вакансию отрицательно заряженного иона (аниона), захватившую электрон. Поглощение энергии F-центром соответствует переходу F-электрона с одного уровня на другой.

Величина поглощенной энергии ΔЕ = Е2—Е1 принимает не непрерывные значения, а «квантуется» — поглощение происходит дискретными порциями, квантами энергии hv: ΔE = hv, где h — постоянная Планка, равная 6,626∙10-34 Дж∙с; v — частота, с-1. Вместо частоты используется волновое число, обратное длине волны: v' = 1/λ, (см-1), которое связано с частотой отношением v' = v/c, где с — скорость света, м/с.

Таким образом, ΔE = hcv' = hc1/λ. Из этого уравнения видно, что чем больше величина поглощенного кванта, тем меньше длина волны, соответствующая поглощению света веществом. Таким образом, спектральное положение F-полосы определяет окраску кристалла.

Первые эксперименты по искусственному окрашиванию флюорита были выполнены Л. Вёлером в 1905 г. Он окрасил кристалл флюорита в синий цвет, нагревая его в парах кальция. Впоследствии эксперименты по аддитивному окрашиванию природного флюорита провели Г. Хаберландт и Е. Мольво. В спектрах поглощения таких кристаллов присутствуют две полосы поглощения — 375 (α-полоса) и 520 нм (β-полоса) — так называемый спектр Мольво, которые отождествляются с поглощением на F-центрах. Было установлено, что при аддитивном окрашивании в кристалле возникает избыточное, по сравнению со стехиометрическим составом, содержание атомов щелочного металла (обычно порядка 1016—1019 атомов на 1 см3). Это, в свою очередь, приводит к избытку свободных электронов, которые, перемещаясь по кристаллу, захватываются анионными вакансиями с образованием F-центров. Теоретические расчеты также дают количественное соответствие между величиной полного спектрального поглощения в F-полосе и тем избыточным количеством щелочного металла, которое устанавливается химическим анализом окрашенного кристалла. Кроме того, известно, что плотность аддитивно окрашенных кристаллов флюорита обычно меньше, чем у неокрашенных, за счет присутствия вакансий, однако твердость их выше.

Другим методом искусственного создания центров окраски является облучение кристаллов жестким излучением — рентгеновскими, γ-лучами, частицами высоких энергий. Активация центров окраски происходит и в природных условиях.

В кислородсодержащих кристаллах флюорита с высоким содержанием анионных вакансий после радиационного окрашивания П. П. Феофилов обнаружил две полосы поглощения — 370 и 560 нм, которые он отождествил с F2-центрами, представляющими собой парные анионные вакансии с двумя локализованными на них электронами. Такие же центры были обнаружены и в кристаллах SrF2.

В природных кристаллах флюорита обычно наблюдаются сложные центры окраски, представляющие собой агрегаты из двух, трех и четырех примыкающих друг к другу элементарных F-центров. Соответственно они обозначаются: F2-, F3- и F4-центры или М (F2-центр), R1 и R2 (F3-центр), N (F4-центр). В природных условиях образованию F-агрегатных центров способствует диффузия дефектов решетки с их последующей агрегацией в процессе роста и дальнейшего существования кристалла в изменяющихся температурных и радиационных полях. Такие сложные центры наиболее устойчивы к термическому обесцвечиванию. Они в противоположность простым F-центрам, как бы пройдя «естественный отбор», чаще наблюдаются в природных кристаллах.

Описанные центры окраски во флюорите являются по своей природе электронными. Кроме них, существуют дырочные центры окраски, которые отождествляются с ионами фтора, утратившими электрон, — F0. Эти центры устойчивы только при низких температурах.

Кроме электронно-дырочных центров, в объяснении окраски флюорита определенную роль играют примесные дефекты. Это прежде всего дефекты, связанные с внедрением ионов редкоземельных элементов в структуру флюорита. Причем роль двух- и трехвалентных ионов в окраске существенно различна в силу специфических особенностей их энергетического состояния. В спектрах CaF2 — TR3+ полосы поглощения, соответствующие (f—d)-переходам в пределах внутренней, защищенной от внешних влияний оболочки, попадают в далекую, за пределами видимой, УФ-область спектра. В видимой и прилегающей к ней части спектры TR3+-ионов, обусловленные (f—f)-переходами, имеют линейчатый характер, т. е. состоят из серии очень узких линий. Поэтому влияние ионов TR3+ на цвет флюорита практически исключается, тем более что концентрация редкоземельных элементов, а следовательно, и интенсивность полос поглощения незначительные.

Рис. 5. Спектр поглощения (1) и люминесценции (2) кристалла флюорита зеленой окраски

1 — при комнатной температуре; 2 — при —160° С

Рис. 6. Кривая термолюминесценции флюорита с полосами излучения на различных центрах

По-другому проявляют себя ионы TR2+. Они имеют широкие интенсивные полосы поглощения, соответствующие (f—d)-переходам и расположенные в видимой и ближней УФ-области спектра. Узкие слабые полосы (f—f)-переходов полностью перекрываются первыми, и поэтому окраска целиком определяется широкими полосами поглощения TR2+.

Наиболее значительное влияние на окраску флюорита оказывают Sm2+, Eu2+, Dy2+, Yb2+. Полосы поглощения других TR2+-ионов располагаются в ИК-области спектра.

П. П. Феофиловым [1956] было показано, что зеленая окраска кристаллов флюорита обусловлена двухвалентным самарием. В видимой области спектра у кристаллов CaF2—Sm2+ фиксируются две интенсивные полосы поглощения: ~425 и ~630 нм (рис. 5). В определенных условиях ионы могут переходить из одного валентного состояния в другое, вызывая тем самым изменение окраски кристалла. На этом основано окрашивание кристаллов с помощью γ-облучения и, наоборот, их обесцвечивание при нагревании.

Значительное влияние на оптические свойства флюорита оказывает присутствие кислорода в его структуре. Кислородсодержащие кристаллы имеют интенсивное поглощение начиная с 200—220 нм, поэтому непригодны для изготовления оптических деталей к приборам, предназначенным для вакуумной УФ-области. При этом O2-, внедряясь в структуру, размещается в ближайшем к TR3+ узле анионной подрешетки, представляя собой одиночный ион или образуя диполи с анионными вакансиями VF. С присутствием таких ассоциированных пар О2-—2VF связаны появление красно-фиолетовой окраски и пурпурно-красная люминесценция облученных кристаллов флюорита. 2VF-центры такого типа называются «красными» М-центрами. Во флюорите П. Л. Смолянским были установлены и «синие» М-центры, связанные с присутствием Na+.

Одним из широко известных свойств флюорита является люминесценция, природа которой также связана с дефектами его структуры. Явление люминесценции известно с древнейших времен. Еще Плиний Старший (23— 79 гг.) в легенде о светящихся в темноте камнях упоминает об «огненном хризолампсисе». Видимо, речь здесь шла именно о флюорите. Со второй половины XVII в. природа люминесценции флюорита уже рассматривалась в научной литературе. Еще до недавнего времени считалось, что люминесценция является чуть ли не неотъемлемым свойством флюорита, однако сейчас известно, что есть природные и искусственно созданные кристаллы флюорита, которые не имеют люминесценции. Это кристаллы высокой степени чистоты, практически свободные от дефектов. Люминесценция может возникать под воздействием различных причин: при фотовозбуждении (фотолюминесценция), при возбуждении катодными (катодолюминесценция) и рентгеновскими (рентгенолюминесценция) лучами, при нагревании (термолюминесценция), трении (триболюминесценция) и т. д.

Фотолюминесценция. Наиболее характерным видом свечения флюорита при фотовозбуждении является синефиолетовая люминесценция. Она возникает при облучении ультрафиолетовыми лучами с длиной волны γ=365 нм и объясняется присутствием во флюорите Eu2+. Спектр излучения Eu2+ состоит из четко выраженной полосы в фиолетовой области спектра (~430 нм). При температуре жидкого азота (77K) разгорается желто-зеленая люминесценция с максимумом в области 570 нм, обусловленная примесью Yb2+. Если возбуждение проводить длиной волны 400 нм, то обнаруживается красная люминесценция, вызванная присутствием Sm2+. Такое поведение связано с особенностями характеристических спектров поглощения этих ионов.

В спектрах фотолюминесценции были отмечены линии излучения и трехвалентных ионов — Sm3+, Dy3+, Tb3+, Er3+, наблюдаемые в видимой области спектра.

Рентгенолюминесценция. Очень интересным явлением, связанным с примесями редкоземельных элементов, является рентгенолюминесценция флюорита. Рентгеновские лучи обладают высокой проникающей способностью и значительно большей энергией кванта по сравнению со световыми лучами. Люминесценция возникает при переходах между электронными уровнями внутренних оболочек атомов в кристалле, тогда как фотолюминесценция — при переходах между уровнями внешних электронов. В связи с этим в спектрах рентгенолюминесценции появляются дополнительные линии по сравнению с оптическим возбуждением.

По спектрам рентгенолюминесценции удалось идентифицировать как центры на собственных дефектах решетки флюорита, так и примесные ионы, изоморфно входящие в структуру [Таращан, 1978; Красильщикова и др., 1981]. У кристаллов флюорита с невысоким содержанием редкоземельных элементов, порядка тысячных долей процента, в спектрах рентгенолюминесценции линии их излучения весьма слабы. Основные полосы излучения наблюдаются в УФ-области около 280 нм (дырочный VR-центр) и на границе видимой и ИК-области с максимумом 750 нм (дырочный F2--центр). В спектрах рентгенолюминесценции флюорита, обогащенного примесями редкоземельных элементов, в зависимости от количественного соотношения различных ионов, от формы их вхождения, способа локальной компенсации заряда, симметрии центра наблюдаются различные комбинации линий излучения этих центров. По спектрам рентгенолюминесценции были зафиксированы полосы излучения на Mn2+, а также центры на ионах TR с различной зарядовой компенсацией — кислородной (тригональные центры Dy3+—O2-; Sm3+—O2-; Er3+—O2-), натриевой (ромбические для Er3+), фторовой (тетрагональные для Er3+). Расшифровка спектров рентгенолюминесценции флюорита весьма сложна, особенно для природных образцов, характеризующихся различными наборами примесей, сложными физико-химическими и температурными условиями образования.

Термолюминесценция. Такой же сложный характер имеют кривые термовысвечивания флюорита, для которого зафиксировано множество центров захвата и высвечивания на различных дефектах. Термовысвечивание кристаллов CaF2 происходит в широком спектральном диапазоне от 300 до 800 нм и состоит из серии полос и линий различной интенсивности, принадлежащих к различным активаторам. В процессе нагревания образца излучение происходит вначале в видимой области спектра, а при дальнейшем повышении температуры, когда высвобождаются электроны из более глубоких энергетических ловушек, преобладающим становится ультрафиолетовое излучение. Каждому активатору соответствуют свои линии и полосы излучения, проявляющиеся при тех или иных температурах. В результате на кривой термовысвечивания в определенных температурных интервалах наблюдаются максимумы свечения, природа которых иногда имеет сложный многоцентровой характер.

Природа центров захвата электронов и центров свечения по кривым и максимумам термолюминесценции не может быть установлена. Эти данные получают с помощью методов спектроскопии, в частности электронного парамагнитного резонанса (ЭПР).

Термолюминесценция в системе CaF2, содержащей примеси TR, представляет собой рекомбинационный процесс, так как центры свечения (TR3+) и центры захвата (дефекты термического и примесного происхождения) пространственно разделены. Во флюорите установлены следующие основные центры захвата и свечения.

Центр O- — TR2+. Это дипольный центр, возникающий в результате изоморфных замещений иона Ca2+ ионами TR3+ с компенсацией избыточной валентности ионом кислорода. При возбуждении происходит переход электрона с O2- на TR3+; обратный же переход сопровождается излучением иона TR в интервале температур 130-150° С (рис. 6).

Центр YO02. Он образуется при изоморфном замещении Y3+ → Ca2+ и локализации двух ионов O2- в соседних вакансиях F. Образующийся комплекс Y3+ — O4-2 в результате облучения захватывает дырку и может рассматриваться как молекула YO02. Запасенная этими центрами световая энергия в природных образцах высвечивается обычно через ионы-активаторы — Mn2+ или TR3+ в области 200-220° С.

Центр TRO02 Дырочный центр, аналогичный YO02. Чаще всего встречается в кристаллах флюорита, образовавшихся в сильно окислительных условиях. С ним связан максимум термовысвечивания при 330° С.

Центр TR2+. Устойчивые центры на двухвалентных ионах редкоземельных элементов образуются в условиях, когда часть свободных дырок локализована на глубоких уровнях захвата, что сдерживает их миграцию по кристаллу и соответственно препятствует переводу иона TR2+ в трехвалентное состояние. Наиболее устойчивыми двухвалентными ионами во флюорите являются Eu2+, Yb2+, Sm2+, Dy2+. В связи с тем, что энергия их термической ионизации достаточно большая, максимумы термовысвечивания располагаются в области высоких температур (~400°С). В природных кристаллах в области 200—250° С наблюдались пики высвечивания на ионах Nd2+, Er2+, Ho2+.

Взаимосвязи конституционных особенностей и физических свойств флюорита, главные из которых мы рассмотрели в этой главе, позволяют прогнозировать свойства кристаллов и, наоборот, по оптическим показателям судить о кристаллохимии исследованных кристаллов флюорита.

 

Флюорит в природе

Широкий путь флюоритовой оптике в современную технику открыл природный флюорит. На рубеже XIX—XX вв. оптики обратили внимание на этот уникальный минерал и стали вводить детали, выточенные из природных флюоритовых кристаллов, в оптические приборы. Но история использования человеком оптических свойств флюорита, в первую очередь прозрачности и разнообразной яркой окраски, уходит в более далекие, древние времена.

Плиний Старший в своей знаменитой «Естественной истории» рассказывает о муриновых вазах, поражающих красотой и очень высоко ценившихся; полагают, что они были выточены из флюорита. Великолепные, но, к сожалению, не очень прочные и дожившие до наших дней только в отдельных экземплярах изделия из флюорита делали мастера Саксонии и Гарца в Германии.

Флюоритовые изделия находят в древних могильниках. Недавно, например, венгерские археологи, раскапывая захоронения X—XI столетий в окрестностях Секешфехервара (округ Фейер), обнаружили браслет и ожерелье, собранные из фиолетовых флюоритовых бусинок. Каждая бусинка имеет бочонковидную форму, на нее с величайшей точностью нанесено 12 плоских граней и просверлено ровное отверстие для нанизывания на шнурок. Флюорит для изделий брался неподалеку — из флюоритовой жилы в горах Веленце [Orsolya, 1976].

Благодаря богатой палитре окрасок флюорит издавна использовался ювелирами для имитации драгоценных минералов [Здорик, 1975; Смит, 1980] и даже имел специальные названия: фальш-топаз, фальш-сапфир, фальш-рубин, фальш-аметист. Но из-за низкой твердости ценность флюорита как самоцвета невелика. Однако в качестве декоративного материала для изготовления украшений и различных изделий флюорит использовался с большим успехом. В одном из музеев Лондона находится декоративная ваза, целиком изготовленная из «Синего Джона».

Такое название получил флюорит из Дербишира (Англия) благодаря красивому рисунку и яркой пурпурной или синей с желтыми полосами окраске.

Очень красив зеленый флюорит из Намибии. Он известен под названием «африканский изумруд». В Швейцарских Альпах (Сен-Готард) найдены красные — «рубиновые» кристаллы флюорита. В 1850 г. Дж. Раскином Британскому естественноисторическому музею были подарены замечательные розовые октаэдры флюорита из Шамони.

Пробовали делать флюоритовые поделки и в России; во всяком случае, еще один из основоположников отечественной минералогии В. М. Севергин писал в 1807 г. о флюорите: «Можно его шлифовать и полировать и выделывать из него разные вещи». Да и в наши дни флюорит широко используется как поделочный камень; особенно славятся в этом отношении текстурно многообразные и удивительные по разнообразию окраски флюориты забайкальских месторождений — Горсонуйского, Калангуйского, Солнечного, Усугли, Авагайтуйского [Юргенсон, 1971].

Флюорит был одним из первых минералов, привлекших внимание ученых. Он упоминается под названием «флюоре» в минералогическом трактате Б. Валентинуса (конец XV в.), в «Диалоге о металлах» Агриколы (1529) и описывается во всех последующих лапидариях и минералогических сочинениях. Он входит в минералогическую науку как один из важнейших ее объектов.

Природные кристаллы флюорита

У знаменитого немецкого художника А. Дюрера (1471—1528 гг.) есть прекрасная гравюра «Меланхолия», на которой изображен огромный октаэдрический многогранник, выколотый из кристалла флюорита.

Это, пожалуй, первое графическое изображение флюоритового кристалла, причем кристалла, покрытого не естественными гранями, а искусственными плоскостями спайного скола. Совершенная спайность по октаэдру — характерное физическое свойство флюорита. Но в природе встречаются очень широко кристаллы и с естественными октаэдрическими гранями. И не только с октаэдрическими. В общем морфология кристаллов флюорита довольно разнообразна, хотя и образуется путем комбинаций относительно небольшого числа простых форм.

В соответствии с геометрическими закономерностями пространственного распределения атомов кальция и фтора, т. е. в соответствии с внутренней кристаллической структурой, кристаллы флюорита характеризуются высокой симметрией. Они относятся к гексоктаэдрическому классу кубической сингонии (O h по Шенфлису или m3m в символике Германа—Могена), обозначаемому формулой 3L44L36L29PC. Это значит, что наиболее правильные кристаллы флюорита характеризуются тремя осями симметрии четвертого порядка, четырьмя осями третьего порядка, шестью осями второго порядка, девятью плоскостями и центром инверсии. К тому же классу относятся кристаллы поваренной соли, или галита (NaCl), галенита (PbS), магнетита (Fe2O3), гранатов и других минералов. Более высокосимметричных кристаллов в минеральном мире нет.

На природных кристаллах флюорита за многовековую историю их изучения обнаружено около 100 простых форм, причем менее десятка из них встречаются более или менее постоянно, остальные весьма мало распространены.

Для кристаллов флюорита наиболее обычны следующие простые формы:

Форма Символ грани Буквенный индекс Форма Символ грани Буквенный индекс
Куб 100 а Тригон-триоктаэдр 221 p
Ромбододекаэдр 110 d hkl 331 g
Октаэдр 111 o   441 ρ
Тетрагексаэдр 210 е   332 r
hko 310 f   443 N
  530 l hll 211 S
  730 В Тетрагон-триоктаэдр 311 m
  1250 К hkl 322 β
        321 S
      Гексоктаэдр 421 t

Куб образован, как всем хорошо известно, шестью квадратными гранями, октаэдр — восемью правильными треугольными гранями. Ромбододекаэдр имеет 12 граней в виде правильных ромбов, тетрагексаэдр — 24 грани, представляющие собой тупоугольные треугольники. Тригон-триоктаэдр состоит из 24 граней, представляющих собой равнобедренные треугольники; тетрагон-триоктаэдр — также из 24 граней дидельтовидной формы.

Рис. 7. Габитусные типы кристаллов флюорита

Буквами показаны разные грани

Рис. 8. Эпитаксические сростки флюорита с пиритом (а) и кварца с флюоритом (б)

На рис. 7 приведены идеализированные типы кристаллов флюорита, встречающиеся в природе. Резко преобладающими формами природных кристаллов, определяющими их габитус, являются куб {100}, октаэдр {111} и ромбододекаэдр {110}. Все прочие формы только дополняют комбинации, усложняя, но не изменяя габитуса. Чаще всего встречаются кристаллы кубического габитуса, несколько реже — октаэдрического.

Реальные кристаллы, встречающиеся в природных флюоритовых телах, как правило, отличаются от идеализированных моделей. Они искажены, степень искажения формы, отклонения ее от идеальной, растет с увеличением размеров кристаллов. Главная причина искажения — неравномерное поступление к растущему кристаллу питательного вещества. Здесь действует универсальный принцип симметрии П. Кюри, согласно которому в кристалле сохраняются только те элементы собственной симметрии, которые совпадают с наложенными на него элементами симметрии среды, симметрии питания [Шафрановский, 1968]. В условиях односторонне направленного питания кубический кристалл постепенно искажается в брусковидный, шестоватый или пластинчатый, форма его может быть вообще неправильной, не кристаллической. Симметрия снижается.

Кроме того, в процессе минералообразования может меняться не только облик, но и кристаллографический характер огранки вследствие смены условий кристаллизации, химизма растворов и т. п. Наиболее обычная тенденция — переход от октаэдра через промежуточные более сложные габитусные формы к кубу. Она проявляется и во внутреннем строении кристаллов в виде как бы вложенных друг в друга кристаллов-фантомов разной формы, а если кристалл разрезать, то в виде концентрических зон, а также в существовании эволюционных габитусных рядов кристаллов. На месторождениях эта тенденция может выразиться в виде пространственной эволюционной зональности. Эта зональность показана Б. Зидаровой и др. [1978] на примере Михалковского флюоритового месторождения в НРБ. Зональность, вырисовывающаяся по смене габитусных типов флюорита, отражает изменение условий кристаллизации, в первую очередь температуры, пересыщения и кислотности — щелочности растворов в пространстве.

Очень часто встречаются различные скелетные кристаллы, параллельные сростки (фото 3, см. вкл.). Они особенно характерны для меняющихся условий кристаллизации, в которых одна форма, например октаэдрическая, уступает место другой, скажем кубической. Общий октаэдрический габитус кристалла еще сохраняется, но большие грани октаэдра распались на мелкие кубические грани, и весь такой псевдооктаэдрический кристалл состоит из правильной мозаики кубических блоков.

Для флюорита характерны двойники по (111), представленные прорастающими друг друга кубическими субиндивидами (фото 4, см. вкл.), реже по той же плоскости (111) срастаются октаэдры, и кристаллы приобретают уплощенный облик.

Рис. 9. Проекция кристаллической решетки флюорита на (110) с одним РВС-вектором (S-грань) и двумя типами фигур травления. По Р. Хейману [1979]

1 — Са; 2 — F. Остальные объяснения в тексте

Поверхность растущих кристаллов флюорита может оказывать ориентирующее влияние на находящиеся в той же среде мелкие кристаллики некоторых других минералов (пирита, халькопирита, сидерита, кварца и др.), и они закономерно нарастают на флюорит, образуя очень эффектные эпитаксические срастания (рис. 8).

Грани природных флюоритовых кристаллов редко бывают зеркально-гладкими. Обычно они неровные, покрыты черепитчатыми и ступенчатыми скульптурами роста или изъедены растворением. Большой интерес представляют довольно часто встречающиеся на гранях кристаллографически правильные ямки природного травления. Такие ямки могут быть получены и искусственно — действием различных травителей (фото 5, см. вкл.). Ямками травления фиксируются места выходов на грань дислокаций и других структурных дефектов, а форма ямок отражает характер действовавшего на кристалл растворителя.

Восстановить тип растворителя (а эта задача встает очень часто как при изучении природных кристаллов с целью реконструкции условий их изменения, так и при определении факторов, действующих на искусственные кристаллы при их выращивании в изменяющихся условиях) можно путем сравнения форм изучаемых ямок с полученными экспериментально или на основе анализа кристаллической структуры грани. На рис. 9 показано распределение атомов Са и F на поверхности грани (110), относящейся к типу S-граней с одним РВС-вектором (цепочка наиболее сильных связей), помеченным сплошной зигзагообразной линией. Нетрудно сообразить, что под действием щелочного травителя будут возникать прямоугольные ямки, несколько вытянутые в направлении [001], так как такой травитель действует на анионы, а именно в этом направлении ионы F разнесены на минимальное расстояние (тип 1). Под действием кислых растворов легче извлекаются анионы Са, расстояния между которыми минимальны в направлении [110]. В результате появляются неправильные ямки и канавки, сильно вытянутые параллельно [110] (тип 2). На гранях октаэдра под действием любых растворителей образуются тригональные или дитригональные ямки.

Кристаллы флюорита только на первый взгляд кажутся однородными. Тщательное исследование вскрывает их закономерную анатомическую картину, характеризующуюся наличием зональности, мозаичности и часто блочности. Особенно четко эта картина прорисовывается неравномерным распределением окраски. Поскольку кристалл растет слоями, то каждый наросший слой образует самостоятельную микрозону, а поскольку грани разных простых форм физически различны и растут и поглощают примеси по-разному, то пирамиды нарастания каждой из них физически различны и имеют четкие границы, хотя одни и те же зоны роста переходят из одной пирамиды в другую. Анатомию кристаллов необходимо учитывать при «раскрое» кристаллов на оптические детали.

Важным и непременным элементом анатомического строения кристаллов флюорита являются включения. Все их многообразие можно свести к двум типам: твердые и флюидные.

Твердыми включениями являются кристаллы или зерна других минералов, захваченные флюоритом в процессе его кристаллизации или выкристаллизовавшиеся каким-то образом в уже существующем флюоритовом кристалле. В виде твердых включений чаще всего встречаются кристаллики парагенных флюориту минералов — пирита, халькопирита, сфалерита, кварца, карбонатов.

Флюидные включения представляют собой остатки той минералообразующей среды, чаще всего растворов, которые были захвачены или законсервированы кристаллом, или порции более поздних растворов, залечивавших трещины и дефекты. В течение жизни кристалла включения могли претерпевать значительные изменения вплоть до изменения фазового состава. Обычно такие включения являются жидкими и газово-жидкими (фото 6, см. вкл.), нередко в них выделяется твердая фаза в виде мелких кристалликов галита, флюорита и других минералов. Описаны включения нефти, вязких битумов, затвердевшие расплавные включения. Первичные включения, сингенетичные кристаллу, распределяются по зонам роста, скопления же вторичных включений секут зоны роста.

Во многих кристаллах флюорита заметно пятнистое распределение фиолетовой окраски. Если внимательно присмотреться, то оказывается, что в центре фиолетовых пятен находятся включения радиоактивных минералов, а темная окраска — это радиационные «дворики» вокруг них, следствие действия на флюорит радиоактивного излучения. Сравнивая размеры «дворика» и густоту окраски в нем с интенсивностью излучения, испускаемого включением, можно определить продолжительность действия радиоактивного источника, т. е. возраст флюорита, если это включение первичное.

С точки зрения оценки монокристаллов флюорита как материала для изготовления оптических деталей включения, несомненно, являются дефектами. Если они крупные, видимые простым глазом, и распределены густо, то такие кристаллы вообще не пригодны для оптики. Но для расшифровки генезиса, истории кристаллов включения играют огромную роль. По ним можно судить о химизме и фазовом составе среды, о температуре и давлении в момент минералообразования, о возрасте флюорита. Существует целая наука — термобарогеохимия [Ермаков, Долгов, 1979], предлагающая комплекс методов расшифровки генетической информации, содержащейся во включениях.

Характерной особенностью природных кристаллов флюорита является их трещиноватость. Флюорит — очень хрупкий минерал и легко поддается действию механических деформаций, он чутко реагирует даже на небольшие тектонические «встряски» флюоритовых тел. Кроме того, он обладает низкой теплопроводностью и растрескивается в результате температурных скачков. Поэтому природные кристаллы чаще всего трещиноваты, иногда сеть трещин и плоскостей скольжения настолько густая, что кристалл становится непрозрачным, мутным, сахаровидным.

Природные кристаллы флюорита обычно содержат широкий спектр различных примесей, состав и содержание которых непостоянны и зависят от условий формирования тех месторождений, в которых они кристаллизовались. Среди изоморфных примесей, входящих в кристаллическую решетку, главную роль играют редкие земли как цериевой, так и иттриевой группы. Особенно они характерны для флюорита пегматитовых и высоко- и среднетемпературных гидротермальных месторождений. В кристаллах флюорита отмечается присутствие Sr, Na, K, Mg, Cu, Fe, Mn, Cd, Cl, Au, Hg и др. Вместе с включениями вмещающих пород или с захваченными в процессе кристаллизации синхронными минералами-узниками во флюорит в виде примесей входят Al, Si, S, а также многие из перечисленных выше элементов.

Каков же размер природных кристаллов? Этот вопрос имеет большое значение, так как от размера исходного материала зависят размеры изготовляемых деталей. Как показывает опыт многолетних исследований и анализ литературы, в природе преобладают мелкие кристаллы, менее сантиметра в поперечнике. В тех месторождениях, которые принято считать месторождениями оптического флюорита, наиболее обычные размеры монокристаллов 1—5 см, а среди них выделяются уникальные в 10—20 см. В литературе встречаются указания на находки во Франции исполинских кристаллов оптического качества — до 50—60 см по ребру [Chermette, 1924]. Нам приходилось видеть спайные моноблоки идеального качества размером до 30 см, выколотые из более крупных монокристаллов, добытых в Китае. Очевидно, оптические кристаллы размером более 0,5 м действительно существуют. Неправильной формы сильно дефектные (неоптические) кристаллы имеют иногда размеры более 1 м.

Мы смогли только очень кратко обрисовать внешний облик и внутреннее строение природных флюоритовых кристаллов. Хотелось бы подчеркнуть следующее. Кристаллы флюорита, как и вообще кристаллы минералов, являются удивительным произведением природы. Каждый отдельный кристалл в минеральном мире играет такую же роль, как и отдельный организм в живом мире. И кристаллы не менее сложны по своему строению и не менее динамичны по своим функциям, чем живые организмы. Только функции здесь особые — минеральные; явления протекают долго и медленно, и если спрессовать геологическое время жизни флюоритового или другого кристалла до привычных нам рамок и «раскрутить» эту жизнь в ускоренном темпе, то мы стали бы свидетелями удивительных и разнообразных событий. Научиться правильно читать биографию природных кристаллов — это важнейшая и по научному и по прикладному значению задача современной минералогии [Юшкин, 1977].

Технические требования к природным оптическим кристаллам

Далеко не все природные кристаллы, даже если они прозрачны, могут быть использованы для изготовления оптических деталей, поэтому промышленность предъявляет к оптическому флюориту строго определенные требования [Судеркин, 1959].

Кристаллы или части кристаллов, идущие на оптику, должны быть бесцветными и совершенно прозрачными. В УФ-области спектра пропускание пластинки флюорита толщиной 1 мм не должно быть ниже 80%.

Установлены четыре сорта оптических монокристаллов:

уникальные кристаллы — размер не менее 20×20×10 мм, совершенно бездефектные;

1-й сорт — с редкими трещинами и жидкими и твердыми включениями, занимающими не более 10% объема кристалла;

2-й сорт — с трещинами и включениями, занимающими не свыше 20% объема кристалла, допускается присутствие отдельных крупных дефектов;

3-й сорт — со степенью дефектности от 25 до 95% по объему.

Для кристаллов 1—3-го сортов требуется наличие блоков, пригодных для изготовления оптических изделий размером не менее 6×6×5 мм или 10×10×3 мм. Эти требования, конечно, очень высокие, но они постепенно смягчаются в связи с изменением технологии производства флюоритовой оптики. К ним мы еще вернемся на последующих страницах при описании технологии и покажем факторы, управляющие в новых условиях качеством кристаллов.

Геохимия фтора в земной коре и формирование флюоритовых месторождений

Как свидетельствуют справочники по минеральным ресурсам, запасы флюорита во флюоритоносных провинциях мира весьма значительны, около 150—180 млн. т [Петров, 1976; Минеральные..., 1979]. Если хотя бы 0,5% от этих запасов составляли оптические монокристаллы, то оптическая промышленность всех стран была бы обеспечена сырьем на неограниченную перспективу. К сожалению, она постоянно испытывает «флюоритовый голод», вынуждена вводить вместо флюоритовой оптики во многие приборы далеко не равноценные заменители. Дело в том, что оптические монокристаллы занимают в общей флюоритовой массе земной коры примерно такое же место, как зерна и самородки золота в массе рыхлых пород литосферы. Условия для идеального роста монокристаллов очень жестки и создаются в природе редко, еще более жесткие условия требуются для того, чтобы кристаллы сохранились в первозданном виде в течение длительных геологических эпох. Следовательно, чтобы найти редчайшие гнезда с оптическим флюоритом, нужно знать закономерности флюоритообразования и флюоритораспределения в земной коре.

На них мы кратко и остановимся.

Минералообразующими элементами флюорита являются кальций и фтор. Кальций — весьма распространенный элемент земной коры. Он присутствует всюду и в значительных количествах: среднее содержание кальция в земной коре оценивается по А. П. Виноградову в 2,96%. Содержание фтора почти на два порядка ниже — 0,066%, но он тоже присутствует во всех геологических образованиях; у него даже есть прочно закрепившийся эпитет — фтор вездесущий. Да и содержание его не такое уж низкое — среди других элементов по распространенности в земной коре фтор занимает 16-е место. Вездесущность фтора определяется его очень высокой химической активностью: из всех простых веществ он является наисильнейшим окислителем и соединяется при подходящих условиях почти со всеми прочими химическими элементами, за исключением наиболее близких к нему по электроотрицательному характеру кислорода и азота. Поэтому даже в вулканических газах фтор присутствует не в элементарном состоянии, а в виде HF или SiF4. Более высокая химическая активность фтора по сравнению с кальцием говорит о том, что закономерности флюоритообразования определяются в первую очередь геохимией фтора в земной коре.

Фтор входит в состав 35 собственно фторовых и 99 фторсодержащих минералов, образуя чаще всего природные соединения с натрием, кремнием и алюминием. Минералы фтора в большинстве своем очень редкие (70 минералов, например, встречены не более чем в пяти пунктах нашей планеты). Только три минерала: флюорит CaF2, апатит Ca10(PO4)6∙(F, Cl)2 и криолит Na3Al3F6 — встречаются в значительных количествах и являются объектами промышленной добычи.

Среднее содержание фтора таково:

Породы Содержание F, %
Магматические  
   ультраосновные 0,010
   основные 0,040
   кислые (гранитоиды) 0,052
   щелочные (сиениты) 0,120
Осадочные  
   глинистые 0,074
   песчанистые 0,027
   карбонатные 0,033
   Современные глубоководные осадки  
      карбонатные 0,054
      глинистые 0,130

Анализ данных о содержании фтора в различных объектах позволяет сделать вывод, что на фоне более или менее равномерного распределения этого элемента выделяются геологические образования, существенно обогащенные или, наоборот, обедненные фтором.

Среди осадочных пород, среднее содержание фтора в которых невелико, повышенные концентрации фтора характерны для ряда карбонатных формаций окраинных частей платформ, а также наложенных и межгорных впадин, т. е. для тех, которые формировались вблизи вулканических поясов, активных в то время и поставлявших фтор в бассейн осадконакопления. Фтор в карбонатных породах присутствует в виде флюорита. Высокие содержания фтора характерны для эвапоритов и галогенно-карбонатных отложений.

Среди магматических пород наибольшей фтороносностью характеризуются щелочные и кислые породы, низшей — ультраосновные. В ультраосновных породах фтор рассеян главным образом среди породообразующих минералов в виде изоморфной примеси, в гранитоидах он в значительной части связан с собственно фторными минералами — флюоритом в кислых и криолитом в щелочных разностях. Наиболее значительные концентрации фтора характерны для продуктов позднемагматических и постмагматических процессов: карбонатитов, пегматитов, метасоматитов.

Видимо, основная масса фтора в верхних частях земной коры, в так называемой рудосфере, имеет глубинный источник. Об этом свидетельствует и приуроченность пород с повышенной фтороносностью к глубинным разломам, и динамика поведения фтора при вулканических извержениях. Наибольшие количества фтора отмечаются в эксгаляциях основных магм, которые являются наиболее глубинными.

Фтор из окружающих пород легко выщелачивается подземными и поверхностными водами и мигрирует вместе с ними. Особенно высоким содержанием F отличаются воды флюоритсодержащих месторождений (7—8 мг/л), воды областей современного вулканизма, трещинные воды в массивах нефелиновых сиенитов (до 15 мг/л), воды галогенных отложений. Среднее содержание фтора в воде рек и пресных озер 0,04—0,3 мг/л, в морской воде — 0,14 мг/л, в рапе соляных озер — 23,4—37,8 мг/л.

Таким образом, общую схему главнейших геохимических путей фтора в земной коре можно представить следующим образом. Фтор поступает из нижних частей земной коры или верхней мантии по глубинным разломам и включается в магматические процессы. В составе интрузивных магматических пород он занимает незначительное место, но легко входит в летучую фазу вместе с парами воды, хлором, серой, фосфором, барием. Поэтому он может концентрироваться главным образом в виде флюорита в пневматолито-гидротермальных образованиях (пегматитах) и гидротермальных жилах, особенно высокотемпературных. В результате вулканических процессов фтор выносится в атмосферу и гидросферу, может накапливаться в водной массе и выпадать в донный осадок в начальной стадии галогенеза, формируя осадочные концентрации флюорита (рис. 10).

Рис. 10. Различные типы флюоритонакопления в земной коре

1 — пегматитовый; 2 — карбонатный; 3 — скарновый; 4 — альбититовый; 5 — грейзеновый; 6, 7 — гидротермальный жильный: 6 — высокотемпературный, 7 — низкотемпературный; 8 — гидротермальный метасоматичекий; 9 — осадочный карбонатно-галогенный. Остальными условными знаками показаны различные горные породы. Стрелки — пути движения фтороносных флюидов

Кристаллизация флюорита определяется различными механизмами. В алюмосиликатной среде фторсодержащие растворы извлекают из полевых шпатов необходимый для флюоритообразования кальций; реакции развиваются по следующим схемам:

SiF4 + 2Н2O → SiO2 + 4HF;

2CaAl2Si2O2 + 2HF + nH2O → 2CaF2 + Al4(OH)2Si4O10 + nH2O.

Рис. 11. Схема размещения главнейших флюоритовых месторождений мира

В карбонатных средах флюорит кристаллизуется из фторидных или кремнефторидных растворов, как правило, заменяя известняки:

2HF + СаСО3 → CaF2 + Н2O + CO2;

SiF4 + 2CaCO3 → 2CaF2 + SiO2 + 2CO2;

H2SiF6 + 3CaCO3 → 3CaF2 + Н2O + 3CO2 + SiO2.

Флюорит может отлагаться на стенках трещин и в полостях путем прямой кристаллизации без участия вмещающих пород за счет кальция и фтора, содержащихся в самих растворах:

H2SiF6 + 3Ca(HCO3)2 → 3CaF2 + 4Н2O + 6CO2 + SiO2.

Любой из этих механизмов, если реакция протекает достаточно медленно и длительно и в подходящих физических условиях, обеспечивающих правильное встраивание флюоритовых частиц в кристаллическую решетку, может привести к образованию кристаллов оптического флюорита.

Главные типы флюоритовых месторождений

Те огромные запасы флюорита, о которых мы говорили выше, сосредоточены в нескольких сотнях флюоритовых месторождений. Они хотя и распределены неравномерно, концентрируясь в определенных флюоритоносных провинциях и регионах, но известны почти во всех странах (рис. 11). В СССР месторождения плавикового шпата известны в Казахстане, Средней Азии, Горном Алтае, Забайкалье, Приморье, на Урале, Украинском и Алданском кристаллических щитах [Оценка..., 1972].

Как можно видеть из предыдущего раздела, особенности геохимии фтора в земной коре определяют возможность формирования флюоритовых месторождений различными минералообразующими процессами, в различных геологических обстановках. Месторождения флюорита, следовательно, могут иметь различный генезис, относиться к различным генетическим типам.

Согласно современным классификациям [Иванова и др., 1976; Пузанов, Коплус, 1972; Самсонов, Савельев, 1980], которые отличаются друг от друга некоторыми особенностями классификационного подхода и детальностью, но в целом близки, выделяются пять главных промышленно-генетических типов флюоритовых месторождений: магматический, пневматолито-гидротермальный, гидротермальный, экзогенный (хемогенно-осадочный, выветривания).

Внутри этих типов, особенно в генетически сложном гидротермальном, выделяются подтипы и формации. Формационная принадлежность определяется по ведущим минеральным ассоциациям (формации флюоритовая, полиметаллически-флюоритовая, редкометалльно-флюоритовая и др.).

Охарактеризуем кратко главнейшие генетические типы флюоритовых месторождений и определим их роль как возможных источников оптического сырья.

Магматический тип месторождений флюорита до последнего времени не рассматривался как перспективный в промышленном отношении, так как в целом огромные количества акцессорного флюорита, которые рассеяны в магматических породах, не образуют концентрированных скоплений. Их содержание варьирует от долей граммов до нескольких сотен граммов на тонну (только в отдельных случаях достигает 4—5 кг/т — это зоны наложенной гидротермальной переработки). Однако в последние годы в результате детальных исследований включений во флюорите [Пузанов, 1981], оказавшихся в некоторых случаях расплавными, был доказан магматический генезис флюорит-барит-железорудных карбонатитов Тувинской впадины (температуры кристаллизации 700—800° С), апатит-флюоритовых карбонатитов Большетагнинского массива в Восточной Сибири (550—670° С). Магматический генезис имеют месторождения Центрально-Алданского региона, а также и считавшиеся ранее гидротермальными месторождения в Бурятской АССР. Ранний флюорит этих месторождений кристаллизовался из высокотемпературных растворов-расплавов (600—870° С), а поздняя генерация — из гидротермальных. Содержание флюорита в рудах магматического генезиса очень высокое — 60—80%, и хотя кондиционные кристаллы здесь не обнаружены, этот новый тип месторождений может оказаться возможным источником если не оптического флюорита, то шихты для выращивания кристаллов.

Пневматолито-гидротермальный тип флюоритовых месторождений, формировавшихся в относительно высокотемпературных (выше 300° С) условиях и генетически связанных с интрузивными породами, включает несколько подтипов.

Подтип флюоритоносных пегматитов известен как в жильных, так и в камерных пегматитах, но и в тех и других он является не главным, а второстепенным минералом, на него приходится менее процента от общей массы минералов. Кристаллизуется он в интервале 400—100° С из пневматолито-гидротермальных и гидротермальных высококонцентрированных щелочных растворов в условиях снижающейся щелочности.

Жильные флюоритоносные пегматиты связаны с массивами гранитов и щелочных сиенитов. Типичным их примером являются пегматиты Урала [Власов, Кутукова, 1960]. Флюорит в них встречается в виде гнезд размером 5—8 см, содержание не выше 0,2%, так что он представляет лишь минералогический интерес.

Камерные флюоритоносные пегматиты связаны пространственно и генетически с гранитоидами. Они известны в Казахстане, Восточной Сибири, на Урале, Украине [Самсонов, Савельев, 1980]. Пегматитовые тела с флюоритом имеют изометричную каравае-, трубо- и жилообразную форму. Они характеризуются многозональным строением (рис. 12). От периферии к центру выделяются зоны: аплитовидная → графическая → пегматоидная → кварцевое ядро → камера (погреб). Флюорит вместе с крупными и гигантскими кристаллами кварца покрывает стенки полостей (камер, погребов), которые локализуются в пегматоидной зоне под кварцевым ядром или сбоку от него.

Устанавливается несколько генераций флюорита. Ранний флюорит кристаллизовался в высокотемпературных условиях (около 460° С), поздние генерации — в интервале 350—150° С. Основную массу составляет поздний флюорит, встречающийся в виде крупных октаэдрических и кубооктаэдрических зональных кристаллов. Вес отдельных кристаллов может достигать 400—600 кг, встречаются сростки кристаллов до 2 т. Качество кристаллов высокое, особенно тех, которые формировались в диапазоне температур 240—150° С.

Примерами флюоритовых месторождений пегматитового подтипа являются месторождения Ермектау-Тарбагатайского флюоритоносного района в Казахстане [Самсонов, Савельев, 1980].

Подтип флюоритоносных карбонатитов включает существенно карбонатные породы, формировавшиеся в высокотемпературных условиях (поздняя магматическая и постмагматическая стадии) и обычно пространственно и генетически связанные с массивами ультраосновных пород, часто содержит комплексную минерализацию (минералы железа, меди, циркона, ниобия, редких земель, фосфора и др.), в состав которой входит и флюорит. Многие карбонатиты с особенно высоким содержанием флюорита являются его месторождениями. К ним относится месторождение Амба-Донгар в Индии с запасами более 10 млн. т флюоритовой руды, Окоразу в Намибии, карбонатиты Алданского щита, Восточного Саяна и др. Содержание флюорита 25—60%, оптических разностей нет, и, видимо, этот подтип значения для оптической промышленности не имеет.

Скарновый, альбититовый и грейзеновый подтипы довольно близки по условиям формирования, характерной особенностью которых является воздействие высококонцентрированных высокотемпературных растворов, богатых летучими компонентами, на различные породы, чаще гранитоиды. Флюоритовая минерализация не имеет самостоятельного значения, но месторождения разрабатываются как комплексные редкометалльно-флюоритовые. Среди них можно назвать Вознесенское месторождение на Дальнем Востоке (содержание флюорита 33—52%), Шабрезское в Средней Азии (35%), Хинганское в Сибири (7—8%) [Оценка..., 1972; Самсонов, Савельев, 1980].

Гидротермальный тип месторождений по условиям формирования, строению и типам руд наиболее разнообразен. Его удобнее охарактеризовать по главнейшим минеральным формациям.

Рис. 12. Схема зонального строения камерного флюоритоносного пегматита. По Я. П. Самсонову [Самсонов, Савельев, 1980]

1 — почвенный слой; 2 — крупнозернистый гранит; 3 — аплитовый гранит; 4 — пегматоидная зона; 5 — кварцевое ядро; 6 — кристаллы флюорита; 7 — кристаллы кварца; 8 — гнездовая глинка; 9 — трещины с флюоритом и кварцем; 10 — участки грейзенизации и альбитизации; 1—4 — гнезда-полости с кристаллами свободного роста

К флюоритовой формации относятся гидротермальные месторождения относительно простого состава, главным минералом которых является флюорит, сопровождаемый кварцем.

В ассоциации с флюоритом встречаются пирит, кальцит, барит. Рудные тела месторождений флюоритовой формации имеют жильную форму либо представлены сложными метасоматическими залежами в карбонатных породах. Содержание флюорита (30—60—70%) нельзя назвать очень высоким. Но он часто встречается в виде мономинеральных скоплений, иногда в виде монокристаллов, и его относительно легко можно отбирать. Кроме того, отделение флюорита от кварца при низком содержании других минералов не представляет особой трудности. Флюорит этих месторождений может быть интересен для оптической промышленности.

Месторождения флюоритовой формации известны во всех странах мира, особенно в Монголии, Франции, Великобритании, США, Канаде. В СССР наибольшее распространение они имеют в Забайкальской флюоритоносной провинции, Алтае-Саянской и Казахстанской провинциях. В качестве примеров назовем Солонечное, Брикачанское, Гарсонуйское месторождения в Читинской области, Покрово-Киреевское на Украине, Таскайнар в Казахстане [Самсонов, Савельев, 1980].

Руды полиметаллически-флюоритовой формации представлены флюоритом в ассоциации с сульфидами свинца, цинка, меди, железа (галенитом, сфалеритом, халькопиритом, пиритом), с кварцем, карбонатами, баритом и другими минералами. Различаются два морфологических типа месторождений — жильный и стратиформный. Жильный тип представлен отдельными жилами, штокверками, зонами брекчирования. Он развит в районах вулкано-купольных структур. Стратиформный тип представлен пластообразными залежами в карбонатных породах. Намечаются генетические связи месторождений с вулканогенными породами. В этом принципиальное отличие их от месторождений флюоритовой формации. Кроме того, полиметаллически-флюоритовые месторождения более высокотемпературные и, вероятно, более глубинные.

Месторождения полиметаллически-флюоритовой формации известны в США (район Иллинойс — Кентукки), Великобритании (Дербишир), Афганистане (Бохуд). В СССР они наиболее типичны для Среднеазиатской флюоритоносной провинции (Такобское, Наугарзанское, Агата-Чибаргатинское, Аурахматское, Бадамское, Дудесайское и другие месторождения), Западного Прибайкалья (Барвинское), Горного Алтая. Полиметаллически-флюоритовая формация представляет возможный источник флюорита для оптических кристаллов [Самсонов, Савельев, 1980].

Месторождения ртутно-сурьмяно-флюоритовой формации, залегающие в известняках на контакте со сланцами, очень сложные по строению, включают в качестве ведущих минералов киноварь, антимонит, реальгар, аурипигмент. Флюорит в них имеет подчиненное значение и только в некоторых месторождениях представляет промышленный интерес как один из компонентов комплексных руд. Содержание флюорита обычно в пределах 10—20%. Такие месторождения известны в Мексике (Луи-Потоси). В СССР месторождения этой формации известны в Средней Азии (Хайдарканское), на Дальнем Востоке (Бугучанское) и в Бурятии (Келянское) [Самсонов, Савельев, 1980].

Экзогенный тип флюоритовых месторождений объединяет довольно многочисленные флюоритопроявления различного строения и происхождения, среди которых наиболее интересен ратовкитовый подтип. Ратовкитом называют скрытокристаллический фиолетовый флюорит, образующий тонкую вкрапленность в каменноугольных известняках Русской платформы, особенно в Московской синеклизе. Вкрапленность флюорита очень убогая — от 1—2 до 30%, но распространен он очень широко. Считалось, что ратовкит образуется в донном осадке в процессе формирования карбонатных пород, т. е. является образованием, сингенетическим вмещающим породам. За счет позднейшего перераспределения первичного флюорита образуются эпигенетические зоны флюоритизации с содержанием флюорита 40—90%.

Если давать промышленную оценку различных генетических типов месторождений в целом, то первое место по общим запасам флюорита занимают различные комплексные флюоритсодержащие месторождения: редкометалльно-флюоритовые и редкоземельно-флюоритовые пневматолито-гидротермального типа и полиметаллически-флюоритовые гидротермального типа. Наиболее высокие содержания флюорита характерны для месторождений флюоритовой и флюорит-полиметаллической формаций. В этих месторождениях обычны крупные мономинеральные скопления флюорита. Встречаются нередко жеоды и крупные полости с октаэдрическими или кубическими кристаллами. Окраска флюорита разнообразная — фиолетовая, зеленая, желтая, реже коричневая. В кристаллах много двухфазовых газово-жидких включений, гомогенизирующихся в интервале температур 360—60° С; это, очевидно, интервал кристаллизации флюорита. Флюорит сравнительно чистый, содержит мало вредных примесей, особенно редкоземельных элементов. Руды крупнокристаллические, содержат, кроме кварца и карбонатов, мало других минералов и легко поддаются обогащению.

Таким образом, на основе изучения особенностей строения и формирования можно сделать заключение, что наиболее перспективными для обнаружения оптических монокристаллов, отвечающих требованиям оптической промышленности, являются гидротермальные месторождения флюоритовой и полиметаллически-флюоритовой формаций и пегматитовые месторождения. Именно они являлись до последнего времени, как мы увидим ниже, основными поставщиками оптического флюорита.

Месторождения оптических кристаллов

Когда оптической промышленности потребовались крупные прозрачные монокристаллы флюорита, не было еще подготовленных к планомерной добыче этого вида минерального сырья месторождений. Добыча кристаллов велась стихийно — они выбирались из случайно вскрытых гнезд и полостей или горняками, добывающими флюоритовое сырье для металлургии и химической промышленности, или коллекционерами минералов. Сейчас трудно даже приблизительно восстановить список месторождений, из которых извлекались кристаллы, но наиболее знаменитые из них, вошедшие в историю минералогии и оптической промышленности как замечательные кладовые оптического флюорита, широко известны.

В США таким месторождением является Кэйв-ин-Рок в штате Иллинойс [Pogue, 1922]. Месторождение относится к флюоритовой формации и представляет собой метасоматическую залежь в субгоризонтально залегающих известняках, местами брекчированных, перекрытых сверху песчаниками. В этой брекчированной породе, сцементированной флюоритом, встречаются жеоды и гнезда, стенки которых покрыты хорошо ограненными прозрачными флюоритовыми кристаллами, бесцветными или слабо окрашенными в золотистый или пурпурный цвет. Окраска обычно распределяется зонально. Форма кристаллов кубическая, иногда с небольшими октаэдрическими гранями; очень часто встречаются параллельные сростки. Месторождение является частью флюоритового пояса штата Иллинойс, включающего множество мелких месторождений с запасами в 20—30 кг оптического флюорита, которые вырабатывались еще в начале XX в. за один прием.

Крупные партии высококачественного оптического флюорита поступали из Аргентины, где они извлекались из многочисленных жил Сан-Рокъю, залегающих на контакте гранитов и гнейсов.

Значительное количество оптического флюорита исключительной чистоты добывалось на юге Африки из месторождений также флюоритовой формации.

Известны многочисленные месторождения оптического флюорита во Франции, из них можно назвать Тарш и Лозер на Центральном плато. Оба эти месторождения полиметаллически-флюоритовые, разрабатывались на свинец, но попутно добывались прозрачные кристаллы исполинских размеров — 50—60 см по ребру.

Флюорит для оптики добывался из некоторых месторождений Швейцарии, Италии (Тоскана), Англии (Девоншир, Дербишир, Корнуэлл), ГДР и ФРГ. Значительное количество оптического флюорита было добыто на месторождении Консберг в Норвегии, представляющем собой жильное барит-флюоритовое тело с кварцем, доломитом, серебросодержащими минералами. Бесцветные, зеленые и фиолетовые кристаллы имеют размер до 20 см по ребру; среди них выделяются великолепные двойники прорастания, для которых зафиксирован рекордный размер 13 см.

Оптический флюорит добывался во всех странах. Сейчас наиболее известными его производителями, поставляющими флюорит на мировой рынок, являются ЧССР, ГДР, ФРГ, Франция, Англия, США.

Оптический флюорит из России

О том, что в русских месторождениях встречаются крупные прозрачные кристаллы флюорита, было известно давно.

Н. И. Кокшаров [Kokscharow, 1866] в одном из выпусков своих знаменитых «Материалов минералогии России», относящемся к 1866 г., описал такие кристаллы из ряда уральских месторождений, в частности из Изумрудных Копей. В начале XX в. находили небольшие кристаллы флюорита и в месторождениях Забайкалья. На одном из правых притоков р. Тубы, в бассейне Енисея, было известно Ирбинское месторождение. Иногда его называют Свинцовым рудником: оно находится у подножия горы Свинцовой, рядом с месторождением железных руд. Здесь в зонах дробления, приуроченных к контакту известняков и вулканогенных пород — фельзитов, находили друзовые полости с крупными, до 5—6 см по ребру, кубическими кристаллами флюорита, бесцветными, водяно-прозрачными, несомненно оптического качества. Некоторые из них были слегка окрашены в красивый зеленовато-голубой цвет.

Флюорит русских месторождений привлекал внимание зарубежных оптиков, и они покупали его у коллекционеров и добытчиков. Известно [Соболевский и др., 1936], что поставлялось за границу несколько партий флюорита из забайкальских месторождений. К. Цейс закупил кусковый флюорит из Изумрудных Копей, и эти поставки представляли спайные выколки и монокристаллы размером 1—2 см. Однако связанная с незначительными зарубежными поставками добыча флюорита носила случайный характер.

История отечественного оптического флюорита началась с открытия и освоения Куликолонского месторождения в Средней Азии [Соболевский и др., 1936; Самсонов, Савельев, 1980].

Куликолонское месторождение

В 1928 г. мальчик-пастух Назар-Али из таджикского кишлака Яккахона нашел в урочище Куль-и-Колон россыпь прозрачных белых камней. Поразившийся их красотой и необычностью, он подобрал несколько камней и принес их своему отцу Ашуру Худайназарову. Тот тоже заинтересовался камнем и, заподозрив, что он может быть из числа драгоценных, обратился за советом к бухарским ювелирам. Ювелиры забраковали камень, признав его слишком мягким и хрупким. И может быть, надолго забылась бы эта случайная находка, если бы не жил в том же кишлаке Худояр Наурузов — охотник и собиратель необычных минералов и пород своего района. Он включил прозрачные камни Куль-и-Колона в свою коллекцию, а потом подарил несколько образцов одному из проезжавших через кишлак отрядов Таджикско-Памирской экспедиции. Так они попали в музей столицы Таджикистана — Душанбе.

Оптическая промышленность нашей страны в те годы развивалась стремительно и очень нуждалась в оптическом флюорите. Он завозился из-за рубежа, стоил дорого и флюоритовые детали монтировались только в самые ответственные приборы. Поэтому куликолонские экспонаты душанбинского музея не могли не привлечь внимания геологов. В 1933 г. один из отрядов Института прикладной минералогии (ныне Всесоюзного института минерального сырья) под руководством известного минералога В. И. Соболевского, входивший в состав Таджикско-Памирской экспедиции, разбил свой лагерь в урочище Куль-и-Колон, почти наполовину занятым озером того же названия. С помощью Ашура Худайназарова и его сына быстро была найдена флюоритовая осыпь, а затем и открыто коренное месторождение. На месторождении сразу же начались разведочные работы и одновременно добыча кристаллов оптического флюорита.

Как выяснилось в результате разведки и разработки, Куликолонское месторождение представляет собой серию флюоритоносных гнезд, или «погребов», связанных с зонами дробления и гидротермальной переработки карбонатных пород.

Район месторождения сложен известково-сланцевыми толщами позднесилурийского и раннедевонского возраста, смятыми в крупные складки, которые осложняются более мелкими складчатыми структурами II порядка, разрывшими нарушениями и зонами межформационного дробления и смещения. Месторождение находится на южном крыле Чимтаргинской синклинальной структуры. Оно включает пачку продуктивных известняков, зажатых между сланцами. В рельефе известняки выражены в виде скалы, которая имеет местное название «Скала флюоритовая». Скала острым гребнем возвышается на 170 м над озером и круто обрывается к нему. В отличие от других известняков вмещающей толщи продуктивные известняки доломитизированы, особенно сильно вблизи контакта со сланцами: содержание MgO в них изменяется в пределах 19,7—26,8%. Обычно же содержание MgO в известных районах не достигает и 1%. Очевидно, что доломитизация является следствием гидротермальной переработки известняков. Горизонт продуктивных известняков особенно сильно деформирован: в нем возникло большое число трещин разрыва и скола, зон дробления и брекчирования, по ним происходили перемещения блоков. Особенно значительные зоны дробления сформировались на контакте известняков с перекрывающими их сланцами, и эти сланцы сыграли очень важную роль в распределении гидротермальной минерализации: они экранировали движение минералообразующих растворов, поступающих по зонам дробления. К этой контактовой зоне продуктивных известняков и сланцев и приурочен оптический флюорит.

Флюоритовые зоны мощностью 0,5—15 м и протяженностью до 80—100 м представлены сильно измененными доломитизированными известняками и брекчиями, состоящими из обломков известняков, сцементированных молочно-белым роговиковым кварцем, массивным баритом, мелкокристаллическим фиолетовым флюоритом, доломитом, кальцитом. В цементе присутствуют сульфиды: пирит, галенит, сфалерит, халькопирит, тетраэдрит, реальгар, аурипигмент, киноварь.

В этой зоне находятся гнезда с оптическим флюоритом, имеющие чаще всего неправильную форму. Крупные гнезда-погреба приурочены к местам пересечения нескольких систем трещин, часто они двух- и трехкамерные. Удлиненные гнезда ориентированы или параллельно напластованию пород, или под углом к ним. Обычно гнезда соединяются друг с другом маломощными флюоритовыми прожилками. В распределении гнезд с оптическим флюоритом в пределах зон брекчий каких-либо строгих закономерностей не отмечено.

Рис. 13. Режим минералообразования (по данным Н. А. Смольянинова и Н. П. Ермакова)

Кристаллы оптического флюорита образуют друзы на стенках флюоритоносных гнезд. Кроме флюорита, в гнездах обычно встречаются кварц, в том числе в виде прозрачных кристаллов и друз (горный хрусталь), барит, кальцит, арагонит. Флюорит кристаллизуется позже основной массы кварца и барита, но раньше кальцита и арагонита. На заключительных этапах формирования гнезд кристаллизовался горный хрусталь третьей генерации, диккит, палыгорскит.

Формирование флюоритоносных зон и гнезд нередко прерывалось трещинообразованием и дроблением, связанными с периодами повышения тектонической активности, поэтому на месторождении часто встречаются обломки более ранних минеральных агрегатов, сцементированные или крустифицированные поздними минералами.

По данным минералогенетических реконструкций (рис. 13) [Ермаков, 1944], месторождение формировалось в интервале температур 90—200° С, наиболее обычные температуры кристаллизации оптического флюорита около 120° С (интервал 100—140° С). Барит более высокотемпературный — 140° С (интервал 120—195° С), кальцит относительно низкотемпературный — 100° С (интервал 90-110° С).

Флюорит на Куликолонском месторождении представлен двумя типами: зернисто-кристаллическим и монокристаллическим. В качестве оптического сырья использовался второй тип.

Зернисто-кристаллический флюорит встречается в виде тонкой вкрапленности в роговикоподобных кварце и брекчии (цвет темно-фиолетовый), в виде крупнокристаллических прожилков с размером зерен 0,5—1,5 см (полихромный), в виде крупных гнезд (ярко-зеленый и голубой, переходящий в молочно-белый). Окраска, как правило, распределяется неравномерно: наиболее ярко окрашенными являются центральные части зерен.

Главную ценность месторождения представляли оптические монокристаллы флюорита — бесцветные, водянопрозрачные, с относительно незначительными дефектами, Встречались кристаллы различных размеров — от очень мелких до очень крупных, но месторождение привлекало именно тем, что удельная доля весьма крупных кристаллов была довольно высока.

Среди добытых оптических кристаллов были настоящие гиганты. Один из таких гигантов весил более 24 кг и имел размер 276×258×184 см. Он был идеально прозрачен и совершенен. Часто встречались кристаллы весом от 2 до 10 кг с размерами по ребру 10—15 см. Параллельные сростки кристаллов, точнее, кристаллы сложной скелетоподобной формы достигали 30 см.

Резко преобладающей, габитусной, является кубическая форма кристаллов. Грани куба {100} характерны для всех без исключения кристаллов. Подавляющее большинство кристаллов оформлено только ими. Иногда вершины куба срезаются небольшими гранями тетрагонтриоктаэдра или октаэдра {111}, а ребра притупляются узкими полосками граней {110}.

Мелкие (до 1 см) кристаллы обычно изометричны, более крупные, как правило, несколько уплощены: соотношение их размеров по трем ребрам куба около 1:1:0,75. Изредка встречаются сильно уплощенные кристаллы и даже тонкотаблитчатые.

Обращенные в полость «передние» грани кристаллов гладкие, блестящие. На «тыловых» гранях обычно заметна штриховка, скелетные реберные наросты, ступеньки незавершенных слоев роста, «надпилы» и другие дефекты, связанные с неравномерным питанием. Иногда наблюдаются фигуры естественного травления, морфологически соответствующие действию кислых растворителей. Чаще же характер коррозии граней и наличие на них скрытокристаллических карбонатных корочек с высоким содержанием фторида кальция свидетельствуют о щелочном воздействии на кристаллы, вероятно, в результате проникновения в полости атмосферных и грунтовых вод.

Многие кристаллы зональны, причем резко выражены четыре зоны, разделенные скоплениями газовых включений, соответствующих трем перерывам в росте кристаллов. Наиболее совершенна и прозрачна внешняя зона.

Газово-жидкие включения обычно наблюдаются в приповерхностных частях кристаллов, поэтому они существенно не ухудшают качества кристаллов; внутри их нет или мало. Включения игольчатой и амебовидной формы фиксируют залеченные трещины.

Кристаллы оптического флюорита обычно образуют друзы на стенках гнезд, и при добыче они извлекались, как правило, в виде друз — крупных и очень эффектных (фото 7, см. вкл.). Наиболее крупные кристаллы находятся на кровле полостей. Некоторые извлеченные из флюоритовых погребов друзы имели размер 1×0,5 м при толщине около 20 см. На таких друзах насчитывалось до 100 крупных 10-сантиметровых кристаллов.

Все наиболее крупные минералогические музеи страны приобрели в 30-х годах великолепные друзы оптического флюорита из Куль-и-Колона.

На Куликолонском месторождении разборка гнезд велась, как правило, вручную, без зубил, молотков и кувалды, от ударов которых кристаллы могут раскрошиться. В качестве рычага использовали только лом, с помощью которого раскачивали глыбы. Потом глыбы осторожно снимали одну за другой, причем так, чтобы исключить скользящие движения. Спиливать кристаллы на месте тогда не могли, и всю глыбу с ценными кристаллами брали целиком.

Позднее при добыче кристаллов оптического флюорита стали применять для разрыхления породы взрывные работы. Оказалось, что если брать не очень бризантные взрывчатые вещества, то взрыв не сильно портит кристаллы. Разработку взорванной массы начинали только через несколько дней после взрыва, когда выровнятся влажность и температура разрыхленной породы и установится равновесие с атмосферой, иначе извлеченные кристаллы сразу же начинают растрескиваться. По этой же причине приходилось иногда и приостанавливать начатую разборку. Мыть кристаллы можно только в воде, температура которой почти не отличается от температуры кристалла. Резкий же перепад даже в 5° С разрушает природные кристаллы. Но в целом кристаллы флюорита выдерживали изменения температуры от —20 до +70° C и даже более значительные, если колебания происходили медленно.

Куски пустой породы от крупных глыб с флюоритовыми щетками и жеодами отбивались только в том случае, если видны были трещинки, которые можно расширить, не рискуя разбить друзу. Друзы очень тщательно упаковывались на месте и со всеми предосторожностями спускались в долину. Некоторые друзы достигали 200 кг, и спуск их с флюоритовой скалы был делом нелегким. Для этого были сделаны специальные носилки, в которые впрягали двух лошадей.

Недолгую жизнь месторождения предполагали его первые разведчики, потому и призывали к широким поискам флюорита. В книге В. И. Соболевского и др. [1936] была специальная глава «Пути дальнейших поисков оптического флюорита в СССР», в которой, кроме района Куль-и-Колона, назывался ряд других перспективных районов. Позднее во всех этих районах был найден оптический флюорит. И не только в них.

Основания для оптимистических прогнозов у геологов были. На территории Советского Союза известны все геологические типы флюоритовых месторождений, и можно было предполагать, что в них могут быть обнаружены оптические кристаллы [Флюорит, 1976, с. 12].

Как мы убедились, оптический флюорит дают два генетических типа флюоритовых месторождений — гидротермальные (флюоритовая и полиметаллически-флюоритовая формации) и пегматитовые.

Куликолонское месторождение — это месторождение флюоритовой формации. Познакомимся теперь с типичным пегматитовым месторождением. Месторождения этого типа были основными поставщиками оптического флюорита после того, как гидротермальные истощились почти полностью.

Оптический флюорит в камерных пегматитах

В качестве примера флюоритового месторождения в гранитных камерных пегматитах рассмотрим одно из месторождений Казахстана, описанное Б. Д. Эфросом [1960].

В районе месторождения известно большое количество крупных и мелких пегматитовых тел линзообразной, эллипсоидальной и неправильной формы, залегающих в сложном по строению гранитоидном плутоне, в его прикровлевой эндоконтактовой части. Месторождение оптического флюорита связано с одним из крупных зональных пегматитовых тел линзообразной формы, залегающих несколько наклонно и погружающихся на юго-запад.

Пегматитовое тело с оптическим флюоритом характеризуется отчетливым зональным строением с последовательной сменой от периферии к центру следующих зон: графической, полевошпатовой, блоковой, кварцевой. Характерная особенность тела — наличие занорышей, погребов, гнезд, которые располагаются преимущественно на контакте полевошпатовой зоны и кварцевого ядра, даже в полевошпатовой, графической и блоковой зонах. Они имеют линзообразную или неправильную форму и достигают довольно крупных размеров — до 1—1,5 м в поперечнике. Занорыши образуются в результате растворения и выщелачивания полевошпатовых материалов или имеют трещинную природу. Пегматиты около гнезд несут следы интенсивной гидротермальной переработки.

Стенки полостей покрыты кристаллами кварца, реже флюорита. Нередко встречаются крупные многоглавые блоки мориона размером до 1,5 м. Кристаллы флюорита, в том числе оптические, находятся в центральной части погреба, в трещинах кварцевого ядра. Они плотно прилегают друг к другу и сцементированы обохренной щебенкой полевого шпата.

Флюоритовые кристаллы изредка покрыты одной-двумя плоскими гранями, чаще же они имеют форму желваков и глыб с изъеденной ноздреватой поверхностью, но монокристаллические внутри. Размер желваков от 1—2 см до нескольких десятков сантиметров. Иногда встречаются плохо образованные кубические, октаэдрические, реже кубооктаэдрические кристаллы.

Кроме бесцветных водяно-прозрачных кристаллов, на месторождении встречаются кристаллы бледно-голубого и светло-фиолетового цвета, а также зеленовато-голубые, светло-синие, зеленые, бледно-желтые, розовые, светло-коричневые, бледно-сиреневые, фиолетово-черные. Окраска распределяется иногда равномерно, иногда пятнисто. Встречаются волокнистые дефекты, оттененные фиолетовой и синей окраской. Включения, приуроченные к трещинкам, совпадающие с направлениями спайности, обычно окружены фиолетовыми «двориками».

Месторождение давало довольно хороший оптический флюорит, хотя и уступавший по качеству уникальному куликолонскому.

Флюоритоносные пегматиты Кента

Кентское месторождение в Казахстане [Самсонов, Савельев, 1980] связано с массивом аляскитовых гранитов, в кровле которых, особенно под сланцевыми экранами, формировались пегматитовые тела, имеющие объем до нескольких тысяч кубических метров каждое. Под кварцевыми ядрами пегматитовых тел встречаются крупные полости — гнезда с кристаллами флюорита, кварца, с жильбертитом и каолинитом. Вокруг гнезд пегматиты ослюднены и флюоритизированы.

Кристаллы флюорита в полостях обычно имеют октаэдрический габитус. Это флюорит ранних генераций, кристаллизовавшийся в среднетемпературных условиях (350—200° С). Кристаллы позднего флюорита, низкотемпературного, октаэдрические. В целом флюорит кристаллизовался в широком интервале температур — от 450 до 80° С. Кристаллизация неоднократно прерывалась, сменялась частичным растворением кристаллов. Выделяются четыре главные генерации флюорита, которые иногда в виде зон наблюдаются в одном и том же кристалле.

Флюорит имеет преимущественно зеленый цвет. Реже встречаются фиолетовые и бесцветные разности. Окраска связана с присутствием примесей редкоземельных элементов, содержание которых резко изменяется не только от ранних к поздним кристаллам, обычно уменьшаясь, но и в пределах одного кристалла. Примеси снижают качество кристаллов. Впрочем, ухудшение показателей пропускания, обусловленное присутствием редких земель, — беда всех флюоритовых месторождений пегматитового типа.

Добыча и обработка оптических кристаллов. Изготовление деталей

Месторождения оптического флюорита или оптические флюоритовые моноблоки на месторождениях, разрабатываемых для других целей (на плавик, химическое сырье), имеют обычно небольшие размеры, поэтому добыча ведется без строгих технических систем. Любым подходящим способом — ручной выборкой или разборкой предварительно взорванной рудной массы — выбирают кристаллы и куски флюорита, отвечающие техническим требованиям. Относительно крупные тела, если они залегают у поверхности, вскрывают небольшими карьерами или траншеями с высотой уступа до 10—15 м, но обычно меньше. Глубокие тела вскрывают подземными горными выработками — штольнями, шахтами, уклонами. Применяют и комбинированные системы. Для прослеживания тел применяется колонковое бурение.

Особенностью разработки месторождений флюорита является то, что она идет почти сразу вслед за разведкой или одновременно с ней и ведется, как правило, горнодобывающими предприятиями и геологоразведочными партиями. Из вскрытых гнезд и погребов тут же выбирается все содержащееся в них кристаллосырье. Только для относительно крупных тел строго выдерживается обычная разведочная схема: детальная разведка → подсчет запасов → их утверждение → извлечение.

При вскрытии гнезд во избежание разрушения кристаллов используют слабобризантные взрывчатые вещества, да и то только там, где это необходимо. Разрыхленной массе дают отстояться до выравнивания ее температуры и влажности с температурой и влажностью воздуха. При разборке горной массы осуществляются и обогащение и сортировка флюорита в соответствии с техническими условиями. Кристаллы с дефектами сразу же бракуются или они идут в плавочное сырье. Кондиционные и условно годные кристаллы просматриваются в лабораториях и оцениваются по категориям качества. От неоднородных кристаллов и друз аккуратно скалываются или срезаются дефектные части.

Отсортированные природные кристаллы поставлялись потребителям — оптическим предприятиям и научно-исследовательским институтам. Из кристаллов изготовлялись оптические детали, которые требовались и которые позволяло изготовлять данное сырье. Однако природный флюоритовый материал накладывал множество неприятных для потребителя ограничений. Крупные кристаллы были исключительной редкостью, поэтому в основном из флюорита изготовлялась мелкогабаритная оптика или делались склеенные детали. Приходилось мириться с наличием дефектов, иногда даже крупных, с неоднородностью материала. Флюорит относительно хрупок, поэтому даже хорошие кристаллы раскалывались по спайности при неосторожной обработке или неправильном хранении. Так что не было в оптической промышленности другого природного сырья, более капризного, чем флюорит. Кроме того, это сырье было очень редким и дорогим, и в 20—30-х годах даже богатые американские фирмы использовали флюорит только для изготовления самых дорогих объективов-апохроматов, где без него обойтись практически невозможно. Особенно сложной была ситуация с крупными (больше 2—3 см) флюоритовыми изделиями. Даже такие известные фирмы, как «Хильгер» в Лондоне, были вынуждены изготавливать оптические приборы с деталями из флюорита, склеенными из отдельных кусочков и содержащими включения.

 

Поиски путей замены природного флюорита. Искусственные кристаллы

Флюоритовый «голод», с которым столкнулась оптическая промышленность уже в 30-х годах, заставил искать заменители оптического флюорита. Однако подходящих материалов найти не удавалось: они либо существенно уступали флюориту по оптическим показателям, а те, у которых оптические свойства были более или менее подходящими, имели другие дефекты (были нестойкими к воздействию растворителей, даже паров воды, обладали низкой прочностью и т. д.). Словом, в оптическую технику их вводить было нельзя. Оставалась единственная возможность — заменить природный оптический флюорит искусственным.

Нужно заметить, что проблема получения искусственных кристаллов была к тому времени уже не нова. Еще в середине XVIII в. были уже синтезированы многие минералы, а к концу XIX в. их число достигло нескольких сотен [Чирвинский, 1903—1906]. Был в списке синтезированных минералов и флюорит. Первый синтез флюорита относится, очевидно, к середине XIX в. Сенармонт в 1855 г. получил хорошо ограненные флюоритовые кристаллы с кубическими и октаэдрическими гранями путем перекристаллизации в запаянной стеклянной трубке геля CaF2 [Doelter, 1931]. Подобные же удачные эксперименты, но в среде с HCl, были проведены Беккуорелом. Затем он перешел к диффузионному методу и в условиях встречной диффузии NH4F и CaCl2 получил сравнительно крупные кубические и октаэдрические кристаллы. Шеерель и Дрехсель в 1824 г. осуществили первый синтез флюорита из расплава-раствора CaCl2, KCl и NaF. Кристаллики флюорита получали воздействием газообразной HF на известково-натровое стекло, обработкой разбавленной плавиковой кислотой кальцит-кварцевого песка (такие опыты проводил, например, в 1921 г. Ветцель), плавлением сиенита в атмосфере HF [Leeder, 1979]. В приложении к флюориту были испробованы все возможные методы и все они дали положительные результаты, если считать за таковые получение кристаллов флюорита, но кристаллы эти были настолько мелкими, что ни один из методов их получения нельзя было принять за основу в разработке промышленных технологий. Нужны были специальные исследования, и они проводились во всех странах.

Флюорит, как известно, образуется различными способами — из холодных и горячих растворов, расплавов, газовой фазы и т. д. На основе теоретических представлений любой механизм флюоритообразования, если он работает в строго определенных условиях, может привести к формированию крупных совершенных кристаллов. Но на практике теоретические прогнозы оправдываются не сразу и далеко не всегда, главным образом потому, что трудно сразу определить эти оптимальные условия. Наиболее перспективными считались диффузные, гидротермальные и расплавные методы, и в этих трех направлениях были сосредоточены технологические поиски.

Метод встречной диффузии

Флюорит может выпадать в кристаллический осадок в обычных условиях (при атмосферном давлении и комнатной температуре) в результате многих реакций, например

CaSO4 + 2KF = ↓CaF2 + K2SO4;

2NH4F + CaCl2 = ↓CaF2 + 2NH4Cl.

Рис. 14. Кристаллизаторы для выращивания кристаллов флюорита методом встречной диффузии реагентов

1 — раствор CaSO4; 2 — раствор KF; 3 — жидкое стекло, раствор агар-агара или желатины; 4 — кристаллики флюорита

Эти и подобные им реакции протекают очень быстро, поэтому осадок получается мелкокристаллическим, отдельные кристаллы можно рассмотреть лишь под микроскопом. На основе именно таких химических процессов необходимо найти метод получения крупных монокристаллов: он был бы самым дешевым, экономичным, не требовал энергетических затрат и сложного оборудования. Очевидно, что такого результата можно добиться, если резко снизить скорость реакции и направить весь образующийся материал на встраивание в один кристалл или небольшое число кристаллов.

Скорость реакции можно замедлить, если замедлить поступление реагирующих компонентов в зону реакции, уменьшить скорость диффузии. Лучший способ уменьшения скорости диффузии — использование вязких сред.

Выращивание кристаллов осуществляется следующим образом. В качестве кристаллизатора используется U-образная трубка или любая система типа сообщающихся сосудов, например маленький химический стакан в большом стакане или плоская чашка с емкостями для реагентов (рис. 14). В нижнюю часть трубки заливается вязкая жидкость, например жидкое стекло, агар-агар, желатина и т. п. После застывания жидкости в желеобразную массу в каждое колено заливают растворитель (воду) и засыпают разные реагирующие вещества. Эти вещества начинают диффундировать навстречу друг другу, и, когда диффузионные фронты соединятся, начинается кристаллизация флюорита. Было бы полезным применять затравочные кристаллики, но трудно предвидеть точное положение зоны реакции, куда их надо поместить, поэтому синтез чаще проводился без затравочных кристаллов: возникшие зародыши растут самопроизвольно.

Методом встречной диффузии получены кристаллы флюорита размером до 10 мм, причем растут они очень медленно, месяцами, поэтому этот метод пока не находит промышленного применения. Однако он достаточно перспективен, чтобы продолжать поиски в этом направлении. Для некоторых веществ уже удалось получить кристаллы величиной в несколько сантиметров.

Гидротермальный метод

Наиболее совершенные природные кристаллы оптического флюорита образуются, как было показано выше, в гидротермальных условиях. Гидротермальным же способом удалось наладить получение в промышленных масштабах оптических кристаллов других минералов, в частности кварца, которые по качеству не уступают природным.

Выращивание кристаллов гидротермальным методом производят в специальных реакторах — автоклавах (рис. 15), способных длительное время выдерживать агрессивные среды, высокие температуры и давления. Обычно автоклав имеет вид толстостенных цилиндрических сосудов, выполненных из специальных жаропрочных сортов сталей или титана. В автоклав вставляется точно подогнанный по диаметру тонкостенный вкладыш из химически стойкого материала — платиновой, серебряной или золотой фольги, фторопласта. В процессе экспериментов этот вкладыш плотно приваривается к стенкам автоклава. Сверху автоклав закрывается массивной крышкой с уплотнительными кольцами, которая затягивается по резьбе или болтами, обеспечивая абсолютную герметичность.

Процесс выращивания осуществляется следующим образом. На дно автоклава засыпается шихта — зернистая крупка того минерала, кристаллы которого мы намерены получить; в интересующем нас случае это должен быть дробленый флюорит. В верхней части на платиновой или нихромовой проволочке подвешивается кристаллик флюорита или пластинка, вырезанная из кристаллика, или несколько таких пластинок. Это затравки для выращиваемых кристаллов. Автоклав заполняется подходящим растворителем, например водными растворами HCl, LiCl или NH4Cl и т. п., причем не полностью, а таким образом, чтобы обеспечить при нагревании до определенной температуры требуемое давление внутри автоклава. Требуемая степень заполнения рассчитывается по диаграмме состояния раствора. Если автоклав заполнен водой, например, на 80%, то при нагревании до 245° C произойдет полное заполнение объема, а при 300° C давление достигнет уже 2000 кГ/см2. Подбирая коэффициент заполнения, мы можем добиться любого сочетания РТ-параметров.

Рис. 15. Схема автоклава для выращивания кристаллов гидротермальным методом

1 — затравки для выращиваемых кристаллов; 2 — диафрагма; 3 — шихта (дробленый флюорит)

Рис. 16. Изменения количества (n), размера (r) и формы кристаллов флюорита по высоте автоклава (гидротермальное выращивание без затравки)

Затем автоклав помещается в цилиндрическую печь, особенности теплового поля внутри которой позволяют нагревать нижнюю часть автоклава, ту, где находится шихта, несколько сильнее, чем верхнюю. По оси автоклава создается, таким образом, термический градиент, обычно в 15—20° С, вызывающий конвекцию и создающий непрерывную циркуляцию раствора в автоклаве. Шихта в нижней части автоклава, находящаяся в наиболее высокотемпературных условиях, растворяется; растворенное вещество конвекционным потоком переносится вверх, в более холодную зону, где находятся затравки. Поскольку растворимость CaF2 в большинстве растворов возрастает с повышением температуры, то при движении снизу вверх раствор от недонасыщенного переходит в насыщенный, а затем и в пересыщенный: происходит кристаллизация флюорита, и затравочные кристаллы начинают расти. Раствор сбрасывает избыток растворенного вещества и в нисходящем потоке опускается вниз, где снова насыщается, растворяя шихту. Так в результате непрерывной циркуляции осуществляется непрерывный подток вещества к затравкам и непрерывный рост кристаллов.

Таблица 2. Результаты экспериментов по выращиванию кристаллов флюорита гидротермальным способом

Исследователь и время проведения экспериментов или время публикации результатов Раствор и концентрация, % t, °С(Δt, °С) P, кГ/см 2 (степень заполнения автоклава, %) Прочие условия экспериментов Результаты экспериментов
И. Н. Аникин, В. П. Будузов, А. Д. Шушканов [1965], И. Н. Аникин, А. Д. Шушканов [1963] LiCl 45—50 450—480 (10—15) 200 Pt-футеровка: затравки — пластины и шары Небольшие кристаллы вырастали за 2,5 часа
Дж. Либертц [Liebertz, 1965] NH 4 Cl 4н 400—450 2000—2800 Au-ампула Октаэдрические кристаллы до 1,5 мм
А. Э. Гликин, Т. Г. Петров [1966] LiCl 44 400—500     Кристаллы до 0,5 мм
NaCl 30 ~50
Д. Рикл, Я. Бауэр [Rykl, Bauer, 1972] NH 4 Cl 3-8 300-500 (20—40) 400—1000 Ag-футеровка Кристаллы разной формы, размером 0,04—1,2 мм
Оптимальные условия NH 4 Cl 3-5 350 400
А. Ф. Куин, 1972—1975 гг. [Кунц, 1974, 1976] NaCl 2н 300—360 100—400 Фторопластовые вкладыши, ΔТ = 10—20° С; без затравок и на затравку, продолжительность 161—340 ч Без затравки получены кристаллы до 2 мм, в агрегатах — до 5 мм, на затравку нарощен слой до 2,5 мм
HCl 4,3 200—500 50—1000
LiCl 44 250 100
NH 4 Cl 27 500 1000
NaHCO 3 10 300 100
Б. Зидарова [1978] NH 4 Cl 5—10 130—500 (8—41) 400—1200 Cu- и Ti-вкладыши; шихта — природный флюорит и реактивный CaF 2 ; Кристаллы разной формы, размером 0,1—3 мм в опытах с NH 4 Cl, 0,1—8 мм в опытах с LiCl.
LiCl 20—44,6 130—500 (8—41) 400—1200
Na 2 CO 3 6—8 130—450 (25—30) 200—1200 продолжительность 144—312 ч С Na 2 CO 3 кристаллы не получаются. На затравке нарастание незначительное

Автоклавы могут быть и более сложными. Иногда в них вводится диафрагма, отделяющая зону шихты от зоны роста, шихта может помещаться в специальные корзинки, в автоклавы вводятся контрольно-измерительные элементы (термопары, манометры, приспособления для отбора проб раствора и т. п.). Создаются целые системы автоклавов. Автоклавы, внутри которых развиваются очень высокие давления, во избежание взрыва помещают в стальные или бетонные сейфы. Контроль параметров и управление процессами ведутся автоматически.

В разных странах предпринимались многочисленные попытки получить кристаллы флюорита гидротермальным способом. Результаты некоторых экспериментов приведены в табл. 2. Как видно из таблицы, эксперименты проводились в самых различных условиях. Кристаллизационные среды выбирались самые оптимальные, температуры варьировали от 100 до 500° С, давления — от 50 до 2800 кГ/см2, продолжительность экспериментов достигала нескольких месяцев. Однако кристаллические затравки увеличивались очень незначительно, а самопроизвольно зарождавшиеся кристаллы, хотя и весьма совершенные, достигали всего лишь 1—3 мм в поперечнике (фото 8, см. вкл.). Видимо, кристаллы вырастают в течение нескольких часов до этой предельной величины и дальше не растут или растут очень медленно. Только Б. Зидаровой из Болгарии удалось получить за 12,5 сут кристаллы до 6—8 мм по ребру куба в экспериментах с 44,6%-ным LiCl при очень высоких температуре (500° С) и давлении (1100 кГ/мм2).

Затравка почему-то «не хочет» расти, как это хотелось бы нам, т. е. чтобы все вещество шло на затравку. В зоне роста на крышке и стенках автоклава образуется множество паразитических кристалликов. На рис. 16, по данным А. Ф. Кунца, показана картина распределения кристаллов и изменения их размеров и формы в автоклаве без затравки (условия: LiCl; t=360° С; Δt = 10—20° С). Видно, что и количество и размеры кристалликов больше всего в зоне высокого пересыщения; здесь же усложняется и топография кристаллов. При еще более высоких пересыщениях отдельные кристаллы соединяются в агрегаты, образуются сплошные кристаллические корки (фото 9, см. вкл.).

Если взять большое количество шихты, более 20% от объема автоклава, то в результате возникновения локальных пересыщений будет происходить перекристаллизация шихты. В нижней части автоклава на его стенках и в пустотах образуются друзы кристаллов флюорита, причем размер отдельных кристаллов крупнее, чем в верхней части автоклава.

В результате экспериментов по гидротермальному выращиванию кристаллов флюорита получены очень интересные данные по зависимости формы кристаллов от условий кристаллосинтеза: химизма среды, термодинамических параметров. В растворах NH4Cl и LiCl, например, с увеличением пересыщения, т. е. с увеличением термического градиента, габитус кристаллов от октаэдрического постепенно переходит в кубический, при этом увеличиваются и размеры кристаллов. На основе экспериментальных данных для каждого типа растворов установлены поля устойчивости кубических, кубооктаэдрических и октаэдрических кристаллов в РТ-координатах [Кунц, 1976]. Установлены зависимости физических свойств кристаллов от условий кристаллосинтеза.

Таким образом, гидротермальным методом пока не удается получать оптические кристаллы флюорита и даже не удается определить наиболее обещающий путь дальнейших поисков. Однако результаты проведенных экспериментов оказались полезными для геологов и минералогов как инструмент для расшифровки условий образования природных флюоритовых месторождений по особенностям флюоритовых кристаллов. Кроме того, они «закрестили» бесперспективные, тупиковые пути, заставили искать новые.

Технологические аспекты эффективного способа гидротермального выращивания кристаллов флюорита продолжаются.

Кристаллизация из расплавов

Если кристаллы оптического флюорита не получаются относительно дешевыми диффузионными и гидротермальными методами, то можно остановиться на одном из хорошо разработанных расплавных методов. Казалось бы, что проще: расплавить природный флюорит и закристаллизовать его в монокристалл путем медленного охлаждения. Однако температура плавления высока — около 1420° С.

Попытки получения кристаллов оптического флюорита из расплава также долгое время оставались безуспешными. Причиной неудач была исключительно высокая химическая активность фтора. Расплавленный флюорит жадно «хватает» из воздуха кислород, в нем интенсивно развивается гидролиз

CaF2 + H2O → 2HF↑.

Образующаяся в результате гидролиза CaO не изоморфна с CaF2 и не может закономерно встроиться в кристаллическую решетку флюорита. Она кристаллизуется в виде самостоятельной тонкодисперсной фазы, насыщающей флюоритовые кристаллы. Показатель преломления примесной фазы более высокий, чем флюоритовой матрицы, поэтому в кристаллах флюорита возникает множество центров светорассеяния. Кристаллы получаются непрозрачные, молочно-белые, фарфоровидные, в лучшем случае мутные опалесцирующие, а чаще всего вместо кристаллов образуются агрегаты. И ни один из методов (были опробованы все методы, известные сейчас как методы Чохральского, Тамманна, Наккена, Киропулоса, Обреимова—Шубникова, Бриджмена, Штебера, Вернеля и др.) в их классическом варианте не мог преодолеть этот барьер.

И здесь нужны были специальные поиски.

Метод Шамовского—Стокбаргера—Степанова. Главный успех в разработке промышленного способа получения оптических монокристаллов флюорита в отечественной и зарубежной литературе связывают с именем Д. Стокбаргера, и ведущий метод носит название метода Стокбаргера.

Д. Стокбаргер в США сделал первый шаг в расплавном выращивании флюорита еще в 1927 г., но этот шаг был неудачным из-за гидролиза, о котором мы говорили выше. Не дали положительных результатов и другие исследования, проведенные в 20-х годах в США в Гарвардском университете и в Массачусетском технологическом институте, а также в 30-х годах в Институте галургии в Ленинграде.

В это же время подобные исследования во Всесоюзном институте минерального сырья (ВИМС) начал Л. М. Шамовский. Ему, пожалуй, первому удалось понять причину предыдущих неудач, заключавшуюся в гидролитическом образовании посторонней фазы CaO, и он предложил для преодоления этого препятствия использовать вакуумную технику. В 1937 г. он получил первые оптические кристаллы [Юргенсон, 1980]. Позднее со своими учениками Л. М. Шамовский ввел в технологию еще одно важное усовершенствование: он применил для удаления окиси кальция и раскисления расплава фторид кадмия [Шамовский и др., 1970].

Независимо от Л. М. Шамовского, но значительно позднее причину дефектности кристаллов флюорита, выращиваемых в воздушной атмосфере, выявил и Д. Стокбаргер [Stockbarger, 1949]. Чтобы исключить взаимодействие расплава CaF2 с воздушной средой, он разработал свой метод выращивания на основе метода Бриджмена [Bridgman, 1925], который является разновидностью метода Обреимова—Шубникова, предложенного еще в 1924 г.

Общим во всех этих методах является то, что материал, из которого выращиваются кристаллы, помещают в контейнер. Контейнер вводится в печь с термическим градиентом. В высокотемпературной части печи содержимое контейнера расплавляется, затем контейнер переводится из высокотемпературной части печи в низкотемпературную, и в тот момент, когда он проходит через изотерму плавления, в нем начинается кристаллизация. Из зародившихся на дне контейнера кристаллов в результате геометрического отбора выживает тот, который наиболее благоприятно ориентирован, т. е. направлением наибыстрейшего роста параллельно оси контейнера. Для ускорения геометрического отбора дно контейнера делается остроконическим, с пережимом, гасящим все паразитические кристаллы (рис. 17). Форма полученных кристаллов определяется формой контейнера.

Рис. 17. Схема аппарата для выращивания монокристаллов по методу Обреимова — Шубникова (а) и формы контейнеров (б)

1 — контейнер; 2 — печь; 3 — медный цилиндр; 4 — опора; 5 — сопло; 6 — электрообмотка; 7 — теплоизоляция

В методе Обреимова—Шубникова контейнерами являются запаянные пробирки, из которых откачивается воздух и создается вакуум 1∙10-2 мм рт. ст. Они помещаются в цилиндрическую печь и закрепляются на держателе. Суженный конец пробирки охлаждается поступаемой через сопло холодной струей воздуха, и в нем возникает кристаллический зародыш, который затем разрастается в монокристалл, заполняя всю пробирку.

В методе Бриджмена контейнером является тигель, который перемещается в градиентной печи с помощью пружинного механизма или электромотора со скоростью, несколько меньшей скорости роста кристалла. Вместо тигля может перемещаться печь, а тигель оставаться неподвижным.

Д. Стокбаргер получил первые кристаллы флюорита, прозрачные в видимой области спектра, методом Бриджмена, используя в качестве контейнера запаянную вакуумированную ампулу с флюоритовой шихтой. Затем он несколько изменил этот метод.

Метод Стокбаргера, которым в основном выращиваются кристаллы флюорита, отличается от метода Бриджмена тем, что градиент между высокотемпературной и низкотемпературной зонами более крутой. Он достигается тем, что нагревательная печь делается из двух секций, разделенных тонкой металлической перегородкой — диафрагмой с отверстием для прохождения контейнера. Температура t1 в верхней части печи выше точки плавления вещества, t2 — несколько ниже. Нижним концом контейнер опирается на охлаждаемый металлический стержень, по которому отводится тепло. Установка должна быть вакуумируемой, т. е. в печи должен создаваться вакуум около 10-4 мм рт. ст. Выращивание может вестись в атмосфере H2F2. В качестве контейнеров обычно используются графитовые тигли или тигельные блоки достаточно больших размеров, но с относительно тонкими стенками.

Исходным материалом у Д. Стокбаргера был природный флюорит. К нему добавлялось около 2% фторида свинца, чтобы вывести продукты гидролиза, так как образующаяся по схеме CaO+PbF2 → CaF2+PbO окись свинца легко испаряется в процессе плавления. Л. М. Шамовский, как мы помним, для этой цели применял фторид кадмия.

Дальнейшее развитие метод Шамовского—Стокбаргера получил в работах И. В. Степанова и П. П. Феофилова, которыми и были по сути заложены основы промышленной техники и технологии промышленного выращивания кристаллов флюорита для оптического приборостроения.

И. В. Степановым совместно с М. А. Васильевой была сконструирована довольно эффективная высокотемпературная вакуумная установка для выращивания кристаллов флюорита, в которую входят высокотемпературная печь, системы электропитания, терморегулирования, охлаждения, вакуумная система [Степанов, Феофилов, 1957].

Вакуумная печь состоит из вакуумной камеры, нагревателя и защитных отражающих экранов. Верхняя «горячая» камера печи отделена от нижней «холодной» камеры диафрагмой. Вакуумная камера ограничена водоохлаждаемым колпаком и плитой, герметически соединенных между собой. Отражательные экраны предназначены для концентрации тепла в рабочем пространстве печи и предохранения колпака от нагрева. Тигель из тонкой молибденовой жести устанавливается в печь на подвижную подставку с водоохлаждаемым штоком — строго концентрично относительно нагревателя. Вертикальное поступательное движение штока обеспечивается электромеханической системой. Управление тепловым режимом печи осуществляется программными терморегуляторами, работающими в комплексе с термопарами. Вакуум в установке создается системой форвакуумных и высоковакуумных диффузионных насосов.

Фото 1. Винтовая дислокация в кристалле флюорита, декорированная CaO. По Р. Хейману [1979]

Фото 2. Блочность природного (а) и искусственного (б) кристалла флюорита

Фото 3. Скелетный кристалл флюорита

Фото 4. Двойник флюорита по (111)

Фото 5. Фигуры травления на грани (111) кристалла флюорита, протравленной в H3PO4 (85%) при 140° С в течение 20 мин. По Р. Хейману [1979]

слева — в нормальном свете; справа — интерференционная картина

Фото 6. Газово-жидкие включения во флюорите

Фото. 7. Друза кристаллов флюорита из Куль-и-Колона

Фото 8. Кристаллы флюорита, полученные гидротермальным методом. Увел. 10

Фото 9. Друза кристаллов флюорита, выращенных гидротермальным методом. Увел. 10

Фото 10. Крупные полости (пузыри) в искусственном кристалле флюорита, выращенном в форме пластинки. Нат. вел.

Фото 11. Монокристаллы флюорита в виде блоков-булей. Производство Народного предприятия «Карл Цейс Йена» в ГДР

Фото 12. Зоны деформаций и монокристальные участки в природном флюорите

Фото 13. Неравномерное распределение радиационной окраски в облученном пластинчатом кристалле флюорита, отражающее неоднородность теплового поля в процессе выращивания

Фото 14. Кристаллы флюорита, выращенные в виде заготовок деталей заданной формы и размеров

Фото 15. Оптические детали, изготовленные из заготовок заданной формы

Фото 16. Оптическая деталь, изготовленная из крупногабаритного кристалла искусственного флюорита

Фото 17. Нитевидный кристалл флюорита [Desai, John, 1978]

Фото 18. Оптические детали из флюоритовой керамики (слева) и монокристалла (справа)

Фото 19. Интерферограммы изделий из флюоритовой оптической керамики (справа) и монокристалла (слева). Образцы равной толщины

Фото 20. Флюоритовые окна, смонтированные на стандартных вакуумных фланцах (производство фирмы «Харшау», США)

Главное отличие установки И. В. Степанова от установки Д. Стокбаргера заключается в том, что в первой исключен нагрев нижней части печи, но зато в верхней, кроме бокового нагревателя, введен кольцевой нагреватель диафрагмы, благодаря чему увеличивается температурный градиент в зоне роста кристалла и регулируется форма изотерм кристаллизации. Установка позволяет устойчиво поддерживать температуру в пределах 800—1500° С при вакууме порядка 2—5∙10-4 мм рт. ст. Это было достигнуто благодаря выполнению ряда условий: 1) предельному уменьшению вакуумного объема за счет выноса за его пределы всех вспомогательных деталей, особенно тех. которые имеют полузакрытые полости, затрудняющие откачку газов; 2) удалению из вакуумного пространства материалов с затрудненной газоотдачей (керамики, слюды, волокнистых и порошковых термоизоляционных материалов); 3) использованию термостойких и одновременно фтороустойчивых материалов (химическая активность паров фтористых соединений при высоких температурах очень велика); 4) обеспечению перемещения тигля в вакууме без нарушения герметичности рабочей зоны.

Технология получения кристаллов по И. В. Степанову и П. П. Феофилову мало отличалась от стокбаргеровской технологии. Исходной шихтой также служил очищенный природный плавиковый шпат, так как реактивный CaF2 даже самых «чистых» марок давал вместо кристаллов фарфоровидные агрегаты. Но если реактив перекристаллизовать и получить более крупные зерна, то можно и его использовать как шихту. Для вывода кислорода также вводится фтористый свинец в количестве 0,25 вес. %.

Смесь флюоритовой шихты с PbF2 загружается в цилиндрический с коническим концом тигель, который устанавливается на подставке в верхней камере печи на 20—25 мм выше диафрагмы. Затем установка герметизируется и вакуумируется до рабочего давления в нагретой камере порядка 10-3 мм рт. ст. Материал в тигле расплавляется. При достижении температуры плавления тигель с расплавом из верхней «горячей» камеры печи опускается со скоростью около 10 мм/ч в нижнюю «холодную» камеру. При понижении температуры происходит образование зародыша и рост монокристалла. Выращенные монокристаллы медленно охлаждаются в верхней части печи. Затем кристаллы извлекаются из тигля легкими ударами по его дну.

Выращенные кристаллы обычно имеют большие внутренние напряжения, снятие которых производится отжигом. Кристалл выдерживается в специальной безградиентной печи при температуре около 1000—1100° С несколько часов и затем медленно со скоростью около 20 град/ч охлаждается до комнатной температуры.

Способом И. В. Степанова и П. П. Феофилова были получены монокристаллы фтористого кальция в виде цилиндрических буль диаметром 40 (вес 200 г) и 60 мм (вес 800 г), пригодные для изготовления деталей к оптическим приборам. Выращенные кристаллы обладали более высокой, по сравнению с природными, термической устойчивостью.

В дальнейшем метод Шамовского—Стокбаргера—Степанова несколько изменялся и совершенствовался, но в основе любых модификаций обязательно реализовались следующие главные условия: 1) создание глубокого вакуума (не менее 4—5∙10-4 мм рт. ст.) для исключения пирогидролиза фторида кальция и сохранения внутренней оснастки ростовой печи в ходе высокотемпературного кристаллизационного процесса; 2) использование специально отобранного и очищенного по определенной методике природного флюорита с добавлением в него специальных «раскислителей» — PbF2 или CdF2 (для удаления следов кислородсодержащих примесей); 3) обеспечение требуемых температурных градиентов в зоне роста кристаллов путем введения разделительной диафрагмы, использованием активно охлаждаемого штока и др., создание условий эффективного отбора скрытой теплоты кристаллизации, выделяемой в процессе выращивания кристаллов.

Метод Шамовского—Стокбаргера—Степанова стал главным и наиболее эффективным методом получения оптических монокристаллов флюорита. Он стал основой для разработки промышленных технологий во всех странах [Финкельштейн, 1966; Duyk, 1971; Leeder, 1979].

Метод Наккена—Киропулоса. Те технологические «находки», на основе которых развился метод Шамовского—Стокбаргера—Степанова, позволили получать оптические кристаллы флюорита и другими расплавными методами, например методом Наккена—Киропулоса.

Смысл этого метода заключается в том, что в тигель с расплавом, находящийся в печи, опускается кристаллодержатель с затравкой, который одновременно является холодильником, по которому осуществляется отвод тепла потоком воздуха или воды. Расплав все время поддерживается в состоянии несколько выше точки плавления данного вещества. Рост кристалла определяется особенностями теплообмена между кристаллоносцем, затравкой и расплавом. В таких условиях изотермы в расплаве располагаются концентрически вокруг относительно холодной затравки. Затравка медленно вращается и очень медленно, со скоростью несколько миллиметров в час, поднимается. Скорость роста определяется интенсивностью охлаждения затравки. Из-за особенностей теплоотвода растущий кристалл из полиэдрического постепенно превращается в полусферический. Диаметр затравки должен составлять около 1/4 диаметра выращиваемого кристалла.

Выращивание кристаллов флюорита должно обязательно проводиться в герметизированной аппаратуре в инертной атмосфере или в вакууме. Вместо вытягивания кристалла осуществляется медленное опускание вращающегося тигля с расплавом. Хороших результатов по выращиванию кристаллов флюорита этим методом добились, например, К. Рао и А. Смакула.

В условиях вакуума, используя для уменьшения потерь на испарение давление аргона в 250 мм рт. ст. и добавляя в шихту около 2% PbF2, они получили совершенные флюоритовые були диаметром 20 мм и длиной 40 мм.

Метод зонной плавки. Этот метод для получения монокристаллов флюорита, легированных редкоземельными элементами, применил Г. Гуггенхейм [Вильке, 1977]. Он проводил зонную плавку флюорита в защитной фтористоводородной атмосфере в графитовой лодочке, проходящей через нагреватель со скоростью 2,5—30 см/ч. Были выращены кристаллы оптического качества размером 2,5×2,5×2,5 см.

Метод Чохральского. Кристаллы оптического флюорита теперь можно получать и методом Чохральского, который если и не так удобен, как метод Стокбаргера, но широко распространен и освоен многими лабораториями. Этот метод близок к методу Наккена—Киропулоса. Так же из расплава вытягивается затравка, но кристаллизация происходит не в самом расплаве, а в мениске расплава под затравкой, несколько возвышающемся над его уровнем. Одновременно с вытягиванием из расплава растущий монокристалл вращается вокруг вертикальной оси; в результате получаются симметричные цилиндрические кристаллы, довольно совершенные и очищенные от примесей. Очистка от примесей в процессе роста кристалла — это очень важное преимущество метода Чохральского.

Аппаратура для выращивания кристаллов методом Чохральского очень разнообразна. Для получения кристаллов оптического флюорита необходима вакуумная аппаратура. Флюоритовый расплав удерживается в молибденовых, платиновых, иридиевых или графитовых тиглях под защитой аргона или азота. Нагревание высокочастотное. Вытягивание затравки осуществляется со скоростью 1,2—15 см/ч, вращение затравки — 14—60 об/мин, вращение тигля — до 20 об/мин. Кристаллы получаются длиной 25—100 мм и диаметром 3—12 мм.

Обеспечение качества искусственных кристаллов оптического флюорита

Первые искусственные кристаллы оптического флюорита были лучше природных, пожалуй, только прочностными характеристиками. Они обладали несколько большей твердостью, меньшей хрупкостью, не растрескивались и не распадались на мелкие осколки при 300—350° С, как природные, стойко выдерживали нагрев до температуры плавления флюорита.

Но по оптическим свойствам, т. е. по тем, которые и определяют уникальность флюорита как оптического материала, искусственные кристаллы значительно уступали природным. Они характеризовались более узким волновым диапазоном пропускания в УФ-области и даже в видимой части спектра имели полосы поглощения, выражающиеся в густой красно-фиолетовой окраске. Кристаллы, как правило, сильно люминесцировали. Неприятные следствия порождали пузырность, блочность кристаллов, остаточные напряжения и другие дефекты. Надо было найти способы устранения этих дефектов.

Спектральное пропускание. Область спектрального пропускания первых искусственных кристаллов была уже, чем природных, интенсивность пропускания во всем спектральном диапазоне значительно ниже. В УФ-области кристаллы были совершенно непрозрачны и непригодны для ультрафиолетовой техники, да и видимая область характеризовалась наличием нескольких полос поглощения. Только в ИК-области качество искусственных кристаллов было достаточно хорошим. И еще одно неприятное обстоятельство: кристаллы отличались удивительно сильной фотохимической чувствительностью, они легко окрашивались под действием ультрафиолетового, рентгеновского и γ-облучения.

И. В. Степанов и П. П. Феофилов в результате проведенных ими исследований пришли к выводу, что эти нежелательные особенности искусственных кристаллов не связаны с вхождением примесей, а обусловлены структурными дефектами, возникающими в процессе роста и вызванными нарушением стехиометрического соотношения кристаллообразующих атомов в условиях высоких температур, вакуума и больших скоростей роста кристаллов. Это дефекты типа F2-центров, представляющих собой спаренные электроны, локализованные в соседних вакантных анионных узлах решетки. И. В. Степанов и П. П. Феофилов предложили оригинальный способ «нейтрализации» этих дефектов путем введения в расплав добавок посторонних веществ, которые могли бы служить акцепторами электронов. В природном флюорите эту роль играют трехвалентные ионы редкоземельных элементов, замещающие двухвалентные ионы кальция. Их попытались ввести и в искусственные кристаллы. Были выращены бесцветные кристаллы CaF2 с добавками малых количеств фторидов редкоземельных элементов (около 10-2 %), обладающие более высокой прозрачностью в УФ-области, фотохимически устойчивые.

Однако были и исключения: в ряде случаев вырастали все же малопрозрачные кристаллы. Исследования спектров люминесценции показали, что при одном и том же исходном составе в зависимости от условий выращивания в кристаллах CaF2 образуются структурные дефекты разных типов. Если в кристаллизующемся расплаве присутствует кислород, то компенсация избыточной валентности при замещении Ca2+ ионом TR3+ осуществляется за счет иона кислорода O2-, и ион TR3+ не способен осуществлять свои электронно-акцепторные функции. В случае же выращивания в восстановительной среде, без доступа воздуха, компенсация за счет кислорода невозможна, и захват избыточных электронов происходит на ионах TR3+, что сдерживает образование F и F2-центров окраски. Поэтому рекомендуется добавлять в шихту в небольшом количестве (0,1 вес. %) графитовый порошок. Выращенные в таких условиях кристаллы по пропусканию не уступают природным.

В дальнейшем П. Гёрлих с сотрудниками [Görlich et al., 1961] предложили заменить трехвалентные TR3+ четырехвалентными катионами металлов, а Э. Г. Черневская показала, что лучший результат достигается при добавке 1% SrF2.

Более поздними исследованиями было установлено, что в улучшении светопропускания кристаллов в УФ-области очень большую положительную роль играет высокий вакуум, поддерживаемый в процессе роста. Й. Йиндра и Й. Филип [1965] выращивали кристаллы при вакууме не менее 10-5 мм рт. ст. и добились у полученных образцов тех же значений пропускания, что и у кристаллов с акцепторной примесью. Они пришли к выводу, что из чистейшего сырья в высоком вакууме можно получать высококачественные кристаллы без добавки редкоземельных или каких-либо других акцепторных примесей.

В поисках путей повышения светопропускания кристаллов проводились опыты по выращиванию кристаллов флюорита во фторсодержащей атмосфере [Воронько и др., 1965; Черневская, 1969]. Фторирование — очень эффективный способ повышения оптических свойств искусственных кристаллов.

Включения. Качество искусственных кристаллов часто снижали включения, вызывающие светорассеяние, снижение прозрачности, появление окраски. Включения по сравнению с природными кристаллами имеют более мелкие размеры, но плотность их распределения значительно более высокая и отрицательные эффекты от их присутствия более серьезные.

Можно выделить три типа включений.

Первый тип — мельчайшие частички неизоморфной фазы, чаще всего CaO, беспорядочно рассеянные по объему кристалла и обусловливающие изотропное светорассеяние. Снижение их количества достигается введением в шихту раскислителей.

Второй тип — закономерно ориентированные по плоскостям (111) гексагональные таблички посторонней фазы размером 10—20 мкм, образующиеся в результате распада твердого раствора и вызывающие анизотропное светорассеяние. Их появления можно избежать использованием особо чистой шихты.

Третий тип — включения пластинчатых кристалликов графита размером 0,1—10 мкм, определяющие светорассеяние и зеленую или зеленовато-серую вплоть до серой окраску кристаллов флюорита [Кузьмин, 1975]. Они появляются в кристаллах при нарушении режима кристаллизации, например при резком увеличении скорости роста.

Пузырность. Пузырями в кристаллотехнологии называют полости любой формы, размеров и природы, образующиеся в теле кристалла в процессе его роста. Пузырность является одним из показателей качества кристаллов [Юшкин и др., 1977]. Пузыри в искусственных кристаллах флюорита в 50—60-е годы представляли один из наиболее распространенных дефектов, определяющих пригодность кристаллов в качестве оптического материала. Различаются следующие типы пузырей: усадочные раковины, «заморозочные» пузыри, пузыри вязкостного характера, структурные пузыри.

Усадочные раковины и «заморозочные» пузыри представляют собой скопление крупных и мелких полостей, расположенных вблизи верхней поверхности кристалла (фото 10, см. вкл.). Появление этого типа пузырей характерно для случаев быстрой кристаллизации расплава.

Пузыри вязкостного характера обычно наблюдаются в нижней части тигля; их образование объясняется заниженной температурой расплава. Эти пузыри рассматриваются как следствие пор и пустот, которые были в материале и не могли удалиться из расплава из-за повышенной его вязкости вблизи точки плавления. Нередко зона вязкостных пузырей в кристаллах переходит в явные «непроплавы» исходного материала в виде мутных зон на донной стороне кристаллов.

Структурные пузыри обычно образуют закономерно пространственную, определенным образом ориентированную решетку. Пузыри этого типа могут занимать весь объем кристалла или какую-нибудь зону внутри него. Поверхность пузырей образована гранями октаэдра. В пределах различных блоков ориентировка граней неодинакова. О природе этих пузырей высказываются разные мнения. Э. Г. Черневская считает, что они связаны с дендритным ростом кристаллов. По мнению В. М. Рейтерова и З. Н. Корневой [1966], эти пузыри имеют сложную физико-химическую природу и образованы при коагуляции точечных микродефектов, возникающих при кристаллизации в случае нарушения стехиометрии состава или при насыщении расплава кислородсодержащими примесями.

Избавиться от пузырности можно, если строго выдерживать режим кристаллизации и применять чистый исходный материал.

Поликристалличность. Блочность. Кристаллы фтористого кальция оптически изотропны, поэтому блочность даже с большими углами разориентировки блоков сама по себе не является препятствием для их использования в качестве оптических сред.

Исследование влияния блочности на оптические свойства флюорита проведено В. С. Доладугиной [1969]. Она показала, что вредное влияние блочной структуры в кристаллах флюорита сказывается в анизотропии механических свойств и проявляется при изготовлении точных оптических поверхностей. На поверхности оптических деталей в местах границ блоков происходит излом световой волны («срыв» интерференционных полос). Величина «срыва» зависит от угловой разориентировки блоков.

Границы блоков во флюорите хорошо просматриваются визуально в отраженном или поляризованном свете. В некоторых случаях они проявляются как свилеподобные дефекты при просмотре полированных образцов на теневой установке. Скачок показателя преломления на границах блоков может достигать значений (1—5)∙10-4, что приводит к дефектности самого оптического материала.

Проблема получения монокристаллов флюорита с малой разориентировкой блоков мозаики не была решена и в 60-е годы. Исследователи встретились с целым рядом технологических трудностей, связанных с несовершенством ростовых установок. На блочность кристаллов влияют асимметрия теплового поля, особенности конструкции тигля, чистота ростовой оснастки, материал тигля и т. д. В целом выход моноблочных кристаллов в производственных условиях составлял 30%, и только в последние годы он заметно снизился.

Остаточные напряжения. Важной характеристикой оптической однородности кристаллов флюорита являются также остаточные напряжения, которые проявляются в виде участков с аномальным двойным лучепреломлением при просмотре в поляризованном свете.

В поисках путей снижения остаточных напряжений рядом исследователей были опробованы различные температурно-временные режимы выращивания кристаллов. Особое внимание уделялось температурно-временным параметрам отжига.

В первые годы кристаллотехнологи при получении кристаллов флюорита оптического качества для снижения величины остаточных напряжений стремились приблизить температуру отжига к температуре плавления. В соответствии с этим температура отжига была принята равной 1200° С. Охлаждение кристаллов также старались вести как можно медленнее. Обычно скорость охлаждения определялась предельно допустимыми возможностями терморегулирующей системы ростового оборудования и составляла 2—4 град/ч. Отожженные кристаллы имели величину двулучепреломления 60—80 нм/см при размерах кристаллов 160—180 мм.

Как показали последующие исследования Э. Г. Черневской с сотрудниками [Черневская и др., 1971], такой затяжной отжиг приводит к ухудшению других оптических характеристик кристаллов. В них увеличивалось светорассеяние, снижалась прозрачность, наводилось дополнительное поглощение. Это объясняется интенсивным испарением фтора из решетки CaF2 в вакууме при высоких температурах. В результате анализа упругих и термомеханических характеристик флюорита был сделан вывод о том, что остаточные напряжения должны снижаться в области более низких температур отжига (до 1000°С). На основании данных по коэффициентам упругости, удельной теплоемкости, теплопроводности, пределу текучести флюорита был произведен расчет оптимальных температур и скоростей их снижения на стадии отжига кристаллов. Э. Г. Черневской с сотрудниками были предложены в качестве оптимальных следующие параметры отжига: температура 800—900° С, выдержка 10 ч, скорость охлаждения в зависимости от размера кристалла от 3 до 30 град/ч. Все эти параметры были выведены для кристаллов с максимальным размером 270×60 мм; для более крупных кристаллов они, очевидно, будут несколько иными.

Таким образом, задача получения искусственных кристаллов оптического флюорита благодаря усилиям многих исследователей была в конце концов успешно решена. Были найдены пути получения кристаллов, по размерам и свойствам не уступающих природным и даже их превосходящих. Искусственные кристаллы прочнее, чище, однороднее и прозрачнее природных, у них ниже степень макро- и микродефектности (например, плотность дислокаций может быть на три порядка ниже, чем в лучших природных кристаллах). А самое главное — можно управлять свойствами, вводя определенные добавки в кристаллы или изменяя режим роста; можно получать кристаллы с такими свойствами, каких нет у природных.

 

Индустрия искусственных кристаллов флюорита

Высокое качество искусственных кристаллов оптического флюорита и не очень высокая их стоимость вполне удовлетворяют требованиям оптической промышленности, и спрос на них стал быстро возрастать. Выращивание кристаллов из кристаллизационных предприятий стало переходить на промышленные предприятия, в первую очередь на оптико-механические, которые были главными потребителями оптического флюорита.

В СССР первое промышленное производство кристаллов оптического флюорита было создано в 1954 г. на бывшем заводе «Прогресс» в Ленинграде, вошедшем позднее в состав Ленинградского оптико-механического объединения им. В. И. Ленина (ЛОМО) [Итигин, 1976; Панфилов, 1981]. В основу были положены собственные технологические разработки, разработки Всесоюзного института минерального сырья и Государственного оптического института им. С. И. Вавилова [Научно-технический..., 1974; Панфилов, 1981].

Возникала индустрия оптического флюорита и в других странах. Уже в 1968 г. почти все мировые потребности в оптическом флюорите покрывались за счет искусственных кристаллов [Kaspar, 1968]. В настоящее время более двух десятков фирм в наиболее развитых странах производят флюоритовые монокристаллы. Большим спросом пользуется продукция советских предприятий, отмеченная высокими наградами ВДНХ и многих международных выставок. Широко известны и высоко ценятся монокристаллы флюорита, производимые Народным предприятием «Карл Цейс Йена» в ГДР, предприятием «Монокристаллы» в ЧССР, химического концерна «Харшоу» в США, фирмами «Мерк», «Дармштадт» в ФРГ, рядом английских, французских и других фирм.

Каждая фирма, каждое предприятие организует производство флюоритовых монокристаллов по-своему, на базе своих технологических и технических особенностей, разработок, которые нередко держатся в секрете. Однако общая схема технологии производства везде одна и та же: в ее основе лежит метод Шамовского—Стокбаргера—Степанова, реализованный в крупномасштабном промышленном варианте.

Об общих особенностях промышленной технологии получения оптического флюорита мы и расскажем ниже. Промышленный процесс оптического производства на основе искусственных монокристаллов складывается из следующих последовательных этапов: получения исходного сырья, подготовки шихты, выращивания и отжига кристаллов, обработки кристаллов и изготовления оптических деталей.

Все этапы одинаково ответственны, каждый из них вносит свой вклад в достижение высокого качества флюоритовой оптики.

Исходное сырье

Главным исходным сырьем для получения искусственных монокристаллов является природный флюорит, по возможности не содержащий посторонних примесей.

Предпринимались многочисленные попытки использовать вместо природного реактивный фтористый кальций, применяемый в химической промышленности, вплоть до препаратов самых высоких марок ОСЧ и «Для монокристаллов». Однако во всех этих опытах не удавалось получить кристаллы хорошего качества, более того, выращенные кристаллы оказывались практически непрозрачными даже в тонких (1—2 мм) пластинах [Вильке, 1977; Stockbarger, 1949]. Одна из причин заключалась в высокой дисперсности реактивного фтористого кальция, в результате чего в шихту поступает много воды, обволакивающей частицы, от которой полностью избавиться не удается. В шихте оказывается слишком много кислорода. Кроме того, хотя реактивный флюорит очень чист, но он делается из природного флюорита, причем обычно из загрязненного примесями редкоземельных элементов. Поэтому в химический продукт, а затем и в выращенные из него монокристаллы неизбежно попадает некоторое количество атомов редкоземельных элементов, а они создают структурные дефекты. И. В. Степановым, П. П. Феофиловым [1957], И. А. Синюковой и Э. Г. Черневской был найден путь использования синтетического фтористого кальция: его расплавная или раствор-расплавная перекристаллизация. В результате получается зернистая масса, состоящая из свободных от примесей правильных кристалликов размером 0,1—0,3 мм. Из такого материала удается получать оптические монокристаллы.

Более эффективный способ использования синтетического фтористого кальция был предложен Е. Д. Каплан, В. М. Рейтеровым и др. [1977]. Соль CaF2, использованная в качестве шихты, была получена путем высокотемпературного спекания порошкообразной смеси углекислого кальция и фторида аммония. В отличие от препаратов, выпускаемых традиционными в химической промышленности методами (осаждением из растворов), CaF2, полученный по этой методике, содержал меньшее количество кислородсодержащих примесей и влаги, обычно адсорбированной на поверхности мелкодисперсных материалов. Выращенные кристаллы не содержали в спектрах пропускания каких-либо полос поглощения. Однако они не были лишены и недостатков. По сравнению с образцами, полученными из природного сырья, в них присутствовал довольно большой процент (~0,05%) кислорода и натрия. Это в ряде случаев приводило к светорассеянию (связанному с образованием фазы CaO) и снижению интегрального пропускания в широком спектральном диапазоне.

Следует отметить, что процесс выращивания кристаллов из синтетических солей технологически сложен и трудоемок. Он требует поддержания при кристаллизации довольно высокого вакуума (~10-6 мм рт. ст.), длительной выдержки расплава для обезгаживания и вследствие большой усадки мелкодисперсных препаратов при плавлении состоит из двух стадий: сначала быстрой кристаллизации, затем дробления полученных буль и последующего выращивания из них кристаллов оптического качества.

В качестве исходного сырья в производство искусственных кристаллов в принципе может идти любой природный флюорит, лишь бы он был чистым. Но очистка нередко оказывается настолько сложным и дорогостоящим процессом, что приходится отказываться от загрязненных разностей и искать наиболее чистые.

Флюорит для шихты должен содержать не более 10-3 вес. % примесей металлов, практически не содержать включений кислород-, серо- и углеродсодержащих соединений, не должен быть перемешан с зернами других минералов — кварца, кальцита, сульфидов. Поэтому лучшим исходным сырьем является природный флюорит оптического качества, но не удовлетворяющий потребителей по размерам кристаллов, трещиноватости и т. п., или отходы, получающиеся при изготовлении оптических деталей. На таком материале и зародилось производство кристаллов. В технологической практике известны даже случаи, когда крупные и идеально совершенные природные кристаллы дробились, и из этого материала выращивались искусственные кристаллы заданной формы и нужных размеров. Таким образом уменьшались потери уникального материала.

Но флюорит оптического качества, даже не кондиционный, дефицитен, поэтому промышленность удовлетворяется более низкосортным сырьем. Наиболее подходящим является материал тех месторождений, где флюорит встречается в виде крупных мономинеральных выделений и не содержит много примесей, особенно редких земель. Таким условиям отвечают, в частности, месторождения гидротермального генезиса — жильные, гнездовые, штокверковые.

Добыча флюорита обычно ведется разными способами с применением малой механизации. Раздробленная взрывами рудная масса в подземных выработках или карьерах рассеивается на фракции и промывается, а затем из крупных фракций отбираются куски чистого флюорита или флюорита в сростках. Они поступают в обогатительный цех, где флюорит освобождается от сростков других минералов, контролируется на отсутствие включений и разделяется по сортам.

Каждое предприятие, исходя из особенностей своих технологических процессов, предъявляет к поставляемому сырью определенные требования, которые в общем сводятся к следующему: 1) исходное сырье должно быть представлено кусками мономинерального флюорита любых размеров, но без чрезмерно мелкой (менее 2 мм) фракции; 2) куски флюорита не должны содержать видимых включений других минералов, особенно сульфидов; включения кварца и карбонатов могут быть в незначительных количествах (в сумме не более 5%); 3) не допускаются тонкие (менее 1 мм) сростки с флюоритом других минералов; 4) содержание примесей не более (в %): SiO2 + CaCO3 — 5; Mg — 0,01; Al — 0,01; Fe — 0,1; Ba — 0,05; ΣTR — 0,001; 5) ограничения по густоте окраски не предъявляются; 6) если сырье разнородно по качеству, по содержанию примесей, оно должно быть разделено по сортам и типам.

Словом, пригоден флюорит, соответствующий технической марке Ф-90 и выше, если сам флюорит как минерал отвечает требованиям оптического производства: не содержит вредных изоморфных примесей, особенно редких земель [Самсонов, Савельев, 1980].

Ручная разборка очень трудоемка, при ней получается много отходов. Например, из чернового крупнокристаллического концентрата с содержанием 92—93% полезного продукта извлекается лишь около 30%, остальная часть уходит в отбросы. Кроме того, дисперсные, вкрапленные, тонкопрожилковые, полиагрегатные руды вообще не подвергаются ручной разборке. Поэтому большое значение имеют процессы физико-химического обогащения руд, получающие в последнее время все более широкое распространение.

Наиболее хорошие результаты дают флотационный, гравитационный и особенно рентгенолюминесцентный методы обогащения. Последний заключается в том, что с помощью специальных автоматических манипуляторов из рудной массы извлекаются только зерна флюорита, характеризующиеся определенной рентгенолюминесценцией. В результате применения этих методов уровень извлечения кондиционного сырья повышается до 80% (и это не из концентрата, а из рядовой руды!). Конечным продуктом является флюоритовая крупка с содержанием флюорита 96—97%, которая может использоваться как шихта без дополнительной обработки.

Исходное сырье любого другого вида (кусковое, дробленое) проходит предварительную очистку и подготовку к плавлению.

Очистка природного флюорита и подготовка шихты

Существующая сейчас технология приготовления флюоритовой крупки, использующейся в качестве шихты, была в своей основе разработана И. В. Степановым в 50-х годах [Степанов, Феофилов, 1957]. На разных предприятиях разработаны свои варианты технологии, но все они складываются из операций дробления, химической очистки, легирования.

Удаление посторонних минералов. Куски природного флюорита из поступившей в ростовой цех партии промывают и помещают в иммерсионную жидкость, которая готовится путем разбавления глицерина дистиллированной водой до получения показателя преломления n = 1,4338. Куски просматривают в проходящем поляризованном свете в скрещенных поляроидах. Хорошо заметные в таких условиях среди изотропного флюорита куски двупреломляющих минералов — кварца, барита, кальцита, а также куски флюорита с включениями этих минералов удаляют. Для получения специальных сортов кристаллов на этой стадии производят сортировку сырья. Для получения нелюминесцирующих кристаллов в свете кварцево-ртутных ламп отбирают нелюминесцирующие куски флюорита. Для производства радиационно устойчивых кристаллов флюорит предварительно подвергают облучению и отбирают только неокрашенные куски.

Термическое и механическое дробление. Куски флюорита при термическом дроблении помещают в печь, выдерживают 1,5—2 ч при температуре 400—500° С до обесцвечивания и растрескивания, затем заливают холодной водой. Последующее механическое дробление производят в валковых мельницах до величины зерна 0,5—1 мм.

Химическая очистка. Полученную в результате дробления флюоритовую крупку кипятят в соляной, а затем в плавиковой кислотах с периодической промывкой материала в дистиллированной воде. Иногда для исключения «неприятностей» операции кипячения крупки в плавиковой кислоте ее после солянокислотной обработки спекают с порошкообразным фторидом аммония (NH4F), а затем обрабатывают соляной кислотой (HCl) вторично. В результате химической очистки из крупки удаляют примеси карбонатов, кварца, сульфидов, окислов и силикатов алюминия, железа, меди, свинца и других примесей.

Сушка. Крупку просушивают в термостатах при температуре 150° С в течение 10 ч.

Легирование. Крупку смешивают с необходимым количеством фтористого свинца или фтористого кадмия (обычно 0,1—0,2%); необходимо добиваться равномерного распределения легирующей примеси в объеме крупки.

Общее стремление всех предприятий производства кристаллов оптического флюорита — избавиться от стадии очистки и подготовки сырья и получать от поставщиков природного флюорита уже готовую крупку. Это стремление оправданно. Обогащение легче и экономичнее провести непосредственно на флюоритовом месторождении, чем в ростовом цехе.

Выращивание и отжиг кристаллов

Технологические особенности процесса выращивания оптических кристаллов определяются тремя главными компонентами: ростовыми установками, контейнерами (или тиглями) для кристаллизующегося расплава, режимом кристаллизации.

Ростовые установки. Промышленное выращивание кристаллов оптического флюорита осуществляется методом Шамовского—Стокбаргера—Степанова, в основе которого лежит перемещение контейнера (тигля) с расплавом в температурном поле с заданным градиентом в условиях глубокого вакуума и направленного теплоотвода, обеспечиваемого системой экранов. Об особенностях ростового процесса мы рассказали в предыдущем разделе, в котором были приведены принципиальные и технические схемы ряда установок для выращивания кристаллов.

Промышленные установки создаются по тому же принципу. Они отличаются главным образом размерами кристаллизационных камер и связанным с этим рядом конструктивных особенностей.

Каждая установка состоит из следующих главных узлов: вакуумной камеры, графитового нагревателя, водоохлаждающей подставки, блока отражательных экранов, тигля, средств для создания и измерения вакуума.

Рис. 18. Схема промышленной установки для выращивания кристаллов флюорита

Объяснение в тексте

В качестве примера рассмотрим одну из установок типа МА-469, схема которой приведена на рис. 18.

Установка состоит из корпуса (1), на котором закреплена плита (2) с вакуумными вводами и водяным охлаждением. Для организации структуры теплового поля в установку введены молибденовые экраны (3), окружающие графитовый нагреватель (4), внутрь которого помещается графитовый тигель с расплавом (5). Все это устройство, которое иногда называют подколпачным, закрывается вакуумным колпаком (12). Величина вакуума, который создается вакуумной системой (9), включающей механический и диффузионный насосы, затворы с ловушками, клапан с дистанционным управлением, контролируется измерительной системой (6). Работа графитового нагревателя обеспечивается системой энергопитания (7), состоящей из понижающего трансформатора и теристорного регулятора напряжения. Система водяного охлаждения высокотемпературных зон (8) снабжена автоматической блокировкой выключения нагревателей при нарушении режима охлаждения. Перемещение тигля с шихтой в процессе кристаллизации расплава (быстрый и медленный ход) производится с помощью планетарного привода (10); вакуумный колпак поднимается и опускается гидравлическим приводом (11).

Установка характеризуется следующими техническими показателями. Графитовая печь размерами 220×400 мм имеет мощность 15 кВт и создает под колпаком наибольшую температуру 1600° С. Рабочий вакуум под колпаком 5∙10-4 мм рт. ст. В печь помещается графитовый тигель с наружным диаметром 170 мм и высотой 190 мм. Наибольший ход штока с тиглем 180 мм, пределы регулирования скорости перемещения 3—20 мм/ч. Общий расход воды на установку 600—1000 л/ч. Ростовой цех, скомплектованный такими установками с программным управлением, обслуживает всего один оператор [Научно-технический..., 1974]. Удобной и надежной является также установка «Гранат-2» с омическим нагревом. Обычная ростовая установка рассчитана на производство 200—700 кг кристаллов в год.

Если ростовые цеха комплектуются большим числом кристаллизационных установок, то вместо отдельных вакуумных насосов при каждой установке создается централизованная система вакуумирования с мощными насосами, состоящая из двух раздельных линий: черновой и чистовой. На черновой линии устанавливаются два-три насоса производительностью по 450 л/с. Она служит для удаления основной массы воздуха и продуктов обезгаживания шихты и для создания предварительного вакуума в (2,8—4,5)∙10-1 мм рт. ст. Глубокий рабочий вакуум 5∙10-4 — 5∙10-6 мм рт. ст. создается с помощью чистовой линии. Кроме того, на установках имеются паромасляные диффузионные насосы для быстрой откачки и создания предельного вакуума до 3∙10-6 мм рт. ст.

Тигли. Контейнер (тигель), в котором осуществляются расплавление шихты и рост кристалла, является очень важным элементом кристаллизационной системы. Конструкцией тигля предусматривается образование затравочного центра (так как выращивание осуществляется без затравки), направленность роста, размеры и форма получаемых кристаллов.

Тигли могут изготовляться из листовой платины, молибдена и других стойких металлов. Наиболее широко в качестве тигельного материала используется графит, который устойчив к расплавам, обладает восстановительными свойствами, малочувствителен к резкому изменению температуры. В СССР для изготовления тиглей используется графит марок ОСЧ-МГ и APB-ГМ. Изготовленные из него тигли для очистки в воде прокаливаются в вакуумной печи.

Обычно тигли имеют цилиндрическую форму и конусовидное или полусферическое дно. На вершине конуса или в центре полусферы и образуется зародыш кристалла, когда опускающийся из горячей зоны печи в холодную тигель пересекает изотерму кристаллизации. Из этого зародыша вырастает монокристаллический цилиндрический блок-буля, повторяющий форму внутренней полости тигля (фото 11, см. вкл.). Для удобства извлечения кристалла тигель может быть разъемным.

Технологическая практика показывает, что в цилиндрическом тигле целесообразно выращивать только относительно небольшие флюоритовые кристаллы-були диаметром до 100 мм. Более крупные були получаются менее однородными, кроме того, они требуют очень длительного отжига и растрескиваются или сразу после извлечения из печи, или при распиловке. При изготовлении оптических деталей из буль получается много отходов. Поэтому вместо традиционного тигля с одной внутренней полостью в настоящее время при крупнообъемном производстве кристаллов применяют многокамерные тигли. В каждой камере вырастает отдельный кристалл, принимающий форму камеры, а во всем тигле — десятки, сотни и даже тысячи кристаллов заданной формы и размеров.

Кристаллизационный процесс. Перед выращиванием каждой новой партии кристаллов установку и тигли тщательно очищают от налетов, продувают сжатым воздухом. Шихту из флюоритовой крупки загружают в тигель. Тигель и все подколпачное устройство ростовой установки с помощью гидропривода закрывают колпаком.

Вся система вакуумируется до разрежения в 1∙10-4 мм рт. ст., после чего включают нагрев тигля и начинают программное повышение температуры до 1500° С. Обычно оно проходит со скоростью 5° С/мин и продолжается в течение 4—5 ч. Установка выдерживается при температуре 1500—1540° С 4—6 ч, иногда до 20 ч в зависимости от объема тигля. В течение этого времени шихта успевает полностью расплавиться, а расплав — гомогенизироваться. После этого тигель с расплавом автоматически опускается со скоростью 2—20 мм/ч и выводится из зоны нагрева в кристаллизационную зону, в результате чего происходит рост монокристаллов. Продолжительность роста 10—15 ч при неизменной температуре в зоне кристаллизации 1450° С. Затем температура печи по программе снижается до комнатной, вакуумные насосы отключаются.

Общая длительность цикла 30—50 ч, скорость кристаллизации 2—20 мм/ч. В установке, схема которой приведена выше, за один цикл можно вырастить три цилиндрических кристалла диаметром 130 мм и толщиной 40 мм, 100 кристаллов диаметром 40 мм и толщиной 10 мм или 1000 кристаллов диаметром 7 мм, толщиной 5 мм. Но эта установка не из самых крупнообъемных.

Отжиг кристаллов. Для снятия внутренних напряжений, которые неизбежно возникают в кристаллах в процессе их роста из-за резкого охлаждения в градиентном тепловом поле и проявляются в виде участков с аномальным двойным лучепреломлением, производится отжиг кристаллов.

Существуют различные схемы отжига, из них наиболее распространены две.

По первой двухстадийной схеме [Степанов, Феофилов, 1957] «грубый» отжиг для предварительного снятия термических напряжений осуществляется в ростовой установке сразу же после окончания процесса кристаллизации, а окончательный «тонкий» отжиг — в специальной безградиентной печи. Температура «тонкого» отжига 900—1000, иногда 1100—1150° С, скорость студки при высоких температурах 2—4° С/ч, при низких температурах — несколько выше. Для предотвращения помутнения кристаллов вследствие гидролиза кристаллы помещают в платиновый тигель и засыпают флюоритовым порошком, слабо смоченным плавиковой кислотой. Тигель плотно закрывают платиновой крышкой.

По второй схеме, более оптимальной [Черневская и др., 1971], отжиг осуществляется одностадийно, причем в той же ростовой установке. Для отжига температуру верхней зоны печи понижают с 1420—1490 до 800— 1150° С в зависимости от размера кристалла. Тигель с кристаллами снова поднимают в верхнюю зону в исходное положение и выдерживают при указанной температуре 5—10 ч. После этого температуру в печи снижают со скоростью 3—25° С/ч до 250—150° С, затем и питание печи, и диффузионные насосы отключаются.

Кристаллы извлекают из печи после ее инерционного остывания до комнатной температуры.

Таким образом, во второй схеме кристаллизация и отжиг объединены в один цикл, что значительно сократила длительность технологического процесса. Уменьшение времени пребывания кристаллов при высокой температуре, обеспечивающееся этой схемой, имеет принципиальное значение, так как это позволяет уменьшить опасность химического взаимодействия уже выращенных кристаллов с компонентами остаточной газовой атмосферы в ростовой камере с неизбежным при этом ухудшением качества кристаллов (из-за окисления основы и восстановления редких земель, присутствующих в кристаллах в качестве примесей, и т. д.). Это способствует, в свою очередь, уменьшению светорассеяния в кристаллах, повышению их прозрачности, снижению уровня дополнительного поглощения и интенсивности люминесценции.

Обработка кристаллов и изготовление оптических деталей

Искусственные кристаллы флюорита идут на изготовление оптических деталей для приборов и технических устройств. Детали эти самые разнообразные: диски, пластины, линзы, призмы различной конфигурации и размеров. Номенклатура современного оптического предприятия составляет более 250 наименований флюоритовых деталей.

Изготовление деталей из кристаллов флюорита — сложный и трудоемкий процесс, включающий их резку, шлифовку и полировку. В целом эти операции разработаны довольно хорошо [Бонд, 1980], однако не все разработки, которые высокоэффективны для стекол и прочных кристаллов, можно перенести на флюорит. Флюорит характеризуется невысокой твердостью, резкой механической анизотропией, низкой термостойкостью, склонен растрескиваться и раскалываться по плоскостям совершенной спайности. Для его обработки нужны специальные приемы.

На различных предприятиях в зависимости от их технической оснащенности, от типов обрабатываемых кристаллов и номенклатуры изготовляемых деталей, а также от объема производства приняты различные технологические схемы изготовления деталей — от полностью ручной обработки кристаллов до полуавтоматической и автоматической [Научно-технический..., 1974].

Если кристаллы выращиваются в виде крупных кристаллических блоков-буль, то процесс обработки начинается о их распиловки на плоскопараллельные пластины, стержни, бруски, из которых изготовляются заготовки деталей. При этом приходится прибегать к склеиванию, круглению, нанесению сферы. Такая обработка сопровождается большими отходами, достигающими даже при самых «мягких» режимах 70%. Если кристаллы выращиваются в виде заготовок заданной формы и размеров, близких к форме и размерам изготовляемых деталей, то многие предварительные операции, в частности распиловка и кругление, исключаются, отходы сводятся к минимуму.

При ручной технологии наклеечные операции производятся в термостатах при очень медленном подъеме и снижении температуры. Обработка деталей производится поштучно. Вначале они обрабатываются по диаметру на металлической фольге свободным абразивом. Затем на станках осуществляется шлифовка плоскостей также свободным абразивом (карборунд и окись хрома) при малой скорости вращения шпинделя и низком удельном давлении. После этого склеенные детали разблокировываются в автоклавах и чистятся органическими растворителями.

Полуавтоматическая обработка заготовок проводится на станках, снабженных специальными фрезами из алюминиевого сплава, торцы которого соединены абразивными брусками из природного алмаза на металлической связке. Применение такого инструмента позволяет производить кругление флюоритовых заготовок по диаметру и плоскостям, не меняя установки в полуавтоматическом режиме. Подбирается оптимальный для обработки кристаллов температурный режим и состав охлаждающей смеси. В этих режимах удается обрабатывать даже кристаллы с внутренними напряжениями, характеризующимися двойным лучепреломлением до 120 нм/см, без нарушения их целостности. Дальнейшая обработка (тонкая шлифовка и полировка) кристаллов флюорита производится на полировально-доводочных станках. Обработка плоских поверхностей также проводится автоматически.

Для ускорения процессов сошлифовывания применяется поверхностный активатор на основе слабых растворов соляной и азотной кислот. Обработка производится алмазными пастами и порошками. Точность обработки с применением активатора значительно выше, чем без него. Удается довести местные ошибки до 1/2 интерференционной полосы.

Выращивание монокристаллов флюорита в виде заготовок заданной формы и размеров позволяет осуществить полную автоматизацию процесса обработки и создать автоматические линии для изготовления различных типов деталей. При этом открываются широкие возможности для использования наиболее эффективных наклеечных и полировочных смол, производительных абразивных порошков и алмазного инструмента. Многие операции удается вести на высоких скоростях. Резко повышается качество изготавливаемых деталей, в том числе и крупногабаритных.

Качество искусственных кристаллов

Различные фирмы предлагают потребителям как необработанные кристаллы оптического флюорита, так и изделия из них.

Народное предприятие «Карл Цейс Йена» в ГДР продает флюоритовые були, прозрачные в диапазоне 125—900 нм, диаметром до 110 мм и высотой до 100 мм, а также различные линзы, призмы, окна [Künstlische...].

В продукции института для исследования, производства и использования монокристаллов («Монокристаллы», Турнов) в ЧССР также значительное место занимают монокристаллы оптического флюорита. Максимальный диаметр их 65 мм, высота 60 мм. По пропусканию они делятся на два сорта: 1) прозрачный в интервале 0,155—9,5 мкм и 2) прозрачный в интервале 0,2—9,5 мкм. Этот институт производит также призмы, линзы, окна, кюветы для УФ- и ИК-спектрометров, анализаторов, объективов, активированные редкими землями кристаллы для лазеров, фотохромные кристаллы для голографии [Monokristaly...].

Проспекты компании «Харшау», США, рекламируют оптические кристаллы достаточно высокого качества (пропускание 0,123—12 мкм), но с небольшой полосой поглощения 0,3 мкм. Выпускаются три типа цилиндрических кристаллов с максимальным диаметром 173 мм и высотой 120 мм. Фирма предлагает также оптические окна диаметром до 300 мм, призмы до 70 мм и другие детали [Smakula et al., 1967].

Примерно аналогичную продукцию реализуют и другие фирмы.

Оптические показатели качества искусственных кристаллов, судя по проспектам и каталогам, достаточно высокие и в большинстве случаев не хуже природных. Кристаллы совершенно бесцветны, хотя могут быть получены и окрашенные в любой цвет, если это необходимо. Светопропускание наиболее подвержено колебаниям и по этому показателю обычно устанавливается несколько марок кристаллов. В Советском Союзе приняты три марки:

ФК-У — кристаллы, прозрачные в УФ-области спектра, не исключая и другие области;

ФК-В — кристаллы, прозрачные в видимой области спектра; пропускание в других областях не гарантируется;

ФК-И — кристаллы, прозрачные в ИК-области спектра; могут быть непрозрачными в других областях.

Кристаллы наиболее высокой марки ФК-У должны иметь показатель поглощения (αλ, см-1) для λ = 0,140 мкм не более 1,0; для λ = 0,155 мкм — 0,60; λ = 0,205 мкм — 0,10; λ = 0,306 мкм — 0,10.

Кристаллы высокого качества характеризуются примерно следующими коэффициентами пропускания (τλ, %) для пластинки толщиной 10 мм:

λ, мкм τ λ , % λ, мкм τ λ , %
0,140 30—40 0,400 94
0,155 60—70 7,500 94
0,205 85—90 9,300 50—55
0,306 90—94    

Компания «Харшау» (США) наряду с кристаллами обычного качества, с полосой поглощения в области 0,3 мкм, поставляет и специальные для ультрафиолетовой оптики, прозрачные во всем спектральном диапазоне.

Показатели преломления монокристаллов фтористого кальция для различных длин волн:

nD = 1,43379 ± 2∙10-5; nF = 1,43699 ± 2∙10-5;

nC = 1,43245 ± 2∙10-5; ne = 1,43493 ± 2∙10-5.

Для искусственных кристаллов в отличие от природных характерна высокая степень стабильности всех показателей качества.

Для флюорита, как известно, характерна интенсивная люминесценция, которая во многих случаях играет отрицательную роль.

Многим предприятиям удается получение нелюминесцирующих или слабо люминесцирующих кристаллов (их доля в общем объеме продукции 70 и 30% соответственно). Слабо люминесцирующие кристаллы имеют максимум люминесценции в волновых интервалах 430 и 530—550 нм при возбуждении λ = 257 и 366 нм. Для других потребителей, наоборот, требуются кристаллы с определенным типом люминесценции. Они могут быть получены введением соответствующих легирующих добавок.

Применение кристаллов в лазерной технике предъявляет к ним требования высокой лучевой прочности, которая обеспечивается в хороших сортах в пределах 5—7∙1011 Вт/см2 (под действием излучения оптического квантового генератора длиной волны 1,06 мкм, с длительностью импульса 50 нс, диаметром облучаемой зоны около 20 мкм).

Рядом фирм освоен выпуск радиационно устойчивых кристаллов, не окрашивающихся в радиационных полях даже высокой интенсивности. Изделия из этих кристаллов могут работать в экстремальных условиях, особенно широко они используются в космической технике.

Современная индустрия искусственных кристаллов может удовлетворить все требования оптической промышленности по качеству флюоритовых монокристаллов, их величине и объему поставок.

 

Кристаллы с заданными свойствами

Современной технике нужны кристаллы оптического флюорита не только с высокой степенью прозрачности, но и с определенными другими оптическими свойствами, иногда очень строго нормируемыми. Требования обеспечить у выращиваемых кристаллов конкретные показатели или специфические свойства в последнее время становятся очень жесткими. Это связано в первую очередь с развитием оптической техники.

В новых приборах «рабочими» становятся зачастую такие свойства кристаллов флюорита, которые раньше не привлекали внимания, не контролировались и не нормировались. Так, в космическом приборостроении оптические детали из флюорита должны быть радиационно устойчивыми. Лазерная техника на одно из первых мест выдвигает требование высокой лучевой прочности и однородности кристаллов, отсутствия разориентированных блоков. Приборы для люминесцентного анализа должны включать детали только из нелюминесцирующего флюорита, в поляризационной оптике не допускается двойное лучепреломление. Для ряда технических устройств требуется крупногабаритная оптика — детали размером в несколько десятков дециметров.

Свойства и качество искусственных кристаллов определяются двумя главными факторами: а) составом и свойствами исходного сырья и б) особенностями ростового процесса. Оперируя этими двумя факторами, очевидно, и можно управлять свойствами кристаллов.

Влияние исходного сырья на качество кристаллов флюорита

Зависимость качества искусственных кристаллов флюорита от исходного сырья была замечена еще при первых удачных кристаллизационных экспериментах. Об этом писали и создатели промышленной технологии Д. Стокбаргер [Stockbarger, 1949] и И. В. Степанов [Степанов, Феофилов, 1957].

О проблеме использования синтетического фтористого кальция мы подробно говорили выше, поэтому здесь остановимся только на главном исходном сырье — природном флюорите.

Одно из первых специальных исследований, проведенных с целью разработки критериев отбора природного флюорита для получения искусственных оптических кристаллов, было проведено Г. Б. Бокием и О. Г. Козловой [1957]. Они опробовали флюорит ряда месторождений Восточного Забайкалья, Средней Азии, Казахстана, провели ряд опытных выращиваний и пришли к выводу, что хорошие кристаллы могут быть получены только из определенных разностей флюорита далеко не всех месторождений. Авторы совершенно правильно определили причину низкого пропускания и появления многочисленных полос поглощения в высоком содержании редких земель, подчеркивая в то же время, что незначительная примесь редкоземельных элементов не снижает пропускания и даже оказывается полезной, снижая фотохимическую чувствительность кристаллов.

Г. Б. Бокий и О. Г. Козлова предложили использовать в качестве критерия отбора флюорита для кристаллосинтеза характер спайности, но он не привился на практике, оказавшись неоднозначным.

Рис. 19. Спектры пропускания искусственных кристаллов оптического флюорита, выращенных из природного сырья различных месторождений

1 — стандарт; 2 — из флюорита гидротермальных месторождений; 3, 4 — из флюорита пегматитовых месторождений

Рис. 20. Спектры пропускания кристаллов флюорита, выращенных из различных типов природного сырья пегматитовых месторождений [Волкова и др., 1973]

Исследование флюорита пневматолито-гидротермальных месторождений Урала [Калита и др., 1973] также установило его ограниченную применимость как сырья для получения оптических монокристаллов по той же причине высокого содержания редких земель, стронция, бария, бора. Даже специальные методы выращивания, в том числе и в условиях фторирования, не помогли избавиться от вредного влияния примесей.

С позиций пригодности для выращивания оптических монокристаллов был исследован флюорит практически всех месторождений СССР. Он в этом отношении оказался исключительно разнородным (Черневская и др., 1973; Юшкин и др., 1977].

В 60—70-е годы главным сырьевым источником для ростовых производств были флюоритовые месторождения пегматитового типа главным образом Казахстана [Самсонов, Савельев, 1980]. На примере этого сырья особенно ярко выступают все положительные и отрицательные качества природного флюорита.

Флюорит в пегматитовых месторождениях встречается в виде крупных мономинеральных скоплений, поэтому обогащение сырья, получение концентрата и подготовка крупки для шихты не вызывают особых затруднений. Характерной минералого-технологической особенностью этого флюорита является большое (5—12) число разновидностей с различным содержанием редкоземельных элементов. Из каждой такой разновидности получались искусственные кристаллы с резко различными оптическими свойствами, особенно сильно меняющимися в ультрафиолетовой и видимой областях спектра (рис. 19). Так, для монохроматического света с λ = 205 нм пропускание τλ, изменяется от 10 до 75%, для λ = 306 нм — от 10 до 80%, для λ = 400 нм — от 60 до 90% и т. п. Поэтому кристаллы каждой выращенной партии приходилось контролировать по всем показателям качества.

Для обеспечения стабильных оптических показателей хотя бы по отдельным типам выращиваемых кристаллов при использовании такого разнородного сырья вводится дополнительная трудоемкая операция — сортировка природного флюорита по минералогическим признакам на макро- и микроуровне (по цвету, прозрачности, характеру излома и т. п.). Например, флюорит одного из месторождений подразделяется на пять типов (табл. 3) [Волкова и др., 1973]. Спектральные характеристики кристаллов, полученные из каждого типа сырья, даны на рис. 20. Такая сортировка увеличивает вероятность получения нужных параметров у выращенных кристаллов и позволяет сократить объем контрольных операций. Кроме того, для повышения пропускания кристаллов из этого сырья их выращивание проводилось в режиме фторирования [Черневская, Калита, 1972]. Эти приемы (сортировка и фторирование) позволяют несколько повысить качество получаемых кристаллов. Нелюминесцирующие кристаллы получаются из нелюминесцирующего природного флюорита, который отбирают при ультрафиолетовом освещении из общей массы флюорита.

Таблица 3. Минералого-технологические разновидности природного флюорита одного из пегматитовых месторождений Казахстана [Волкова и др., 1973]

Номер разновидности (см. рис. 20) Минералогические признаки Состав и содержание (%) примесей Относительное качество получаемых кристаллов
1 Бесцветный, прозрачный, со стеклянным блеском и совершенной спайностью Y — 0,01; Yb — 0,01; Eu — 0,02; Sr — 0,02 Самое высокое
2 Фиолетовый (бесцветный с фиолетовыми пятнами), прозрачный, со стеклянным блеском и весьма совершенной спайностью Y — 0,01; Sr — 0,06 Высокое
3 Светло-зеленый, полупрозрачный, со стеклянным блеском и совершенной спайностью Ce — 0,05; La — 0,01; Y — 0,02; Ti — 0,001 Менее высокое
4 Светло-голубой, полупрозрачный, с жирноватым блеском и несовершенной спайностью La — 0,03; Y — 0,03; Yb — сл.; Eu — 0,03; Mn — 0,002; Ti — сл. Низкое
5 Голубовато-зеленый, непрозрачный, с жирным блеском и несовершенной спайностью Ce — 0,07; Y — 0,05; Yb — 0,03; Eu — 0,05; Mn — 0,02; Ti — сл. Самое низкое

Примечание. Во всех разновидностях, кроме указанных в таблице изоморфных примесей, постоянно присутствуют Si — 0,1%; Al — сл.; Mg — 0,03; Fe — сл. — 0,001%

Рис. 21. Спектры пропускания природного флюорита (1) и выращенных из него искусственных кристаллов (2—4) в ИК-области

Практика показывает, что для получения высококачественных оптических монокристаллов оптического флюорита наиболее подходящим является природный флюорит с низким (порядка 0,003%) содержанием редких земель, представленных преимущественно Dy3+, в меньшей мере Sm3+ и Yb2+, и других элементов-примесей, нелюминесцирующий или слабо люминесцирующий, устойчивый к действию ионизирующего излучения.

Такой флюорит содержат многие месторождения гидротермального типа, сформировавшиеся в относительно низкотемпературных условиях, в частности ныне выработанные месторождения Средней Азии [Смольянинов. 1935]. Весьма перспективен флюорит Уральско-Новоземельской провинции, он удобен и технологически [Юшкин и др., 1982], так как высокая чистота его мономинеральных скоплений, многие из которых являются деформированными монокристаллами (фото 12, см. вкл.), позволяет исключать ряд операций по подготовке исходного сырья, вплоть до химической очистки. Пропускание искусственных кристаллов значительно выше, чем исходного сырья (рис. 21).

При существующей расплавной технологии выращивание кристаллов флюорита методом Шамовского—Стокбаргера—Степанова в наиболее полной форме оправдывается принцип наследования: полученные кристаллы наследуют состав и многие свойства исходного материала. Варьируя технологическими особенностями процесса, можно изменить лишь те свойства, которые не зависят или мало зависят от состава. Поэтому выбору исходного материала и предварительному изучению его физико-химических особенностей должно уделяться особое внимание.

Получение кристаллов с заданным химическим составом

Все главные физические свойства, определяющие особую ценность оптического флюорита, связаны прямо или косвенно с особенностями его состава, поэтому получение кристаллов с заданным химическим составом — один из важнейших рычагов управления их свойствами.

Опираясь на принцип наследования, можно получить кристаллы с определенным составом и содержанием примесей, используя в качестве исходного материала соответствующие химические разности природного флюорита. Этот, так сказать, пассивный путь — наиболее легкий и эффективный, так как не требует никаких специальных приемов, дополнительных операций и затрат. Было бы подходящее исходное сырье с точно установленными физико-химическими параметрами. Но далеко не всегда имеется такое сырье, поэтому приходится выбирать более тяжелый, но надежный активный путь: вводить в получаемые кристаллы нужные примеси в необходимых количествах, т. е. легировать кристаллы. Однако последние могут содержать какое-то количество своих примесей, и можно ошибиться в дозировке. Поэтому при необходимости точной дозировки легирование производится по очищенной основе.

Получение кристаллов с заданным составом складывается, таким образом, из двух этапов: выращивания особо чистых кристаллов флюорита и получения на их основе кристаллов с введенными примесями (легирование кристаллов).

Получение особо чистых кристаллов флюорита. Кристаллы флюорита высокой степени чистоты можно получить многими методами [Методы..., 1969], в том числе любым методом направленной кристаллизации (методами Наккена—Кирополуса, Чохральского), рассмотренными выше. Особенно хорошие результаты дает метод зонной плавки, заключающейся в последовательном переплавлении и перекристаллизации блока шихты или флюоритового бруска. Перекристаллизацию можно проводить неоднократно; в результате все примеси будут «загнаны» в один конец слитка.

Эффективная очистка от примесей может проводиться и главным «флюоритовым» методом — методом Шамовского—Стокбаргера—Степанова [Guggenheim, 1963], но организованным так, чтобы высота расплава при перемещении границы кристалл—расплав все время оставалась постоянной, обеспечивая стабильность процесса кристаллизации и накопления примесей в остаточном расплаве. Этим условиям отвечает метод горизонтальной направленной кристаллизации в контейнере-лодочке (рис. 22). Рост кристалла происходит на затравку, установленную в «носике» лодочки, примеси скапливаются на конце кристалла, противоположном затравке. Для получения кристаллов этим методом созданы установки типа «Сапфир».

Рис. 22. Схема горизонтальной направленной кристаллизации

1 — затравка; 2 — кристалл; 3 — расплав; 4 — контейнер-лодочка; 5 — нагреватель

Легирование кристаллов флюорита. Главным компонентом шихты для выращивания легированных кристаллов является либо особо чистый природный флюорит, либо флюорит, очищенный одним из охарактеризованных выше методов перекристаллизации. К шихте примешиваются в определенном количестве соединения того элемента, который вводится в кристаллы флюорита. Чаще всего возникает необходимость активирования кристаллов редкоземельными элементами, методика которого достаточно хорошо разработана [Воронько и др., 1965; Шамовский и др., 1970; Guggenheim, 1961]. Особенностью методики является то, что элементы-примеси, которые существуют в стабильных соединениях в более высоковалентных состояниях, а в кристалл флюорита должны войти в форме соединения низшей валентности, в процессе кристаллизации восстанавливаются углеродом (например, от Dy3+ в DyF3 до Dy2+ в CaF2). Углерод добавляется в шихту в виде спектрально чистого графита вместе с активатором (TRF3) и раскислителем (PbF2 или CdF2). Также достаточно просты методики получения и других смешанных кристаллов, например CaF2—SrF2.

Получение кристаллов с определенными свойствами

Управление основными свойствами кристаллов осуществляется, как мы неоднократно подчеркивали, через состав, но многие свойства можно изменять в ту или иную сторону. Здесь мы расскажем о некоторых приемах обеспечения определенных физических свойств искусственных кристаллов флюорита.

Моноблочность и однородность. При использовании монокристаллов флюорита в нелинейной оптике, в частности для изготовления активных элементов лазеров, в качестве одного из основных требований выдвигается моноблочность кристаллов и отсутствие в них даже малоугловых границ [Никогосян, 1977].

По существующей промышленной технологии, применяя самые «мягкие» режимы роста и отжига, можно получить монокристаллы флюорита относительно небольших размеров с разориентировкой блоков мозаики в 10—20 угловых минут. Они вполне удовлетворяют требованиям квантовой электроники, но их получение — скорее результат случая, чем решения поставленной технологической задачи. Моноблочные кристаллы выискивают в партиях обычной продукции.

Как показывает теоретико-экспериментальный анализ причин возникновения микро- и макронесовершенств оптических кристаллов [Мильвидский, Освенский, 1975], метод Шамовского—Стокбаргера—Степанова мало перспективен для получения моноблочных и малодислокационных кристаллов. Возникновению несовершенств здесь способствует много факторов: отсутствие совершенной затравки, содержащей своего рода код для правильного встраивания частиц, жесткая форма тигля, взаимодействие расплава со стенками тигля, большие температурные градиенты в кристаллизующемся блоке и т. п.

Добиться почти полной моноблочности можно в том случае, если применить к выращиванию кристаллов флюорита метод Чохральского, особенно его вариант регулируемого формообразования, известный как метод Степанова. При этом необходимо использование бездефектных затравок и проведение процесса кристаллизации в условиях малых температурных градиентов.

Неравномерность теплового поля вокруг и внутри растущего кристалла является также причиной неравномерного распределения структурных дефектов. Оно проявляется через неравномерность распределения окраски под действием ионизирующего излучения (фото 13, см. вкл.). Участки с аномальным двойным лучепреломлением возникают в основном по той же причине [Arizumi, Kobayashi, 1969]. Для снижения плотности и интенсивности этих дефектов кристаллы выращивают при минимальных градиентах (не более 10° С в объеме слитка), выдерживая плоскую форму фронта кристаллизации. Для ответственных оптических изделий вырезаются блоки из менее дефектных центральных частей слитков.

Люминесценция. Различные виды люминесценции кристаллов флюорита являются серьезным препятствием для их использования в специальной микроскопной и спектральной оптике, поэтому задача получения нелюминесцирующих кристаллов решается на любом ростовом предприятии.

Еще в 50-х годах П. П. Феофилов [Степанов, Феофилов, 1956] обратил внимание на зависимость характеристики люминесценции искусственных кристаллов от условий их выращивания. Глубокий анализ взаимосвязи явлений люминесценции с составом, содержанием и особенностями вхождения в решетку кристалла различных примесей, с механизмами роста, температурно-временными параметрами отжига, состоянием воздушной среды при росте и отжиге кристаллов и другими факторами был сделан А. М. Прохоровым и В. В. Осико [1975]. Эти исследования позволяют разрабатывать методики получения кристаллов с определенным тоном люминесценции главным образом путем введения примесей. Однако для получения нелюминесцирующих кристаллов наиболее надежным остается пока пассивный путь: использование нелюминесцирующих разностей исходного сырья. Но и в этом случае для достижения положительных результатов требуется принятие специальных мер, в частности соблюдения высокой чистоты всей оснастки, поддержания высокого вакуума (10-5 и 10-6 мм рт. ст.).

Флюорит из месторождений пегматитового типа мало пригоден для получения нелюминесцирующих кристаллов. Проблему удалось решить благодаря освоению флюорита из гидротермальных месторождений [Юшкин и др., 1977, 1982].

Остановимся кратко на особенностях люминесценции природного флюорита гидротермальных месторождений и выращенных из него кристаллов.

Природный флюорит. Фотолюминесценция при возбуждении УФ-источником (λвозб = 366 и 237,5 нм) для флюорита, как правило, не характерна. Свечение и послесвечение отмечаются только вблизи кальцитовых прожилок и усиливаются после γ-облучения образцов. Для флюорита из ряда районов при температуре жидкого азота обнаруживается желто-зеленое свечение и послесвечение, свидетельствующее о присутствии иттербия и характерное для флюорита ранних стадий постмагматического процесса.

Термолюминесценция флюорита изучалась в интервале 20—370° С. Для общей совокупности кривых термовысвечивания характерны пять главных максимумов, по-разному выраженных на конкретных кривых, которые отличаются существенным разнообразием. Эти максимумы локализуются главным образом в интервалах: до 80, 140—160, 230—240, 270—300 и 330—360° С. Они могут быть приписаны определенным центрам: дырочным Fi0 (80° C), YO20 (140—160° С) и донорно-акцепторным парам O-—TR2+ и TR2+—TR4+ (230—240, 270—300 и 330—360° C).

Спектры рентгенолюминесценции снимались в интервале 200—800 нм. Выделяются два их типа: спектры с интенсивными линиями редкоземельных элементов (рис. 23, а) и спектры, в которых линии редкоземельных элементов практически не фиксируются, а наблюдается лишь излучение на собственных дефектах решетки (рис. 23, б). Особенности спектров рентгенолюминесценции отражают величину концентрации редкоземельных элементов, поэтому можно попытаться сравнить их по относительному содержанию TR, используя в качестве компонента сравнения интенсивность самой характерной линии λ576 нм (Dy3+куб). Флюорит Урала оказался относящимся к первому «редкоземельному» типу с переменным содержанием редких земель иттриевой группы. Наиболее интенсивными линиями Dy3+куб с Iλ(576) ≈ 150—300 усл. ед. характеризуется светло-фиолетовый и бесцветный флюорит. Флюорит всех других районов относится ко второму, «нередкоземельному» типу, хотя в отдельных пробах наблюдается присутствие незначительных количеств TR, фиксируемых линиями слабой интенсивности.

Рис. 23. Два типа спектров рентгенолюминесценции природного флюорита

а — «редкоземельный», б — «беспримесный»

Рис. 24. Изменение спектров пропускания кристаллов флюорита в результате γ-облучения и последующего нагревания

1 — типичная кривая пропускания необлученных кристаллов; 2—4 — пропускание кристаллов после γ-облучения с дозой 5 Мрад (окраска: 2 — голубая, 3 — синяя, 4 — бурая); 5—7 — пропускание облученных кристаллов после нагревания при t = 100° С в течение 1 ч (окраска: 5 — голубая, 6 — синяя, 7 — бурая)

Искусственные монокристаллы. Эксперименты, проведенные с флюоритом Амдерминского месторождения, показали, что полученные из него синтетические монокристаллы в основной массе не люминесцируют при возбуждении как λвозб = 366, так и 237,5 нм. Люминесцирующими зеленым цветом оказались кристаллы, полученные из проб, взятых с определенных участков, имеющие в УФ-области полосы поглощения 200—210 нм. Особенно интенсивная люминесценция у этих кристаллов обнаруживается при возбуждении коротким ультрафиолетом вблизи полосы поглощения (λвозб = 237,5 нм). Именно эти кристаллы при γ-облучении приобретают интенсивную радиационную окраску. Нелюминесцирующие же кристаллы характеризуются слабо выраженной радиационной окраской. Слабая фиолетовая люминесценция характерна для монокристаллов из южноновоземельского флюорита при возбуждении 366 нм. Кристаллы из южнопайхойского флюорита при возбуждении 366 нм не люминесцируют.

Характер люминесценции синтетических монокристаллов CaF2 определяется структурой центров излучения, наследуемой от исходного природного флюорита, и зависит от состава и содержания редкоземельных элементов. Сравнительно низкое содержание последних во флюорите месторождений Уральско-Новоземельской провинции определило его как основной источник получения нелюминесцирующих оптических монокристаллов.

Радиационная устойчивость. Проблема повышения радиационной устойчивости встала сразу же, как только была разработана технология выращивания кристаллов, так как искусственные кристаллы отличались высокой фотохимической чувствительностью. Еще П. П. Феофилов и И. В. Степанов [Степанов, Феофилов, 1956, 1957] обращали внимание на тот факт, что искусственные кристаллы окрашивались под действием радиоактивного излучения.

Й. Йиндра и Й. Филип [1965] и Э. Г. Черневская [1969], исследовавшие влияние γ-облучения на спектральное пропускание флюорита, показали, что кристаллы, выращенные из природного плавикового шпата, в вакууме уже при дозе 7,5∙104 рад становятся практически непрозрачными. Для повышения радиационной стойкости Э. Г. Черневская предложила выращивать кристаллы во фторсодержащей атмосфере, а Й. Йиндра — из синтетического сырья. Полученные таким образом кристаллы имели более высокую радиационную стойкость, однако доза порядка 106 рад также приводила к их окрашиванию и существенному снижению спектрального пропускания в коротковолновой и видимой областях спектра.

Как установили Е. Д. Каплан, В. М. Рейтеров и др. [1977], γ-облучение с дозой 7,5∙104 рад приводит к наведению в кристаллах, полученных из синтетических препаратов GaF2, полос поглощения 325, 385 и 605 нм. Их природа связана с F- и F2-агрегатными центрами окраски, образование которых вызвано захватом примесных ионов кислорода и натрия.

Следовательно, радиационную устойчивость искусственных кристаллов можно повысить, регулируя ростовой режим. Однако наиболее эффективное решение проблемы, как и во многих других случаях, дает использование соответствующих разностей природного исходного сырья.

Эту проблему мы исследовали на примере флюорита Урала [Юшкин и др., 1982]. С целью изучения радиационной устойчивости кристаллов, установления природы структурных дефектов и определения технологических следствий радиационного воздействия выращенные кристаллы флюорита были подвергнуты γ-облучению радиоактивным изотопом цезия 137Cs до получения интегральной дозы 5 Мрад. В особых случаях набиралась доза до 30 Мрад. В результате облучения первоначально бесцветных кристаллов появилась окраска, различная по характеру и интенсивности. Можно выделить несколько видов радиационной окраски кристаллов: фиолетовую, синюю (голубую), сиреневую, желтую и зеленовато-коричневую.

На некоторых участках одного из месторождений были выявлены разности радиационноустойчивого в отношении окрашивания флюорита. Радиационная окраска их светло-голубая, весьма слабая. Светопропускание этих кристаллов в результате облучения изменяется незначительно, оставаясь практически на дорадиационном уровне. Нагревание кристаллов при температуре 100° C в течение 30 мин уже заметно ослабляет окраску, а через 1 ч окраска исчезает почти полностью (рис. 24). Флюорит, из которого получены эти кристаллы, отличается высокой «стерильностью» в отношении элементов-примесей, в том числе и редкоземельных.

У монокристаллов с явно выраженными до облучения полосами поглощения в области 200—210 нм при γ-облучении отмечается окраска желто-коричневых тонов, иногда с зеленоватым оттенком. Для них характерно интенсивное поглощение в коротковолновой части спектра вплоть до 400—450 нм, что и обусловливает желтую окраску кристаллов. В спектре фиксируются полосы поглощения 400, 450, 500 и 630 нм. Желтая окраска довольно устойчива при 100°C. Заметное ослабление ее интенсивности наступает после 1,5-часового прогрева. Бурая же (коричневая) окраска исчезает легко уже после 30-минутного нагревания. Поэтому кристаллы с полихромной желтовато-бурой радиационной окраской в результате такого кратковременного прогрева при 100°С приобретают чистый желтый цвет. Одновременно улучшаются и спектральные характеристики — возрастает пропускание по всему спектру: в УФ-области до 30—60%, одновременно в спектре выявляется структура (полосы поглощения 260 и 335 нм), в видимой же области исчезает полоса 630 нм, а τ возрастает до 80%.

Для кристаллов, выращенных из флюорита другого месторождения, характерна очень интенсивная радиационная окраска, в большинстве случаев темно-фиолетовая, непросвечивающая. Кроме того, они обладают высокой устойчивостью к температурному воздействию. Если при нагревании в течение 30 мин (100°С) окраска становится светло-фиолетовой и светопропускание заметно увеличивается (в УФ-области возрастает до 35—60%), то дальнейшее нагревание в течение 5 ч к существенному ослаблению интенсивности окраски не приводит.

Для монокристаллов, полученных из флюорита еще одного месторождения, характерна весьма разнообразная радиационная окраска — синяя, кирпичная, причем интенсивность ее очень высокая (τ = 0%). Разнообразно и их поведение при нагревании. Кристаллы с интенсивной кирпичной радиационной окраской после нагревания в течение 1 ч приобретают светлую оранжевую окраску, спектральное пропускание их в УФ-области достигает 60%, а в видимой области, в полосах поглощения 370 и 500 нм — соответственно 37 и 53%. Кристаллы с интенсивной синей радиационной окраской, практически непросвечивающие, в результате нагревания при таких же условиях приобретают полихромную окраску — желтую со светло-фиолетовым оттенком. Спектры поглощения этих кристаллов имеют сложную структуру — в видимой области фиксируются слабо выраженные полосы ~370, 385, 460, 510, 560 и 630 нм.

Таким образом, подбирая исходное сырье даже из месторождений одной провинции, можно получать чрезвычайно разнообразные по реакции на ионизирующее излучение кристаллы оптического флюорита, в том числе: а) радиационноустойчивые, сохраняющие прозрачность в экстремальных условиях; б) радиационноподатливые, легко окрашивающиеся относительно небольшими дозами излучения и также легко становящиеся снова прозрачными уже при незначительном нагревании; в) радиационнонеустойчивые, приобретающие под действием излучения прочную окраску, которую нельзя устранить никакими способами.

Лучевая прочность. Требования высокой лучевой прочности к кристаллам оптического флюорита предъявляются при их использовании в качестве рабочих деталей квантовых генераторов и других технических устройств, в которых кристаллы пропускают световые пучки с большой плотностью энергии.

Управление лучевой прочностью искусственных кристаллов флюорита в настоящее время почти полностью осуществляется подбором соответствующего исходного природного материала.

Зависимость лучевой прочности кристаллов от исходного сырья была показана Н. В. Волковой и др. [1973] на примере тех пяти разностей природного флюорита, которые охарактеризованы в табл. 3. Выращенные из каждой разности кристаллы испытывались под действием модулированного излучения неодимового лазера (λ = 1,06 мкм) с длительностью импульса τ = 50 нс (площадь светового пятна в фокусе линзы 0,03 мм2). Были получены следующие пороговые значения лучевой прочности (Uпорог), при которых происходит лучевое разрушение кристаллов:

Разновидность U порог , Дж/см 2
1 64
2 34
3 4
4 50
5 2,5
Кристаллы из синтетической соли CaF a марки ОСЧ 120

Прослеживается прямая связь лучевой прочности с оптическими свойствами, в первую очередь с пропусканием кристаллов в УФ-области. Все эти свойства зависят от присутствия примесей редкоземельных элементов, особенно церия. Наименьшей лучевой прочностью характеризуются кристаллы с максимальным содержанием этих элементов, наибольшей — чистые кристаллы, например полученные из синтетических солей фтористого кальция.

На основании этих данных можно предполагать, что максимальной лучевой прочности при сохранении других высоких оптических параметров можно добиться, используя в качестве исходного сырья беспримесные разности природного флюорита.

Пороговые значения энергии оптического разрушения кристаллов, выращиваемых из такого природного флюорита, достаточно высоки и составляют 7∙1011 вТ/см2 (λ = 1,06 мкм; τ = 50 нс; площадь светового пятна в фокусе линзы 0,03 мм2). Эти значения находятся на уровне наиболее прочных в настоящее время оптических сред.

Аналогичные приемы, в первую очередь подбор исходного сырья и операции с ним, применяются и для достижения других требуемых качеств кристаллов. Со многими из них можно ознакомиться в специальной литературе [Соболевский и др., 1936].

Получение кристаллов заданной формы

Сложность изготовления оптических изделий из кристаллических моноблоков — буль и большое количество образующихся при этом отходов, значительно превышающее объем готовой продукции, поставили задачу выращивания кристаллов строго заданной формы, близкой к форме изготовляемых деталей.

Общие принципы формообразования при выращивании кристаллов из расплавов были разработаны в нашей стране А. В. Степановым. Им же была разработана промышленная технология получения монокристаллических изделий определенной геометрической формы (листов, панелей, труб, прутков и т. п.) методами вытягивания из расплавов.

Принцип формообразования, по А. В. Степанову [1975, с. 67], заключается в следующем: «Форма, или элемент формы, которую желательно получить, создается первоначально в жидком состоянии за счет различных эффектов, позволяющих жидкости сохранить форму; затем сформированный объем жидкости переводится в твердое состояние в результате подбора соответствующих условий кристаллизации».

Этот принцип был применен Э. Г. Черневской, Е. А. Симун и А. И. Стожаровым [1970] к кристаллам флюорита, выращиваемым методом Шамовского—Стокбаргера—Степанова.

Исследования механизма роста кристаллов, проведенные этими авторами, показали, что вопреки общепринятому мнению кристаллизация расплава в виде моноблоков возможна и без четко выделенного затравочного центра. Рост монокристалла может начинаться от поверхности любой пространственной конфигурации — плоской, вогнутой, выпуклой и т. д. При определенных условиях и специально организованном теплоотводе переход расплава в монокристаллическое состояние может осуществляться не только в одной точке, но и на довольно большой площади изотермической поверхности любой формы и протяженности.

Э. Г. Черневской с соавторами было высказано предположение, что в области температуры кристаллизации расплава флюорита возникают условия, облегчающие образование монокристалла. Расплав приобретает псевдокристаллическую структуру, обеспечивающую образование монокристаллического слоя большой протяженности, играющего в дальнейшем роль затравки.

Установление возможности выращивания кристаллов без четко выделенного затравочного центра определило основные направления практического решения вопроса кристаллизации флюорита в производственных условиях [Черневская, Калита, 1972].

Основную формообразующую роль играет конструкция тигля [Черневская, 1971]. Вместо традиционного тигля в виде единого цилиндрического сосуда с конусным или полусферическим дном был предложен набор сосудов в виде стопы. Он обеспечивал получение одновременно целой серии кристаллов непосредственно в форме заготовок оптических деталей. В соответствии с принятым способом симметрично-кругового нагрева внешняя форма сосудов осталась цилиндрической, но теперь они имели плоские днища и свободно устанавливались друг над другом. Внутренняя плоскость каждого сосуда имеет форму и размеры кристаллизуемой заготовки или содержит гнезда для выращивания заготовок кристаллов меньших размеров и иной конфигурации.

На рис. 25 показаны различные варианты кристаллизационных тиглей, используемых при выращивании кристаллов флюорита в виде дисков. В верхней части стопы форм размещается резервуар (бункер), обеспечивающий максимальное заполнение тиглей расплавом. В дне бункера и каждого из сосудов, кроме нижнего, вытачиваются отверстия для протекания расплава. Количество сосудов определяется размерами рабочей (ростовой) зоны установки и выращиваемых заготовок кристаллов. Сосуды могут быть как одинаковой, так и различной формы. Выращивание кристаллов в таких тиглях осуществляется перемещением в ростовой печи стопы всех сосудов из зоны плавления в зону с температурой ниже температуры кристаллизации. Рост кристалла начинается в нижнем сосуде и затем продолжается в каждом из вышестоящих при последовательном пересечении ими изотермы кристаллизации.

Рис. 25. Форма тигля для выращивания кристаллов флюорита в виде дисковых заготовок

При таком «групповом» способе выращивания существенное повышение качества кристаллических заготовок было достигнуто за счет усовершенствования конфигурации форм. Отверстия для протекания расплава располагаются в центре каждого гнезда и имеют конусообразную форму. При кристаллизации расплава через отверстия прорастают монокристаллы, которые служат затравками при образовании монокристаллических заготовок в гнездах верхней формы. Вероятность спонтанного образования зародышей практически исключается.

Благодаря этому методу в настоящее время кристаллы выращиваются в виде плоскопараллельных пластин, дисков, цилиндров, призм, линз, сфер, полусфер с отклонением от заданных размеров 0,1—0,3 мм (фото 14, см. вкл.).

Из них с относительно небольшими затратами труда и минимальными отходами изготовляются соответствующие оптические детали (фото 15, см. вкл.). Получение кристаллов заданной формы значительно облегчает механизацию и автоматизацию всего технологического процесса создания флюоритовой оптики, включая и кристаллизационную и обрабатывающую стадии.

Получение крупногабаритных кристаллов

Для ряда оптических производств требуются кристаллы флюорита больших размеров. Сложная проблема получения крупногабаритных оптических кристаллов флюорита была успешно решена коллективом исследователей под руководством В. А. Соколова [1979, 1980]. Ими разработана промышленная технология выращивания кристаллических заготовок диаметром 500—600 мм, толщиной 70 мм и массой до 120 кг, из которых изготовляются крупные детали (фото 16, см. вкл.).

Выращивание крупногабаритных кристаллов проводится методом Шамовского—Стокбаргера—Степанова в специальной аппаратуре с двумя или более нагревателями и системой отражающих экранов, позволяющих создавать температурное поле строго заданной структуры и вести направленный отвод тепла.

Общая схема процесса та же, что и при выращивании обычных кристаллов заданной формы, но режим кристаллизации значительно более строгий. Условиями выращивания требуется поддержание глубокого вакуума 5∙10-5 мм рт. ст. в течение всего цикла выращивания.

Структура теплового поля должна обеспечивать отсутствие температурных градиентов в зоне расплавления шихты, но создавать большой градиент в зоне кристаллизации. Изотерма кристаллизации должна иметь плоскую форму на фронте роста кристалла. Температура части кристалла, находящейся в нижней («холодной») зоне печи, должна составлять не ниже 2/3 температуры плавления флюорита. Температурные градиенты в зоне отжига недопустимы.

Крупногабаритные кристаллы имеют высокие показатели качества, о чем свидетельствуют следующие данные по В. А. Соколову:

Максимальный диаметр кристалла, мм 620
Толщина кристалла, мм 70
Максимальное остаточное двойное лучепреломление в заготовке диаметром 600 мм, нм/см 20—30
Категория оптической однородности 2—3
Число блоков в заготовке диаметром 600 мм 6—30
Плотность дислокаций, см -2 5∙10 4
Стабильность показателя преломления (3—4)∙10 -6
Светорассеяние Отсутствует
Область оптической прозрачности, мкм 0,12—9,5

Преимуществом разработанной В. А. Соколовым методики является не только получение гигантских монокристаллов, но и возможность выращивания за один цикл (если использовать тигель с набором чаш различных размеров и форм) практически всей номенклатуры изделий, вписывающихся в диаметр 600 мм.

Пути новых поисков и разработок

Минералоги, кристаллогенетики и технологи добились высоких результатов, полностью заменив природный флюорит искусственным и создав индустрию искусственных кристаллов с самыми различными свойствами. Но нерешенных проблем все еще остается очень много, а развивающаяся техника выдвигает новые задачи.

Кристаллотехнологи работают над совершенствованием как всего технологического процесса, так и отдельных его звеньев. Разрабатывается новое высокоэффективное оборудование, опробуются новые технологические режимы. Ростовые производства переводятся на полностью автоматизированное управление. С каждым годом увеличивается разнообразие продукции, создаваемой на основе монокристаллов оптического флюорита.

В дальнейшем необходимо разработать и освоить способы выращивания гигантских монокристаллических заготовок диаметром 1 м и даже в несколько метров. Это выведет на новый уровень наши исследования макромира, в том числе и астрономические, позволит создать уникальную лучевую технику.

Нужно сосредоточить усилия на расширении диапазона регулируемых качеств флюоритовых кристаллов, на создании кристаллов с новыми качествами. Флюорит, к сожалению, характеризуется низкими генерационными параметрами, и это ограничивает его применение в лазерной технике в качестве активных элементов лазеров. Еще одна из острых проблем — получение кристаллов флюорита с высокой концентрацией стабильных при комнатной температуре центров окраски, чего, очевидно, можно добиться введением определенных примесей. Это расширит возможности использования таких монокристаллов в качестве пассивных затворов лазеров.

Расплавный процесс выращивания кристаллов флюорита, хотя он удобен и освоен достаточно хорошо, все же требует больших энергетических затрат, кроме того, он имеет ряд пределов в достижении некоторых показателей качества кристаллов, например однородности. По-прежнему актуальными остаются поиски путей гидротермального выращивания кристаллов флюорита, а также освоение методов расплавной кристаллизации на затравку, флюсовых и других методов.

Большие перспективы связываются с получением новых кристаллических материалов на флюоритовой основе. Мы остановимся на трех из них: нитевидных кристаллах, кристаллокерамике и композиционных материалах.

Нитевидные кристаллы, или «усы», викерсы, характеризуются почти бездислокационной структурой и высокой прочностью, близкой к теоретической, и в десятки и даже сотни раз превышающей прочность объемных кристаллов [Юшкин, 1971]. При очень маленькой толщине (около 0,0n—n мкм) и несравнимо большей длине они отличаются высоким совершенством внутренней структуры. Эти необычные свойства нитевидных кристаллов открывают перед ними широкие области применения. Такие кристаллы могут быть использованы, например, в качестве гибких микросветоводов для ультрафиолетового, видимого и инфракрасного излучений.

Попытки выращивания нитевидных кристаллов флюорита уже предпринимались [Desai, John, 1978]. Нитевидные кристаллы были получены флюсовым методом из природного флюорита под флюсом KCl или NaCl (лучшим оказался KCl). Длина их составляла около 10 мм, толщина 3—30 мкм. Удлинение по [110]. Нитевидные кристаллы вдвое меньшей величины были получены при взаимодействии фторида натрия и хлорида кальция, смешанных в стехиометрических пропорциях, и еще более мелкие — при выращивании под флюсом в запаянной вакуумированной до 10-5 мм рт. ст. ампуле.

Во всех этих методах исходный материал с флюсом прокаливался до 1000°С и охлаждался со скоростью около 10° C в 1 ч до 300° C, а затем при выключенном нагреве — до комнатной температуры.

Полученные нитевидные кристаллы (фото 17, см. вкл.) характеризуются более высокой, чем объемные, прочностью и пластичностью: предельный радиус изгиба нитевидного кристалла, при котором изгибаемый кристалл ломается, варьирует от 8 до 12 см для кристаллов толщиной 3—30 мкм и прямо пропорционален толщине кристалла.

Исследования в области получения, изучения свойств и применения нитевидных кристаллов флюорита представляют большой интерес.

Оптическая кристаллокерамика представляет собой новый оптический поликристаллический материал, который изготовляется методом горячего прессования кристаллического порошка. Этот процесс имеет много общего с порошковой металлургией, так бурно развивающейся в последние годы.

Изготовление кристаллокерамики — перспективная техническая идея. Очень важно получить поликристаллический материал из флюорита с почти такими же оптическими характеристиками, как и монокристаллический флюорит. Такой материал будет несравнимо прочнее и тверже монокристаллического, у него будет отсутствовать спайность, поднимется термостойкость и т. п. Кроме того, горячее прессование может стать более экономичным процессом, чем кристаллизация из расплава. Самая существенная трудность — добиться полной оптической гомогенизации микрозерен.

В настоящее время различные фирмы предлагают широкую номенклатуру оптической керамики. В ней есть и несколько типов флюоритовой керамики, среди них «Иртран-3» и КО-3 (США) и JRG-12 (ФРГ).

Различные исследователи изучали оптические и другие физические свойства оптической кристаллокерамики и проводили ее сравнительный анализ со свойствами монокристаллов [Волынец, 1973; Ressler, Möller, 1966; Browder, Ballard, 1969]. Внешне оптические детали из кристаллокерамики совершенно однородны, прозрачны и не отличаются от монокристаллических (фото 18, см. вкл.). Показатель преломления n = 1,4289 (λ = 1 мкм) имеет то же значение, что и показатель преломления кристаллического флюорита. Оптическая однородность керамики не уступает однородности монокристаллов, это подтверждает голографический контроль (фото 19, см. вкл.). Градиент показателя преломления Δn не превышает 1,0∙10-5 см-1; относительный градиент Δn/(n—1) более 2,3∙10-5 см-1. Светорассеяние существенно выше, чем в монокристаллах, и обусловлено наличием большого числа вакуумных микропор и включений, размерами зерен, структурой керамики. Прозрачность керамики характеризуется границей прозрачности, т. е. длиной волны, при которой коэффициент пропускания образца толщиной 2 мм, равен 50% (без учета потерь на отражение). Для «Иртран-3» и КО-3 1-я длинноволная граница прозрачности определяется в 10,2 мкм, 2-я — в 200 мкм. Следовательно, прозрачность керамики в ИК-области вполне удовлетворительная. Оптические свойства сохраняются при нагревании до 800° C; температурный коэффициент показателя преломления dn/dt° = —16∙106 для λ = 0,5461 мкм, так что оптическая керамика хорошо «работает» в высокотемпературных условиях.

Конечно, кристаллокерамика еще далека по своим показателям от того состояния, чтобы заменить оптический флюорит в тех устройствах, для которых главное значение имеет пропускание в УФ-области. Но она может и уже вытесняет флюорит в инфракрасной технике. Из флюоритовой керамики делают оптические кюветы для работы с агрессивными фторсодержащими средами. Она используется в качестве активной среды в оптических квантовых генераторах, излучающих в ИК-области спектра [Волынец, 1973], а также в ракетной технике [Swinehart, Shligoj, 1973].

Технологические исследования в области создания кристаллокерамики интенсивно ведутся сейчас во всех странах.

Композиционные материалы, в которых флюорит используется как один из компонентов двойной или тройной композиции, подобно кристаллокерамике находят в последнее время широкое применение, поскольку наряду с неплохими оптическими характеристиками отличаются высокой прочностью, износостойкостью.

Одна из технологий получения композиционных материалов [Swinehart, Shligoj, 19731 предлагает использовать в качестве исходных следующие смеси:

Состав смеси, мол. % Точка плавления смеси, °C
14 CaF 2 + 86 LiF 765
32 CaF 2 + 68 NaF 810
63 CaF 2 + 37 MgO 1340
43 CaF 2 + 57 MgF 2 945
21 CaF 2 + 79 BaCl 2 791

Тройная смесь должна иметь состав (мол. %): CaF2 — 10; NaF — 35; LiF — 55.

Эти смеси используются как шихта в стокбаргеровском методе. Они закладываются в тигли, расплавляются в горячей зоне печи и опускаются в холодную. При определенных режимах кристаллизуется эвтектика, представляющая композиционный материал с закономерной ориентировкой субиндивидов трех фаз.

Полученные материалы прозрачны в области от 1,5 до 25 мкм, причем в интервале от 3 до 9 мкм пропускание выше 60%, а в остальной области спектра — выше 20% (для пластинок толщиной 5 мм). Полосы поглощения отсутствуют. Прочность и твердость выше, чем у кристаллических материалов, растворимость низкая. Образцы без видимых изменений претерпевают 10 циклов нагревания от 300 до 0°С.

Конечно, рассмотренными выше не ограничиваются направления поисков по созданию новых технологий и новых материалов на основе флюорита.

 

Флюорит в оптической технике

Область применения кристаллов флюорита охватывает практически всю оптическую технику. Спектральные приборы, микроскопы, телескопы, фото- и кинотехника, приборы для космических исследований, для люминесцентного и поляризационного анализа, голографические системы, лазерные установки обязательно содержат детали из оптического флюорита, особенно если они предназначены для работы в широком спектральном диапазоне или в одной из «труднодоступных» его областей — далекой ультрафиолетовой и инфракрасной [Воронкова, Гречушников, 1965; Новые..., 1975; Никогосян, 1977]. Номенклатура этих деталей очень разнообразна: линзы, объективы и окуляры, оптические окна, призмы, фильтры, кюветы и т. д.

Наиболее давним и наиболее крупным потребителем оптического флюорита является микроскопия.

Современные микроскопы — это несравнимо более сложные оптические системы, чем те, которые были на вооружении науки несколько десятков лет назад и с которыми мы хорошо знакомы по учебникам физики. Современный микроскоп не только обеспечивает многократное увеличение изображения объекта, но и дает возможность всестороннего его исследования, получения широкого набора точных характеристик, установления закономерностей изменения этих характеристик в процессе функционирования объекта. А если еще учесть исключительное разнообразие изучаемых объектов (жидкости и твердые тела, аморфные и кристаллические, прозрачные и непрозрачные вещества, микроорганизмы и органы макроорганизмов, живые клетки и т. д.), то можно представить те высокие требования, которые предъявляются к оптическим системам современных микроскопов [Скворцов и др., 1969; Суворов, 1981]. Важнейшие из этих требований: высокая разрешающая способность, обеспечение исправленного вторичного спектра, возможность работы в ультрафиолетовой и инфракрасной областях спектра, малая дисперсия, отсутствие люминесценции.

Особую ценность флюориту, как материалу для микроскопной оптики, придает специфический характер дисперсии, позволяющий создавать оптические системы с исправленным вторичным спектром, дающие совершенно неискаженные наложенными оптическими эффектами изображения объектов в их естественном цвете.

Вторичным спектром называется такое явление, когда изображения осевой точки, создаваемые лучами F и C, совпадают между собой, но не совпадают с изображением для желтых лучей (D), которые приняты за основной цвет. Разность отрезков между параксиальными изображениями осевой точки составляет величину вторичного спектра. Для двухлинзовых систем она пропорциональна отношению разности частных относительных дисперсий к разности коэффициентов средней дисперсии, т. е. пропорциональна коэффициенту K:

где p1 и p2 — относительная частная дисперсия первой и второй линз; nF, C, D — показатели преломления оптического материала для лучей F, C, D соответственно; v1, v2 — коэффициенты средней дисперсии первой и второй линз.

Для большинства оптических стекол, используемых в микроскопии, существует линейная функциональная зависимость p = f(v), и величина вторичного спектра для них постоянна. Специальные сорта стекол отличаются по ходу дисперсии v от обычных стекол на несколько единиц при тех же значениях р, а флюорит — более чем на 30 единиц! Это значит, что на базе флюорита можно создавать оптические системы, вторичный спектр которых в десятки раз меньше вторичного спектра систем из обычных и даже специальных сортов стекол.

На рис. 26 показана зависимость коэффициента К от длины волны для оптической системы из пары обычных оптических стекол (кривая 1) и из пары флюорит—стекло (кривая 2). Сравнение кривых показывает, что вторичный спектр оптической системы, содержащей флюорит, в ультрафиолетовой области спектра примерно в 5 раз, а в ближней инфракрасной области примерно в 20 раз меньше вторичного спектра системы, составленной из обычных сортов оптических стекол. Большой интерес представляет пара флюорит—кварцевое стекло. Для нее зависимость коэффициента К от длины волны даже в ультрафиолетовой области значительно слабее, чем для пар обычных стекол в видимой области. Это позволяет разработать оптические системы с областью пропускания, простирающейся далеко в коротковолновую часть спектра, недоступную для наблюдения невооруженным глазом.

Рассмотрим эффективность использования флюорита в различных типах объективов.

Объективы-ахроматы, конструктивными особенностями которых исправлена сферическая аберрация, т. е. нарушение резкости по краям изображения при фокусировке на его центр, но остается неисправленным вторичный спектр и сохраняется сферохроматическая аберрация при больших увеличениях, не требуют обязательного использования флюоритовых линз. Специальные ахроматические кварц-флюоритовые объективы (ОК-5, ОК-50, ОК-58, ОК-120, ОК-10-3 и др.) применяются только в микроскопах, работающих в УФ-области спектра (рис. 27, a, б). Объектив ОК-58 с дополнительной коррекционной системой позволяет, например, работать в области 365—546 нм без перефокусировки.

Рис. 26. Кривые, характеризующие зависимость величины вторичного спектра (коэффициент К) от длины волны оптических систем стекло—стекло (1) и флюорит—стекло (2)

Рис. 27. Оптические объективы с флюоритовыми линзами (заштриховано), выпускаемые ЛОМО им. В. И. Ленина

Объяснение в тексте

Рис. 28. Кривые, характеризующие хроматизм положения, область резкого изображения в различных системах объективов микроскопов

1 — ахромат;

2 — флюоритовый объектив;

3 — апохромат из системы флюорит—стекло

Объективы-апохроматы не имеют хроматической аберрации и дают изображение объекта с неискаженной окраской. Это достигается исправлением вторичного спектра именно благодаря введению деталей из оптического флюорита в паре с кварцевым и другими стеклами. Оптические схемы обычного и масляного объективов апохроматов даны на рис. 27, в, г. Апохроматы дают резкое изображение в наибольшем по сравнению с другими системами диапазоне спектра (рис. 28), отличаются высоким уровнем коррекции аберраций и позволяют получать высококачественные контрастные изображения с неискаженной цветопередачей мельчайших (до 0,25 мкм) элементов биологических структур.

Объективы-планапохроматы были созданы в 50-х годах благодаря появлению особых сверхтяжелых стекол, близких по значению частных относительных дисперсий к флюориту. Они позволили повысить эффективное поле наблюдения по сравнению с апохроматами от 5—10 до 25—28 мм. В его пределах сохраняется неискаженное изображение объекта. Схемы и конструкции двух планапохроматов приведены на рис. 27, д, е. Один из них, ОПА-3, трехкомпонентный. Его первым компонентом служит менисковый компенсатор. Второй компонент состоит из двух двойных или тройных линз, положительные из них выполнены из оптического флюорита, отрицательные — из особых стекол. Третий компонент — отрицательный мениск относительно небольшой силы для исправления астигматизма. Применение планапохроматов исключает необходимость перефокусировки микроскопа для исследования периферийных участков. Оно резко улучшило качество микрофотографий и открыло возможности для внедрения машинных методов обработки изображений.

Нелюминесцирующие объективы, или «неофлюоры» (новые флюоритовые системы), представляют собой новый класс объективов, отличающихся улучшенной коррекцией вторичного спектра и кривизны изображения по сравнению с ахроматическими объективами, простотой оптической конструкции и, что самое важное, отсутствием собственной люминесценции [Иванова, 1979, 1980]. Последнее достигается тем, что эти объективы создаются на основе нелюминесцирующих разностей природного флюорита. Этот тип объективов используется при исследовании в свете люминесценции особо тонких биологических структур, требующих высокой разрешающей способности, какими являются, например, хромосомы. Схема ряда разработанных в СССР нелюминесцирующих объективов приведена на рис. 27, ж, з. Это только основные типы флюоритовых объективов, главные особенности которых определяются именно особыми свойствами флюорита как оптического материала. Кроме того, флюоритовые детали используются в объективах-монохроматах, объективах для ИК-области спектра, зеркальных и зеркально-линзовых объективах, в окулярах и других оптических системах.

Объективами с флюоритовой оптикой комплектуются различные классы современных микроскопов: биологические, металлографические, минералогические и петрографические поляризационные и многие другие. В последнее время широкое распространение получили универсальные микроскопы, приспособленные для исследования любых объектов. Среди них наиболее известны микроскопы Nu-2E и Neophot-2 производства предприятия «Карл Цейс Йена» в ГДР. Они снабжены всеми типами флюоритовых объективов и окуляров.

Наиболее полно широкие возможности флюоритовой оптики раскрываются при исследовании биологических объектов и явлений. Биологические микроскопы имеются не только в биологических, но и в медицинских, химических, физических и других лабораториях.

Отечественная промышленность на базе Ленинградского оптико-механического объединения им. В. И. Ленина в настоящее время выпускает биологические микроскопы серии «Биолам» четырех классов: С — студенческие, Д — дорожные, Р — рабочие и Л — лабораторные. Каждый из них изготовляется в нескольких вариантах.

Микроскопы «Биолам-С,-Д,-Р» относительно упрощенные и укомплектованы в основном ахроматическими объективами. Однако в комплекте рабочей модели «Биолам Р-17», который применяется в основном в клинических лабораториях, есть четыре апохроматических объектива, резко расширивших его возможность. Столь богатое оснащение крупносерийного рабочего прибора оказалось возможным благодаря хорошо налаженной индустрии искусственных кристаллов флюорита. Более совершенные агрегатные лабораторные микроскопы «Биолам Л-211» и «Биолам Л-212» имеют по шесть апохроматических объективов ×10—90.

Микроскопом наиболее широких возможностей является универсальный исследовательский биологический микроскоп МБИ-15, хорошо оснащенный разнообразной флюоритовой оптикой (как апохроматами, так и планапохроматами), в том числе и обеспечивающей наблюдение в свете видимой люминесценции, которая возбуждается сине-фиолетовым участком спектра 400—440 нм и ультра-фиолетовыми лучами 360 нм. Апохроматическими объективами укомплектованы также исследовательские микроскопы МБИ-6 и МББ-1А.

Создание новых биологических микроскопов с флюоритовой оптикой позволило внедрить в практику биологических и медицинских исследований ряд новых эффективных методов. Благодаря применению высококачественной апохроматической оптики микроскопов значительно повысилась роль клинико-лабораторных анализов, при которых выясняется теперь не только характер заболеваний, но и устанавливаются стадии и фазы болезни, определяется оптимальность выбранного способа лечения в зависимости от защитных реакций организма.

В современных научных исследованиях широкое развитие получила люминесцентная (флюоресцентная) микроскопия. Благодаря исключительно высокой чувствительности и пространственной избирательности, позволяющей исследовать объекты размером около 0,25 мкм, этот метод применяется в биологии, медицине, минералогии, геохимии. В минералогических препаратах по характеру люминесценции диагностируются микровыделения различных минералов, изучается внутреннее строение минеральных зерен и кристаллов, структура горных пород. С помощью люминесцентного анализа определяется содержание, состав и природа битумов.

Однако наиболее мощным исследовательским средством люминесцентная микроскопия стала в биологии. Многие ткани и органы живых организмов являются люминесцирующими или легко окрашиваются флюоресцирующими веществами. Под люминесцентным микроскопом их можно изучать не разрушая. Более того, разработаны методики и аппаратура для микролюминесцентного изучения живых биологических объектов. Люминесцентная микроскопия эффективно используется для экспресс-диагностики ряда заболеваний, а также в бактериологии, онкологии, иммунопатологии и других областях.

Для люминесцентных исследований на базе нелюминесцирующей флюоритовой оптики создана и выпускается серия люминесцентных микроскопов «Люмам» различного назначения. Для наблюдения и фотографирования изображений биологических и других объектов в свете их люминесценции, возбуждаемой излучением 360—440 нм, предназначены рабочие модели «Люмам-Р1, -Р2, -Р3». Специальные рабочие модели микроскопов «Люмам-Р4, -Р5» приспособлены для изучения вирусов гриппа и гриппоподобных заболеваний. Микроскопы «Люмам И-1, -2, -3» являются исследовательскими и отличаются более широкими возможностями. Для исследования структуры тканей органов человека и животных разработан контактный люминесцентный микроскоп МЛК-1 с оптической головкой, которую можно вводить в малодоступные для исследования органы, проводить их наблюдение и фотографирование во время операции и после нее. Другой контактный люминесцентный микроскоп «Люмам К-1» предназначен для прижизненных исследований клеток и тканей на различной глубине в органах экспериментальных животных. Он позволяет изучать живые объекты в свете собственной люминесценции и в поляризованном свете методами светлого и темного поля. У микроскопов серии «Люмам» спектральная область исследуемой люминесценции 450—650 нм, область возбуждения люминесценции 360—440 нм. Кроме того, промышленность выпускает микроскопы-флюориметры «Люмам-ИУФ-1» и «Люмам-ИУФ-3», позволяющие измерять интенсивность люминесценции. У них область исследуемой люминесценции шире — от 300 до 750 нм.

Спектрофотометрия и микроспектрофотометрия — еще одна очень крупная область потребления флюорита.

Любой современный прибор для записи спектров газообразных, жидких и твердых веществ в широком спектральном диапазоне не может обойтись без флюоритовых кювет или окон (фото 20, см. вкл.). Только в номенклатуру инфракрасного спектрофотометра Specord 75IR производства «Карл Цейс Йена» в ГДР входит около 20 различных газовых и жидкостных кювет с окошками из флюорита и около десятка отдельных флюоритовых окошек. Микроспектрофотометрические методы позволяют получать очень важную количественную информацию о структуре и функциях микрообъектов.

Однако для проведения высокоточных спектральных измерений микрообъектов требуются объективы не только с низким уровнем коррекции хроматических аберраций, в том числе и за пределами видимой области спектра, но и с повышенной прозрачностью, особенно в ультрафиолетовой части спектра. Потери света на поглощение в оптическом приборе, как известно, определяются в основном прозрачностью оптических сред и их толщиной в оптической системе. Эти потери уменьшают величину полезного сигнала, особенно в ультрафиолетовой области, и влияют тем самым на точность измерений.

Высокая прозрачность в интервале до 200 нм искусственных кристаллов, выращенных из природного флюорита, позволила создать класс объективов для ультрафиолетовой и видимой областей спектра, отличающихся повышенной точностью измерений. На их основе были разработаны и освоены в серийном производстве такие высокоточные приборы, как микроспектрофотометр МУФ-5, цитофотометры для видимой области спектра МЦФВ-1, видимой и УФ-области МЦФУ-1.

Одним из весьма эффективных методов многопараметрического количественного изучения микрообъектов является люминесцентно-абсорбционный анализ. Для его проведения на ЛОМО им. В. И. Ленина разработаны и выпускаются серийно микроспектрофлюориметры МЛИ-1 и МЛИ-3, микротауметр МЛТ-1. Возбуждение люминесценции в этих приборах осуществляется областью спектра 240—550 нм, наблюдение и измерение — в области 300—700 нм.

Все современные микроспектрофотометрические приборы позволяют включать их в комплексы с другими приборами и ЭВМ с целью автоматизации процессов измерения и обработки результатов измерений. В медицинских научно-исследовательских центрах такие комплексные исследования по поиску новых лекарственных соединений обеспечивают изучение процессов на клеточном уровне вместо применения традиционных классических приемов оценки действия лекарственных соединений на животных, позволяют ускорить исследование в десятки раз и значительно повышают надежность получаемых результатов.

На базе оптического флюорита оказалось возможным широкое развитие методов оптико-структурного машинного анализа изображений микрообъектов (ОСМА). Основу его составляет устройство съема информации (УСИ) «Протва-С», которое сканирует изучаемые объекты методами фазового и темнопольного контраста, люминесцентно-абсорбционной микроскопии и передает данные о них в специализированные устройства обработки информации или в универсальные ЭВМ [Беляй и др., 1971; Богданов, 1971]. Подобные устройства используются в качестве датчиков в автоматических системах управления техническими процессами (АСУТП) на химических, биохимических и микробиологических производствах.

В любых автоматических или неавтоматических оптических исследовательских системах кристаллы флюорита выполняют наиболее важную роль. Они находятся в непосредственном контакте с объектом исследования и передают в систему информацию о нем. Количество и качество этой информации определяется в первую очередь оптическими свойствами флюорита. Все прочие элементы системы, какой бы она ни была сложной, не увеличат количества информации. Они лишь помогают избавиться от наложенных «шумов», организуют информацию в наиболее удобную для исследователя форму.

Возможности оптического флюорита как средства исследования микрообъектов еще далеко не исчерпаны, и конструкторы работают над созданием новых оптических систем, новых микроскопов и микроскопных комплексов.

Перечислим еще несколько направлений технического использования флюорита.

Любые кристаллы флюорита, даже не очень высокого качества, отличаются хорошим пропусканием в ИК-области, поэтому оптический флюорит широко применяется в различной инфракрасной технике. Это приборы для инфракрасной термографии, различные тепловизоры, камеры для фото- и киносъемки в инфракрасном диапазоне и т. п.

Перспективной областью применения оптического флюорита является лазерная техника и силовая оптика. Активированный различными примесями флюорит используется в качестве элементов лазеров, генерирующих остронаправленные световые пучки различных длин волн. Все же генерационные параметры флюорита пока еще не очень высоки, и тут он уступает первенство многим другим кристаллам. Однако в качестве пассивных (фототронных) затворов, управляющих потерями в резонаторе лазера, кристаллы флюорита, особенно с высокой плотностью стабильных центров окраски, применяются достаточно широко.

Кристаллы флюорита прямо противоположного качества, с очень неустойчивыми центрами окраски, высокофотохромные, изменяющие цвет под действием ультрафиолетового и даже видимого освещения находят применение в голографии как материал для записи голограмм с помощью гелий-неонового лазера. Перед записью кристаллы предварительно активируются действием равномерного ультрафиолетового освещения. Такие кристаллы флюорита, например, предлагают фирмы «Монокристаллы, Турнов» в ЧССР [Photochromic...]

Среди кристаллических материалов, пожалуй, нет равного флюориту по разнообразию характера люминесценции и по возможности управлять люминесценцией. Это определяет широкое применение флюорита в различной люминесцентной технике. На основе флюорита создаются монохроматоры для рентгеновских и нейтронных лучей.

Мы рассмотрели лишь некоторые из многочисленных областей применения оптического флюорита. Эти области с развитием оптической техники, с повышением качества самих кристаллов и появлением новых данных о технических возможностях флюорита как оптического материала постоянно расширяются. На основе флюорита создаются новые приборы и технические устройства. Потребность в высококачественном оптическом флюорите непрерывно повышается, стимулируя дальнейшее развитие индустрии искусственных кристаллов.

 

Заключение

Задумывая эту книгу и работая над ней, мы не только хотели познакомить интересующегося читателя с одним из удивительных минералов — оптическим флюоритом, но и преследовали еще одну цель — специальную.

Дело в том, что, прежде чем стать ответственной деталью оптического прибора или технического устройства, природный флюорит проходит через сложную систему технологических операций, отдельными звеньями которой управляют специалисты самых разных направлений: геологи, горняки, обогатители, химики, технологи-ростовики, оптики, конструкторы и многие другие. Чтобы система работала эффективно, все звенья ее должны быть тесно взаимосвязаны.

Мы постарались показать весь технологический процесс создания флюоритовой оптики — от исходного сырья до конечного изделия. И если не о всем в ней удалось рассказать полно, ясно, то основные задачи, стоящие перед специалистами-флюоритчиками разных направлений, можно сформулировать вполне определенно.

Геологам предстоит обеспечить промышленность неограниченными запасами флюорита, в первую очередь такими его разностями, которые практически не содержат примесей, характеризуются соответствующими физическими свойствами и легко выделяются из руд в мономинеральные фракции. Совершенно необходимым элементом оценки флюоритовых руд должны быть их технологические испытания: лабораторное или промышленное выращивание кристаллов и оценка их качества.

Перед обогатителями стоит задача разработки и внедрения таких схем обогащения, которые позволяли бы получать особо чистую флюоритовую крупку, идущую непосредственно в шихту без предварительной ее физической и химической обработки. Это откроет возможность комплексного использования флюорита рядовых месторождений, поставляющих сейчас флюорит для химической и металлургической промышленности, и исключит необходимость в поисках месторождений флюорита специально для оптики. Задача химиков в связи с этим — найти эффективную технологию глубокой химической очистки флюорита и получения особо чистого синтетического фтористого кальция с удовлетворяющей ростовиков степенью дисперсности и кристалличности.

Технологи-ростовики должны разработать в дополнение к освоенным новые промышленные методы выращивания монокристаллов и поликристаллов оптического флюорита, проводя технологические поиски в трех направлениях: 1) создание дешевых, экономичных технологий; 2) разработка методов выращивания кристаллов высокой степени физического совершенства; 3) полная автоматизация производственных процессов. Конечную продукцию необходимо строго дифференцировать по качеству и свойствам, выделяя категории кристаллов разного целевого назначения.

Оптикам и конструкторам необходимо разрабатывать оптические системы и технические конструкции, максимально полно используя все потенциальные возможности флюорита как оптического материала, учитывая производство кристаллов с заданными свойствами. Перед физиками стоит задача более глубокого изучения свойств флюорита, познания их кристаллофизической и кристаллохимической природы, определения возможных технических свойств.

Флюорит не сказал еще своего последнего слова в науке и технике. У него большое будущее.

 

Литература

Аникин И. Н., Бутузов В. П., Шушканов А. Д. Способ выращивания монокристаллов флюорита. А. с. № 169063. Заявл. 06.03.1962, № 767781/22—2; Опубл. 11.03.1965. НКИ 12с С. — В кн.: Свод изобретений СССР, 1965, № 6, с. 14.

Аникин И. Н., Шушканов А. Д. Определение растворимости флюорита в водных растворах электролитов.— Кристаллография, 1963, т. 8, вып. 1, с. 128—130.

Архангельская В. А. Центры окраски в кристаллах типа флюорита, активированных редкоземельными элементами: (Обзор). — В кн.: Спектроскопия кристаллов: Материалы II симпоз. по спектроскопии кристаллов. М.: Наука, 1970, с. 143—153.

Беляй Д. П., Давыдова М. И., Зарубина И. Л. Унифицированная аппаратура («микроскоп-ЭВМ») для съема информации в комплексе «Протва-С». — В кн.: Статистические свойства микроструктур. М., 1971. 142 с.

Богданов К. М. Оптико-структурный машинный анализ микрообъектов в морфологических исследованиях. Пущино: Ин-т биохимии АН СССР, 1971.

Бокий Г. Б., Козлова О. Г. Кристаллографические критерии отбора плавикового шпата для получения из него искусственных кристаллов оптического флюорита.— Кристаллография, 1957, т. 2, вып. 1, с. 158—165.

Бонд В. П. Технология кристаллов. М.: Наука, 1980. 303 с.

Вильке К. Т. Выращивание кристаллов. Л.: Недра, 1977. 600 с.

Власов К. А., Кутукова Е. И. Изумрудные Копи. М.: Изд-во АН СССР, 1960. 252 с.

Пулкова Н. В., Гусев Г. П., Цирульник П. Н., Шатилов А. В. Влияние исходного флюорита на лучевую прочность оптического флюорита. — Опт.-мех. пром-сть, 1973, № 10, с. 31—33.

Волынец Ф. К. Оптические свойства и области применения оптической керамики. — Опт.-мех. пром-сть, 1973, № 10, с. 47—57.

Воронкова Е. М., Гречушников Б. Н., Дистлер Г. И., Петров И. П. Оптические материалы для инфракрасной техники. М.: Наука, 1965. 335 с.

Воронько Ю. К., Осико В. В., Фурсиков М. М. Исследование структуры кристаллов CaF2—Sm3+ с помощью оптических методов. — В кн.: Рост кристаллов. М.: Наука, 1965, т. 5, с. 383—390.

Воронько Ю. К., Осико В. В., Удовенчик В. Т., Фурсиков М. М. Оптические свойства кристаллов CaF2—Dy3+. — Физика твердого тела, 1965, т. 7, № 1, с. 267—273.

Гликин А. Э., Петров Т. Г. Экспериментальное изучение форм роста кристаллов флюорита в гидротермальных условиях. — Минер. сб. Львов. геол. о-ва, 1966, № 20, вып. 3, с. 443—446.

Доладугина В. С. О блочности фторидных кристаллов. — Опт.-мех. пром-сть, 1969, № 9, с. 48—50.

Ермаков Н. П. Температуры образования гидротермальных месторождений оптических минералов. — Сов. геология, 1944, № 1, с. 28—45.

Ермаков Н. П., Долгов Ю. А. Термобарогеохимия. М.: Недра, 1979. 271 с.

Здорик Т. Б. Здравствуй камень. М.: Недра, 1975. 128 с.

Зидарова Б. Синтез флюорита в гидротермальных условиях. — Геохимия, минералогия, петрология, 1978, № 8, с. 27—36.

Зидарова Б., Малеев М., Костов И. Кристаллогенезис и хабитусна зоналност на флуорита от Михалковского находища, Централните Родопи. — Геохимия, минералогия, 1978, № 8, с. 3—26.

Иванова А. А., Михайлова Ю. И., Соловьев А. Т., Сомов М. М. Перспективная оценка флюоритоносности СССР на формационной основе. — В кн.: Флюорит. М.: Наука, 1976, с. 15—27.

Иванова Т. А. Апохроматический объектив микроскопа. А. с. № 769477. Заявл. 04.09.1978, № 2661200/18—10; Опубл. 07.10.1980. МКИ G 02 в 21/02 — В кн.: Бюллетень «Открытия, изобретения, промышленные образцы, товарные знаки», 1980, № 37, с. 225.

Иванова Т. А. Расчет трехлинзовых склеенных компонентов с уменьшенным вторичным спектром. — Опт.-мех. пром-сть, 1979, № 9, с. 12—15.

Итигин А. С. В фокусе времени. Л., 1976. 209 с.

Йиндра Й., Филип Й. Некоторые наблюдения при получении монокристаллов фтористого кальция. — В кн.: Рост кристаллов. М.: Наука, 1965, т. VI, с. 137—142.

Калита А. П., Калита Е. Д., Черневская Э. Г. Плавиковый шпат одного из пневматолито-гидротермальных месторождений Урала как исходное сырье для выращивания оптических кристаллов флюорита. — В кн.: Исследования в области прикладной минералогии и кристаллохимии. М.: ИМГРЭ, 1973, с. 116—122.

Каплан Е. Д., Рейтеров В. М., Трофимова Л. М., Ясвина P. Н. Качество кристаллов фтористого кальция, выращенных в производственных условиях из синтетического сырья. — Опт.-мех. пром-сть, 1977, № 9, с. 36—38.

Красильщикова О. А., Иванова Г. Ф., Таращан А. Н. Эволюция состава центров люминесценции во флюоритах различных стадий минералообразования молибден-вольфрамитового месторождения Югодзырь (МНР). — Минерал. журн., 1981, т. 3, № 5, с. 11—20.

Кузьмин А. М. Об окраске синтетического флюорита и о вкрапленном в него графите. — Изв. Том. политехн. ин-та, 1975, т. 297, с. 37—45.

Кунц А. Ф. Типоморфные особенности природных и искусственных кристаллов флюорита. — В кн.: Геология и полезные ископаемые Северо-Востока Европейской части СССР: (Ежегодник, 1973). Сыктывкар, 1974, с. 156—162.

Кунц А. Ф. Экспериментальное моделирование процессов формирования флюоритовых месторождений. Сыктывкар, 1976. 50 с.

Марфунин А. С. Введение в физику минералов. М.: Недра, 1974. 324 с.

Марфунин А. С. Спектроскопия, люминесценция и радиационные центры в минералах. М.: Недра, 1975. 326 с.

Методы получения особо чистых неорганических веществ / Б. Б. Степин, И. Г. Горштейн, Г. З. Блюм и др. М.: Химия, 1969. 480 с.

Мильвидский М. Г., Освенский В. Б. Получение совершенных монокристаллов. — В кн.: Проблемы современной кристаллографии. М.: Наука, 1975, с. 79—109.

Минеральные ресурсы промышленно развитых капиталистических и развивающихся стран. М.: ВГФ, 1979. 444 с.

Научно-технический прогресс и организация производства, труда, управления: (Из опыта работы коллектива ЛОМО им. В. И. Ленина) / М. П. Панфилов, А. А. Будинский, А. И. Петрыкин и др. М.: Профиздат, 1974. 399 с.

Никогосян Д. И. Кристаллы для нелинейной оптики. — Квантовая электрон., 1977, т. 4, № 1, с. 5—26.

Новые виды неметаллических полезных ископаемых. М.: Наука, 1975. 239 с.

Оценка месторождений при поисках и разведках: Плавиковый шпат / Под ред. Л. С. Пузанова. М.: Недра, 1972. 239 с.

Панфилов М. П. Сделать экономику экономной. Л., 1981. 72 с.

Петров В. П. Флюорит — важное сырье для народного хозяйства. — В кн.: Флюорит. М.: Наука, 1976, с. 5—11.

Платонов А. Н. Природа окраски минералов. Киев: Наук. думка, 1976. 264 с.

Прохоров А. М., Осико В. В. Исследование структуры кристаллов с примесью редкоземельных элементов спектроскопическими методами. — В кн.: Проблемы современной кристаллографии. М.: Наука, 1975, с. 280—301.

Пузанов Л. С. Включения в минералах раскрывают их генезис. — Природа, 1981, № 10, с. 23—31.

Пузанов Л. С., Коплус А. В. Генетические типы флюоритовой минерализации. — В кн.: Оценка месторождений при поисках и разведках: Плавиковый шпат. М.: Недра, 1972, с. 36—51.

Пшибрам К. Окраска и люминесценция минералов. М.: Изд-во иностр. лит., 1959. 458 с.

Рейтеров В. М., Корнева З. Н. Об окрашивании кристаллов флюорита в процессе выращивания. — Оптика и спектроскопия, 1966, т. 21, вып. 5, с. 583—587.

Самсонов Я. П., Савельев А. К. Геология месторождений фторсодержащего сырья. М.: Недра, 1980. 216 с.

Скворцов Г. Е., Панов В. А., Поляков Н. И., Федин Л. А. Микроскопы. Л.: Машиностроение, 1969. 512 с.

Смит Г. Драгоценные камни. М.: Мир. 1980. 586 с.

Смольянинов Н. А. Флюоритовые месторождения Средней Азии. Л., 1935. 136 с.

Смолянский П. Л. Исследование редкоземельных центров в искусственных и природных кристаллах типа флюорита методами оптической спектроскопии: Автореф. дис. ... канд. геол.-минерал. наук. Л., 1978. 21 с.

Соболевский В. И., Сарычева А. В., Смолянский Е. Н. Куликолонское месторождение и его оптический флюорит. М.; Л.: Изд-во АН СССР, 1936. 228 с.

Современная кристаллография. М.: Наука, 1980. Т. 3. Образование кристаллов. 408 с.

Соколов В. А. Крупногабаритные оптические кристаллы фтористого кальция и бария, их получение и свойства: Тез. 6-й Междунар. конф. по росту кристаллов. М., 1980, т. 3, с. 205—206.

Соколов В. А. Метод Стокбаргера применительно к выращиванию крупногабаритных оптических кристаллов фторидов кальция и бария. — В кн.: Состояние и перспективы развития методов получения искусственных монокристаллов: Тез. докл. Харьков, 1979, с. 27.

Справочник конструктора оптико-механических приборов / Под ред. В. А. Панова. Л.: Машиностроение, 1980. 742 с.

Степанов А. В. Выращивание монокристаллов определенной формы. — В кн.: Проблемы современной кристаллографии. М.: Наука, 1975, с. 66—79.

Степанов И. В., Феофилов П. П. Искусственный флюорит. — В кн.: Рост кристаллов. М.: Изд-во АН СССР, 1957, с. 229—241.

Степанов И. В., Феофилов П. П. О двух типах спектров люминесценции редких земель в искусственных кристаллах флюорита. — Докл. АН СССР, 1956, т. 108, с. 615-618.

Суворов А. Л. Микроскопия в науке и технике. М.: Наука, 1981. 136 с.

Судеркин А. И. Поиски и разведка месторождений оптического флюорита: (Методические указания). М.: Госгеолтехиздат, 1959. 38 с.

Таращан А. Н. Люминесценция минералов. Киев: Наук. думка, 1978. 296 с.

Феофилов П. П. О природе зеленой окраски флюорита. — Зап. ВМО, 1956, ч. 85, вып. 4, с. 569—570.

Ферсман А. Е. Занимательная минералогия. М.; Л.: Детгиз, 1953. 271 с.

Финкельштейн Д. Н. Природные и искусственные минералы. М.: Просвещение, 1966. 130 с.

Флюорит. М.: Наука, 1976. 288 с.

Хейман Р. Б. Растворение кристаллов: Теория и практика. Л.: Недра, 1979. 271 с.

Черневская Э. Г. Светопропускание синтетических кристаллов флюорита. — Опт.-мех. пром-сть, 1969, № 12, с. 40.

Черневская Э. Г. Тигель. А. с. № 321279. Заявл. 02.09.1969, № 1358913/23—26; Опубл. 19.11.1971. МКИ В 01 l 3/04. — В кн.: Бюллетень «Открытия, изобретения, промышленные образцы, товарные знаки», 1971, № 35, с. 26.

Черневская Э. Г., Калита Е. Д., Калинина М. В. Плавиковый шпат для выращивания кристаллов флюорита. — Опт.-мех. пром-сть, 1973, № 5, с. 67—68.

Черневская Э. Г., Ловков А. В., Тихомиров А. И. и др. — Опт.-мех. пром-сть, 1971, № 11, с. 64.

Черневская Э. Г., Симун Е. А., Стожаров А. И. Выращивание кристаллов заданной формы. — Опт.-мех. пром-сть, 1970, № 2, с. 42—44.

Черневская Э. Г., Калита Е. Д. Способ получения оптических кристаллов флюорита. А. с. № 324219. Заявл. 30.12.69, № 1392948/23—26; Опубл. 23.12.1971. МКИ С 01 f 11/22. — В кн.: Бюллетень «Открытия, изобретения, промышленные образцы, товарные знаки», 1972, № 2, с. 55.

Чирвинский П. Н. Искусственное получение минералов в XIX столетии. Киев, 1903—1906. 638 с.

Шамовский Л. М., Степануха П. М., Шушканов А. Д. Выращивание монокристаллов флюорита, активированных редкоземельными элементами. — В кн.: Спектроскопия кристаллов. М.: Наука, 1970, с. 160-164.

Шафрановский И. И. Симметрия в природе. Л.: Недра, 1968. 184 с.

Эфрос Б. Д. Месторождения оптического флюорита. — Зап. ВМО, 1960, ч. 89, вып. 2, с. 187—194.

Юргенсон Г. А. Каменная радуга. Иркутск, 1980.

Юргенсон Г. А. Солнечный камень Забайкалья. Чита: Забайк. фил. геогр. о-ва СССР, 1971. 24 с.

Юшкин Н. П. Механические свойства минералов. Л.: Наука, 1971. 284 с.

Юшкин Н. П. Теория и методы минералогии. Л.: Наука, 1977. 291 с.

Юшкин Н. П., Волкова Н. В., Кюнц А. Ф. Флюорит Уральско-Новоземельской провинции и проблемы его использования. Сыктывкар: Коми фил. АН СССР, 1977. 47 с.

Юшкин Н. П., Ромашкин Ю. Н., Маркова Г. А. Уральско-Новоземельская флюоритоносная провинция. Л.: Наука, 1982. 220 с.

Arizumi Т., Kobayashi N. The solid-liquid interface shape during crystal growth by the Czochralski method. — Jap. J. Appl. Phys., 1969, vol. 8, N 9, p. 1091-1097.

Bridgman P. W. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc and tin. — Proc. Amer. Acad. Arts. Sci., 1925, vol. 60, N 6, p. 305—383.

Browder J. S., Ballard S. S. Low temperature termal expansion measurements on optikal materials. — Appl. Opt., 1969, vol. 8, N 4, p. 793-798.

Chermette M. A. ing. La fluorine. Etude mineral of geol. — Bull. Soc. hist. natur. Autun., 1924, p. 109—125.

Desai С. C., John V. Flux growth and characterization of fluorite crystals. — J. Cryst. Growth, 1978, vol. 44, N 5, p. 625—628.

Doelter C. Handbuch der Mineralchemie. Bd. IV. Leipzig, 1931, p. 193—269.

Duyk F. Synthesis of fluorite. — J. Gemmol., 1971, N 12, p. 209—211.

Görlich P., Karras H., Lehmann P. Über die optischen Eigenschaften der Erdalkalihalogenide vom Flußspat-Typ (I—II). — Phys. status solidi. Rev. Art., 1961, Bd. 1, S. 525—553.

Guggenheim H. Growth of highly perfekt fluoride single crystals for optical masers. — J. Appl. Phys., 1963, vol. 34, N 8, p. 2482—2485.

Guggenheim H. Growth of single-crystal calcium fluoride with rare-earth impurites. — J. Appl. Phys., 1961, vol. 32, N 7, p. 1337—1338.

Kašpar J. Die Künstliche Erzeugung und Verwendung von Mineralen. — Ber. Dt. Ges. geol. Wiss. B, 1968, Bd. 13, N 3, S. 307—321.

Kokscharow N. Mater. Ztschr. Miner. Russlands, 1866, Bd. 5, S. 197—206.

Kunstliche Kristalle: Prospekt. Jena: Carl Zeiss.

Laszkiewicz A. Krystaky i Technika. W-wa, 1967, 72 s.

Leeder O. Fluorit. Leipzig, 1979. 266 S.

Liebertz J. Chem. Ing. Techn., 1965, vol. 37, p. 830—832.

Monokrystaly: Prospekt. Turnov. Czechoslovakia.

Orsolya K. S. A szekosfehervari sirleletek fluoritnyaklanca — Magy. allami földt. inter, evi jelent., 1974. old. 339—342.

Photochromic crystals of calcium fluoride for holographic Record. — In: Monokrystaly: Prospekt Turnov, Czechoslovakia.

Pogue J. Optical fluorite in S. Illinois. — Admin. Rep. Econ. and Geol. Rep. Bull., Urban (III.), 1922, N 38.

Ressler G. М., Möller K. D. Far infrared transmittance of irtrans 1 to 5 in the 250—10 cm-1 spectral region. — Appl. Opt., 1966, vol. 5, N 5, p. 877—879.

Robinson М., Cripe D. M. Growth of laser-quality rare-earth fluoride single crystals in a dynamic hydrogen fluoride atmosphere. — J. Appl. Phys., 1966, vol. 37, N 5, p. 2072.

Rykl D., Bauer J. Hydrothermal synthesis of fluorite. — Sb. VSCHT, Praze G, 1972, sv. 14, s. 13—19.

Smakula A., Swinehart C. F. et al. Harshaw optical crystals. The Harshaw Chem. Co, 1967.

Stockbarger D. C. Artifical fluorite. — J. Opt. Soc. Amer., 1949, vol. 39, p. 731—740.

Swinehart C. F., Shligoj M. Crystalline Materials. Pat. 766.080 (US). Appl., 1973, N 3.

Ссылки

[1] Длины волн (нм): λ C = 656,3; λ D = 589,3; λ F = 486,1.