От атомов к древу. Введение в современную науку о жизни

Яcтребов Сергeй

ЗАКЛЮЧЕНИЕ

 

 

Пьер Тейяр де Шарден писал в книге “Феномен человека”, первое издание которой вышло в 1955 году:

“Нам кажется невероятным, что могли жить люди, которые и не подозревали, что звезды мерцают над нами на расстояниях в сотни световых лет или что контуры жизни начали вырисовываться уже миллионы лет назад у границ нашего горизонта. И, однако, достаточно открыть любую из чуть пожелтевших книг, в которых авторы XVI и даже еще XVIII века пространно рассуждали о структуре мира, чтобы с изумлением констатировать, что наши прапрапрадедушки чувствовали себя совершенно непринужденно в пространстве-ящике, где звезды вращались вокруг Земли менее шести тысяч лет. В космической атмосфере, в которой мы бы сразу же задохнулись, в перспективе, куда мы бы физически были не в состоянии вступить, они дышали без малейшей стесненности, если не полной грудью” [539] .

Это высказывание Тейяра прекрасно описывает начавшуюся в Новое время революцию в понимании природы — революцию, которую часто называют переходом “от существующего к возникающему” или “от бытия к становлению”. Нам сейчас трудно вообразить Вселенную, которая существует 6000 лет и оканчивается сферой неподвижных звезд за орбитой Сатурна. А ведь на протяжении тысячелетий подобное представление о мире было нормой, пусть и находились великие умы, его оспаривавшие.

Многочисленные открытия, сделанные на протяжении трех веков (с XVIII по XX), открыли перед людьми совершенно новую космологическую перспективу. Научная картина мира перестала быть стационарной. Кант и Лаплас предложили первую физическую модель образования Солнечной системы. Геология Геттона и Лайеля продемонстрировала бездонную (как тогда казалось) глубину истории нашей планеты, а начавшая развиваться после выхода знаменитой книги Дарвина эволюционная биология доказала, что не менее сложная история была и у живой природы. Благодаря теории относительности Эйнштейна возникла модель расширяющейся Вселенной — сначала чисто математическая, но быстро получившая астрономические подтверждения. После этого Жорж Леметр и Георгий Гамов сформулировали теорию расширения Вселенной “от первоначального атома”, которую еще при их жизни назвали теорией Большого взрыва. Радиоизотопный метод позволил определить возраст Солнечной системы (4,6 миллиарда лет), а расчеты на основе теории Большого взрыва — возраст Вселенной (13,8 миллиарда лет). Теория тектоники плит в основных чертах объяснила, как и почему на Земле менялось расположение континентов. Инфляционная теория дополнила классическую космологию, установив, что видимая Вселенная — это не просто не вся Вселенная, а ее ничтожно малая часть (из-за стремительного расширения в самом начале). Неравновесная термодинамика начала исследовать физические принципы, делающие возможной самоорганизацию материи — упорядоченное изменение от простого к сложному. Одним словом, Вселенная обрела историю. На месте статичного аристотелевско-птолемеевского космоса возникла картина грандиозного потока, несущего в себе все вещи и устремленного из бурного прошлого в неведомое будущее.

Вот частью этого потока и является древо жизни — иначе говоря, эволюционное древо. Надо сказать, что сейчас мы знаем довольно много даже о его глубоких “корнях”: загадка происхождения жизни, рассуждения о которой еще недавно воспринимались как бездоказательные, в наше время обернулась рядовой научной проблемой, вполне поддающейся решению экспериментальными методами. Однако тема этой книги — не столько “корни” древа жизни, сколько его “ствол” и главные ветви. Автор должен признаться, что на протяжении всей работы он считал смысловым центром книги третью часть, так и озаглавленную — “Древо жизни”, — и именно ее писал с особым удовольствием. То, что эта часть не стала заодно и самой большой, объясняется — увы — чрезмерным объемом первых двух частей, которые задумывались как вводные (например, глава о биоэнергетике разрослась в процессе написания до совершенно непредвиденного размера, а сокращать было жалко: тема-то интересная). Впрочем, нет худа без добра: широкий охват материала позволяет нам увидеть, что субъектами эволюции в том или ином смысле могут быть структуры всех уровней — от атомов и молекул до планеты Земля.

 

 

“Философский камень” биологии

Открытие генетического кода подарило людям такие возможности для изучения биологической эволюции, которые до середины XX века было просто невозможно вообразить. Например, представим, что молекулярный филогенетик сравнивает несколько видов эукариот, у которых прочитаны аминокислотные последовательности 100 белков. Типичный размер эукариотного белка — 300 аминокислот. Получается, что сравнению подлежат 30 000 аминокислотных позиций. Если прочитаны еще и нуклеотидные последовательности генов, кодирующих эти белки, то — поскольку любая аминокислота кодируется тремя нуклеотидами — сравнение охватит уже 90 000 позиций, на каждой из которых в принципе может стоять любой из четырех нуклеотидов (А, Т, Г или Ц). Таково количество признаков, с которыми работают систематики в молекулярную эру. Открытие методов работы с генетической информацией поистине стало “философским камнем” биологии, во всяком случае эволюционной. Отметим, что все приведенные числа не взяты с потолка — они заимствованы из реальных свежих научных работ, причем достаточно скромных по размаху: объем анализируемых данных запросто может быть и больше (например, во многих современных исследованиях сравниваются целые геномы, и тогда речь идет уже о миллионах нуклеотидов).

Любая группа живых организмов имеет общего предка, у которого был свой геном. От этого генома путем конвариантной редупликации, то есть копирования с сохранением изменений, произошли геномы всех современных представителей группы. Многообразные события, меняющие геномы в ходе эволюции, оставляют следы, которые наслаиваются друг на друга. Их можно найти и прочитать, примерно так же, как можно найти и прочитать следы правок в обычном тексте. Ведь геном — это тоже текст (хотя и не только текст, конечно). Геном любого организма заключает в себе целую летопись эволюционных изменений, многие из которых можно довольно точно распознать и датировать. Сплошь и рядом это относится даже к изменениям, которые произошли много сотен миллионов лет назад. Текст может сохранить все.

Любой геном — это в некотором смысле архив, документирующий события, происходившие на всем протяжении эволюционной линии от последнего общего предка всех живых организмов (или, во всяком случае, клеточных организмов, если мы говорим о них) до обладателя этого генома. Конечно, следы многих событий в конце концов стираются из генома начисто, и с этим ничего не поделаешь: “Полностью утраченная информация, не сохранившаяся ни в одном экземпляре, восстановлена быть не может”. С другой стороны, бывают и такие эволюционные новшества, которые запечатлеваются в геноме очень четко — так, что “прочитать” их следы можно даже спустя миллиарды лет. “Впечатанные” в геном свидетельства в принципе могут воспроизводиться из поколения в поколение сколь угодно долго. Причем все они заключены внутри сложной упорядоченной структуры, дающей возможность их послойно датировать. Это означает, что наряду с палеонтологической летописью, которая интенсивно изучается с начала XIX века, в распоряжении биологов теперь есть еще одна настоящая летопись — генетическая. Как и палеонтологическая летопись, она неполна, но зато любой ее сохранившийся фрагмент несет огромное количество информации.

Установление родства между организмами — далеко не единственная, но, безусловно, очень важная задача эволюционной биологии. Сейчас эта задача частью уже решена, а частью активно решается. Неудивительно, что книги на эту тему быстро устаревают, и данная книга не составит исключения. Особенно это относится к главе 15, которая местами, вероятно, успеет устареть еще до выхода книги из печати. Избежать этого невозможно: скорость открытий в области мегасистематики сейчас такова, что любая сводка должна обновляться по меньшей мере раз в год, а иногда и быстрее. Например, супергруппа Excavata все более четко разбивается современными исследованиями на две самостоятельные супергруппы — Discoba и Metamonada, которые независимо отходят от “корня” общего древа эукариот. Вместо супергруппы Opisthokonta на эволюционном древе эукариот все чаще появляется супергруппа Obazoa, включающая тех же опистоконтов плюс две небольшие группы примитивных жгутиконосцев. Загадочную ветвь криптомонад в последнее время сближают с архепластидами, то есть с растениями — в противовес старой системе, причислявшей криптомонад к хромальвеолятам. С другой стороны, на молекулярных деревьях, построенных с учетом новейших данных, регулярно возникает сестринская по отношению к ризариям ветвь, состоящая из страменопилов и альвеолят — а это означает, что систематики, возможно, поторопились с “закрытием” группы Chromalveolata: не достаточно ли было просто изменить ее состав, выкинув оттуда криптомонад и гаптофит? Наконец, в феврале 2018 года, когда эта книга уже версталась, вышла авторитетная и основанная на большом наборе новых данных работа, показывающая, что коллодиктион (многократно здесь упоминавшийся) вместе с двумя другими “микроцарствами” малоизвестных протистов образует целую супергруппу, сестринскую по отношению ко всем одножгутиковым (Unikonta = Amorphea). И конечно же, “продолжение следует”. Остается лишь посоветовать интересующимся этой темой следить за научными новостями, благо освещаются они сейчас неплохо, а тема — и впрямь интригующая.

Подчеркнем примечательную вещь. Все перечисленные изменения касаются новой мегасистемы, которая оформилась только на рубеже XX–XXI веков. Преемственной по отношению к старой мегасистеме (разбивавшей живые организмы на два, три, четыре или пять царств) она не является. Можно утверждать, что современная мегасистема соотносится со старыми системами живой природы (образца “животные — растения — грибы — протисты — бактерии...”) так же, как современная астрономия, во всей ее красе и славе, соотносится с геоцентрической системой Птолемея. С точки зрения истории науки это утверждение будет верным буквально, без всяких преувеличений. И это прекрасно! Нам выпало жить в годы, когда новая научная картина мира (во всяком случае, биологическая) формируется прямо на глазах.

Будем помнить, что построение филогенетического древа, отображающего — в идеале — родственные связи абсолютно всех земных живых организмов, в любом случае станет только первым шагом к настоящему, глубокому познанию эволюционного процесса. Как механизмы эволюции, так и ее результаты невероятно многообразны. Известный американский биолог Стивен Гулд говорил по этому поводу:

“Проблема с историей жизни состоит в том, что у нас есть только один эксперимент. Благодаря огромному биохимическому сходству мы понимаем, что вся жизнь на Земле произошла из одного источника. Тем самым у нас нет никакого ответа на главный вопрос: должна ли любая жизнь быть устроена так, как она устроена на Земле, или мы наблюдаем всего одну возможность, осуществившуюся на фоне сотни миллионов нереализованных альтернатив?” [545]

Сам Гулд, насколько можно судить, склонялся ко второму варианту ответа. Если бы историю Вселенной можно было каким-то непостижимым образом повторить, возникла ли бы в ней хоть какая-нибудь жизнь? И если да — то как бы она выглядела? К чему пришла бы жизнь на Земле, если бы не было столкновения, породившего Луну, или “Земли-снежка”, или пермского кризиса (см. главы 16, 17)? За всеми этими поворотами и развилками скрываются возможности, которых мы, скорее всего, никогда не сможем даже вообразить (как сказал писатель Олег Ладыженский: “Вся западная мифология не смогла придумать кенгуру”). Вряд ли кто-нибудь мог бы предсказать, например, такое уникальное событие, как возникновение эукариот, точный механизм которого до сих пор остается загадкой (см. главы 10, 14). Вряд ли инопланетный биолог, посетивший Землю в мезозойскую эру, мог бы предсказать великую эволюционную судьбу тогдашних млекопитающих. Или, скажем, если бы тот же биолог попал три миллиона лет назад в Африку и встретил там странных прямоходящих обезьян — смог бы он предсказать, что именно эти нелепые и малочисленные существа создадут великую письменную культуру, преобразуют облик планеты, выйдут в космос?..

А ведь перед нами будущее — и оно еще более сложно и непредсказуемо, чем прошлое.

 

От древа к лабиринту

Чарльз Дарвин считал, что родственные отношения всех живых организмов могут быть изображены ветвящимся древом. Сам термин “древо жизни” изобретением Дарвина не является — он, скорее всего, заимствован из библейской Книги Бытия. Классическая биология полагала, что все биологическое разнообразие возникло из единственного начального узла эволюционного древа в результате серии его последовательных ветвлений. Сейчас эту “нулевую гипотезу” дополняет постулат, блестяще популяризированный Ричардом Докинзом в книгах “Эгоистичный ген” и “Расширенный фенотип”: эволюция генов и эволюция целых организмов — просто-напросто разные вещи. Гены вполне могут перемещаться из одного организма в другой, и все реальные организмы (включая человека) суть в той или иной степени генетические химеры. Например, в геноме человека имеется довольно много генов и еще больше некодирующих нуклеотидных последовательностей, включенных туда эндогенными ретровирусами (см. главу 12). Все эукариоты получили от вирусов такие важные для работы генетического аппарата вещи, как механизм кэпирования информационной РНК и фермент топоизомеразу, играющий важную роль в репликации ДНК (см. главу 10). Список подобных примеров легко продолжить. Итак, в общем случае нам приходится иметь дело не с единым молекулярно-филогенетическим древом, а с набором древес, относящихся к отдельным генам, которые совсем не обязаны совпадать друг с другом.

Картина еще больше усложняется в тех случаях, когда по ходу эволюции организмы не просто обменивались генами, а сливались целиком. Таких примеров гораздо меньше, но некоторые из них очень важны для истории жизни на Земле: например, происхождение эукариот, которое сопровождалось слиянием минимум двух, а может быть, и трех микроорганизмов (см. главы 10, 14). Систему родственных связей, возникающую в результате наложения друг на друга множества событий подобного рода, “древом” уже не назвать.

В 2010 году известный французский биолог Дидье Рауль предложил для обозначения структур такого типа термин “ризома”. Попросту говоря, ризома — это сеть. Типичную ризому дает, например, попытка построить по молекулярным данным общее эволюционное древо бактерий. Иначе и не может быть, учитывая, насколько легко разные бактерии обмениваются генами. Внутри древа эукариот эффекты горизонтального переноса генов выражены гораздо меньше, но зато происхождение эукариот как таковых без учета этого процесса вообще необъяснимо.

Французское слово “ризома” (rhizome) буквально означает “корневище”. В 1976 году философы-постмодернисты Жиль Делёз и Феликс Гваттари сделали это слово философским термином. Ризома — это сетевая структура, противопоставляемая древовидной; визуализацией ризомы будет запутанная корневая система, лишенная сколько-нибудь четкой формы, но пронизанная множеством внутренних связей. “Ризома так устроена, что в ней каждая дорожка имеет возможность пересечься с другой. Нет центра, нет периферии, нет выхода. Потенциально такая структура безгранична”, — писал Умберто Эко в “Заметках на полях “Имени розы””, рассуждая о типах лабиринтов. Ризома — образ мира, “потерявшего свой стержень”, но таящего в себе неожиданные возможности, — “творящий Хаос”. Превращая “ризому” из чисто философского термина в биологический, Дидье Рауль, несомненно, учитывал эти оттенки значений. В своих интервью он обратился еще и к философии Ницше, говоря, что эволюция — не столько аполлонический мир (красивый, разумный, организованный), сколько дионисический (хаотичный, бурный, внезапный). С точки зрения Рауля, эволюция гораздо более прерывиста, случайна и непредсказуема, чем полагало большинство ученых XIX–XX веков.

Разумеется, такой взгляд на вещи не надо превращать в догму (впрочем, к любым другим научным взглядам это тоже относится). Тем не менее здесь наверняка отражены некоторые реальные свойства природных процессов — причем не только генетических. Из сказанного в этой книге можно увидеть, что система траекторий, по которым двигалась (или могла бы двинуться) история жизни на Земле, в общем-то гораздо больше похожа на сеть тропинок в дремучем лесу, чем на прямую, как стрела, провешенную трассу. Это относится к нашему прошлому, и нет никаких оснований считать, что это не будет относиться к будущему. Стоит добавить, что такой вывод не должен служить основанием для пессимизма. Конечно, путь сопряжен с риском — в ризоме легко заблудиться, но она же может подарить путнику новые, неожиданные возможности: ведь сотворение мира еще длится. Эволюция — не освещенная дорога, ведущая от амебы прямо к человеку, а темный лабиринт, полный обрывов, провалов, тупиков, внезапных пересечений, катастроф и эвкатастроф. Дионисический космос, таящий в себе и смерть, и надежду.