В области ракетной техники советскими учеными и конструкторами достигнуты поистине грандиозные успехи.

Полеты человека в космос, многолетняя работа на орбите научно-исследовательских комплексов, посадка автоматических станций на далеких планетах – то, что еще не так давно было мечтой и даже утопией, стало живой реальностью.

Безмерная гордость наша: ведь именно советские люди благодаря достижениям своей науки и промышленности первыми проложили пути в космос.

Генеральные конструкторы А.И. Микоян (слева) и А.С. Яковлев (справа) с первыми космонавтами Ю.А. Гагариным (второй слева) и Г.С. Титовым (второй справа)

Ракетная техника совершила гигантский скачок, и при этом в сроки, по прежним меркам невероятно короткие. Ее достижения поразительны.

Под впечатлением успешного развития космонавтики иной раз кажется, будто авиация уже отжила свой век. «Сохранится ли авиация в будущем или она полностью будет вытеснена ракетами?» – этот вопрос занимает теперь в мире многих специалистов, работающих в области самолето- и ракетостроения. Он интересует и широкие массы людей, которым становится все более доступен самолет как вид пассажирского транспорта и которые с восхищением следят за все новыми успехами космических полетов.

Ответить на этот вопрос не так просто.

Итак, заменит ли ракета самолет полностью, во всех аспектах мирного и военного применения?

Опыт последних лет, когда во всем мире ракетостроению уделяется большое внимание и налицо огромные успехи, показал, что, каковы бы ни были эти успехи в настоящем и будущем, есть такие отрасли применения летательных аппаратов, где ракета никак не может вытеснить самолет.

Автомобиль не отменил паровоза, самолеты не отменили автомобилей. Паровоз вытесняется сейчас тепловозом и электровозом, подобно тому как старый поршневой двигатель вытесняется в авиации более прогрессивным – реактивным или турбореактивным двигателем. Самолету сегодняшнего дня придет на смену самолет будущего. Ракета будет подхлестывать авиацию, революционизировать ее, а не уничтожать.

У ракеты обширнейшее поле применения. Это, прежде всего, космос, межпланетные сообщения, реальность которых теперь уже становится все более очевидной. Это – исследования глубин мирового океана, сферы вокруг земного шара с астрономическими, геофизическими, биологическими и другими целями.

Баллистические межконтинентальные ракеты, точно достигающие цели, – оружие небывалой силы. Тем не менее и в военной области ракета далеко не во всех случаях может заменить самолет. Дискуссии на этот счет ведутся во всем мире. Считают, что, пока существуют сухопутные войска, они будут нуждаться и в таких видах тактической авиации, как фронтовые истребители, фронтовые бомбардировщики и самолеты-разведчики всех типов.

Правда, функции самолета-разведчика могут быть заменены автоматическими ракетами-разведчиками. Агрессивные генералы из небезызвестных стран мечтают о «кнопочной войне», чтобы можно было нажатием кнопок из кабинетов пускать ракеты и уничтожать целые страны и народы без помощи солдат, на которых не всегда можно положиться. Отсюда идеологический источник военных доктрин, принижающих роль человека в военной стратегии.

Полагаясь на автоматику и механизмы, никогда не следует забывать, что каждый механизм рассчитан на работу в определенных, заранее заданных рамках. Незначительная неисправность техники, отклонение в полете от заданной механизму программы могут свести на нет результаты его работы. И в этом смысле даже самый совершенный механизм не может соперничать с человеком, способным вмешаться и исправить ошибку.

Генерал Шривер – начальник управления исследований и усовершенствований министерства авиации США – в свое время заявил в палате представителей, основываясь, по-видимому, на опыте запусков ракет с мыса Канаверал (ныне Кеннеди), что поскольку современная ракетная система «действует при очень узких допусках и имеет массу трубопроводов, клапанов и т. п., то многие мелкие детали могут подвести. И обычно так бывает, что мелочи подводят». Например, известная американская ракета «Атлас» – огромный 26-метровый снаряд – собрана из 300 тысяч деталей. Каждая из них может стать причиной неисправности и сорвать выполнение заданной программы полета.

Для подобного рода ракет надежность определяется 50 процентами, то есть из каждых 10 ракет только 5 уверенно достигнут цели. Пилотируемый самолет обеспечивает большую точность, но эта точность при ядерном оружии, с его огромным радиусом поражения, в несколько десятков километров, не имеет прежнего значения.

Некоторые считают, что в условиях ядерной войны можно идти и на большие потери в авиации. Например, известный военный французский авторитет Ружерон говорил: «Какое значение может иметь гибель нескольких сотен самолетов «Стратоджет» и «Стратофортресс», если нескольким десяткам из них удается прорваться и они с точностью, которой можно ожидать лишь от пилотируемого самолета, сбрасывают атомные бомбы, эквивалентные 20 миллионам тонн тротила, на атомные заводы, склады ядерного оружия и базы для запуска межконтинентальных снарядов?»

Конечно, для нас такая концепция неприемлема. Она рассчитана на заведомую массовую гибель пилотов.

Ракеты должны полностью вытеснить самолет в тех областях военного применения, где они способны более надежно и экономично решать свои задачи, не требуя человеческих жертв.

Британский фельдмаршал Монтгомери говорил: «Насколько можно предвидеть, пилотируемые самолеты сохранятся еще долгое время. Они будут необходимы для разведки и некоторых тактических операций, поскольку человеческий мозг – единственный механизм, способный действовать в непредвиденных условиях».

Военно-техническая мысль все больше приходит к таким примерно выводам: с появлением дальних баллистических ракет стратегический бомбардировщик теряет свое значение. Ракета в силу меньшей уязвимости по сравнению с самолетом и благодаря достигнутой сейчас степени точности попадания может гораздо эффективнее, чем тяжелый бомбардировщик, донести ядерный заряд огромной разрушительной силы до намеченной цели. Это положение справедливо также и для ракет меньшей дальности действия, бьющих по неподвижной цели.

Для борьбы с бомбардировщиками всех видов самым эффективным оружием признаются ракеты класса «земля – воздух». Но успешное применение этого оружия требует большой насыщенности обороняемой территории ракетными зенитными установками, так как дальность действия этих установок пока сравнительно незначительна.

Пилотируемые летательные аппараты тактического назначения, применяемые как средство ближнего боя, воздушной фото- и радиоразведки, для взаимодействия с наземными войсками, а также как средство перехвата воздушного противника на территории, недостаточно насыщенной ракетными зенитными установками, будут находиться на вооружении армий всех стран мира. Это относится к разведчикам, перехватчикам, бомбардировщикам ближнего боя и др.

Военная авиация, способная самостоятельно решать тактические задачи, будет оснащаться ракетным оружием различного назначения – ракетами «воздух – воздух», «воздух – земля», «воздух – корабль» и т. д. Они дают самолету возможность поражать как воздушные, так и наземные цели с больших дистанций и с большей разрушительной силой, чем отжившие свой век авиационные пулеметы и пушки.

Самолеты МиГ-17ПФУ (на заднем плане) и МиГ-19ПМ стали первыми отечественными истребителями-перехватчиками с управляемыми ракетами класса «воздух – воздух», которые поступили на вооружение авиации ПВО Советского Союза

До сих пор речь шла о военном применении авиации. Об этом нельзя не говорить, пока на свете есть страны, готовые силой оружия навязывать свою волю другим, устанавливать свой порядок на земле.

Но воистину велики перспективы авиации в мирной жизни человечества. Ей принадлежит ведущая роль в качестве средства воздушного транспорта. Бурное развитие предстоит всем видам летательных аппаратов, начиная от гигантских трансконтинентальных реактивных лайнеров и кончая маленькими поршневыми пассажирскими самолетами, в том числе санитарной и сельскохозяйственной авиацией, обслуживающими разнообразные области народного хозяйства и быта. Здесь авиации суждено еще долго быть единственной формой воздушного транспорта. Этот транспорт с каждым днем должен все больше и больше развиваться и совершенствоваться.

Многочисленные проекты самолетов будущего широко популяризируются сейчас в мировой прессе. Это свидетельствует о том, что конструкторы всего мира усиленно работают над решением новых проблем гражданской авиации. Научно-техническая мысль бьется над созданием больших транспортно-пассажирских самолетов со скоростью полета, в два-три раза превышающей скорость звука, то есть с крейсерской скоростью более 2 тысяч и даже 3 тысяч километров в час, тогда как лучшие транспортные реактивные самолеты обладали еще недавно крейсерской скоростью 900–1000 километров в час.

Увеличение скорости полета больших транспортных самолетов будет все больше сглаживать разницу между самолетом в привычном для нас сейчас виде и крылатой ракетой.

Иногда спрашивают: что в техническом отношении сложнее – ракета или самолет?

Аппаратура запуска и управления ракетой основана на новейших достижениях науки и техники. Сама же ракета проще самолета. Ракета – аппарат одноразового действия.

Когда слышишь ласковый рокот ИЛ-18 или ТУ-154 и видишь быстро скользящую в небе маленькую серебристую птичку (а в этой птичке находится 75–100 пассажиров, и мчат ее со скоростью до тысячи километров в час какие-нибудь 15–20 тысяч лошадиных сил), и в голову не придет сомневаться в надежности конструкции самолетов, в искусстве пилотов.

Современный самолет начинен автоматическим и электронным оборудованием не меньше, чем ракета. И в то же время механизмы позволяют пилоту в любую минуту и секунду вмешаться в работу умных машин, дублировать их тогда, когда они в непредвиденных обстоятельствах бессильны найти нужное решение. На пассажирских самолетах надежность страхуется трижды: автоматами, пилотом, аварийным управлением.

Загляните в кабину: здесь десятки приборов, механизмов, аппаратов. Протяженность электропроводки исчисляется километрами, число радиодеталей – сотнями. И каждая деталь, каждый миллиметр проводки не имеет права сгореть, перегореть, отказать в работе. Какая точность расчетов и сверхточность производства требуются от многих тысяч людей, создающих материалы и строящих самолет! Все они вместе с конструктором обеспечивают надежность машины.

С боевой ракетой дело проще: она не несет человека.

Итак, каковы же перспективы развития авиации?

Современные самолеты, как известно, требуют для взлета больших, специально оборудованных аэродромов с дорогими бетонными взлетно-посадочными полосами длиной в несколько километров. Во многих странах конструкторская мысль работает над созданием самолетов, обладающих свойством совершать взлет и посадку вертикально.

В 1960 году на авиационной выставке в Фарнборо (Англия) показывали вертикально взлетающий и приземляющийся самолет фирмы «Шорт». Это был еще только один из первых экспериментальных самолетов. Если проблема вертикального взлета и посадки, над которой работают конструкторы многих стран, будет решена успешно, то это повлияет на дальнейшее развитие как военной, так и гражданской авиации. Современным скоростным самолетам станут доступны самые глухие уголки земли.

Первый английский экспериментальный самолет вертикального взлета и посадки Шорт SC-1

Далее. К числу важнейших задач относится создание трансконтинентальных сверхзвуковых транспортно-пассажирских самолетов. Они сократили бы время перелета из Европы в Америку до 3–4 часов.

Это очень сложная задача. Ее реализация потребует решения ряда проблем в области двигателей, топлива, материалов и, прежде всего, преодоления так называемого теплового барьера, – полет со сверхзвуковой скоростью вызывает сильный нагрев поверхности самолета. Следовательно, конструкторам необходимо обеспечить не только нормальные условия для пассажиров и экипажа, но также решить проблему конструкционных материалов, на прочность которых не влияла бы высокая температура нагрева поверхности. Однако, несмотря на трудности, рождение таких самолетов – дело не столь отдаленной перспективы.

Актуальнейшим вопросом остается разработка радиотехнической аппаратуры – и наземной, и бортовой, которая позволяла бы транспортной авиации в буквальном смысле слова быть независимой от погоды, чтобы современному самолету при любых атмосферных условиях, при самой плохой видимости можно было надежно и безопасно совершать взлет и приземление.

И наконец, создание множества экономичных, небольших самолетов для работы на местных авиалиниях во внеаэродромных условиях. Подобные самолеты – простые, легкие, дешевые, нетребовательные к посадочным площадкам и надежные – займут в мирной жизни народов такое же место, как и автомобиль.

Я совершенно не касаюсь тут вопросов, связанных с будущим вертолетостроения, – несомненно, оно тоже имеет большую перспективу.

Самолету, так же как и ракете, – каждому в той области применения, где наиболее выгодно используются его специфические качества, – предопределено свое место в жизни.

Ракетная техника, которая сама выросла на базе многолетнего опыта и достижений авиационной науки и техники, создается усилиями и руками людей, воспитанных в авиации. В свою очередь она способствует дальнейшему прогрессу авиации, прокладывает ей путь в области больших скоростей и больших высот полета.

Полеты ракет, спутников и космических кораблей, особенно полет человека в космос, дают такую массу научного материала, который несомненно окажет огромное влияние на дальнейшее развитие авиации.

Последние десятилетия были ознаменованы техническим прогрессом нашей авиации, ракетостроения. Советские летчики установили ряд выдающихся международных авиационных рекордов на отечественных легких и тяжелых реактивных самолетах и вертолетах, закрепив за нашей Родиной многие наивысшие показатели по скорости, высоте, грузоподъемности и дальности полета.

Путь от первых реактивных машин, МиГ-9 и ЯК-15, до современных самолетов со стреловидными и треугольными крыльями был многотрудным, и каждый шаг движения нашего вперед и выше давался нелегко. Однако преодолены барьеры, звуковой и тепловой, преодолены и десятки других препятствий, которые ставила природа на пути развития авиации.

Всякому понятно, что создание образцов новых, совершенных машин потребовало творческого вдохновения, упорных поисков правильных решений, затраты колоссальной энергии многих тысяч конструкторов, ученых, инженеров, рабочих авиационной промышленности.