Революция в физике

де Бройль Луи

Глава XII. Волновая механика систем и принцип Паули

 

 

1. Волновая механика систем частиц

До сих пор мы рассматривали новую механику только для случая, когда в заданном силовом поле движется одна частица. Иногда мы предполагали, что тот или иной принцип справедлив и для системы; а поскольку физика предполагает существенно дискретный характер элементарных физических представлений, он справедлив и для группы частиц. Теперь необходимо уточнить, как выглядит эта волновая механика систем частиц.

Отметим с самого начала, что настоящую систему образуют только взаимодействующие друг с другом частицы: невзаимодействующие частицы можно рассматривать независимо друг от друга, и мы снова приходим к случаю одной частицы. Это замечание, конечно, справедливо как в старой, так и в новой механике.

Напомним теперь, как классическая механика решает проблему движения системы взаимодействующих частиц. Для каждой из этих частиц выписываются основные уравнения Ньютона, выражающие пропорциональность между ускорением материальной точки и действующей на нее силой. Поскольку предполагаем, что между частицами имеется взаимодействие, т е. сила, действующая на каждую частицу, зависит от положения всех остальных частиц, то полученные таким образом уравнения образуют систему дифференциальных уравнений. Если их выписать в явном виде в прямоугольных декартовых координатах, то число этих уравнений будет равно утроенному числу частиц, ибо каждая частица имеет три координаты.

Решение этой системы уравнений, если оно возможно, дает выражение для каждой координаты как функции времени, т е. позволяет проследить положение и движение каждой частицы с течением времени. Кроме того, из всех решений этих уравнений нужно взять только то решение, которое полностью определено, если заданы положения и скорости частиц в начальный момент времени, иными словами, если задано начальное положение и состояние движения системы. Так, оказывается, что в классической динамике систем выполняется механический детерминизм.

Не вдаваясь слишком глубоко в описание классической механики систем, мы только напомним, что уравнения движения можно во многих случаях привести к хорошо известным уравнениям Лагранжа и Гамильтона. Однако благодаря более абстрактной форме указанных уравнений движения полезно рассмотреть новое геометрическое представление этой системы. Вместо того чтобы рассматривать систему в физическом пространстве трех измерений и говорить о положении каждой ее частицы в каждый момент времени, мы можем связать координаты всех частиц и мысленно сконструировать тем самым абстрактное пространство, число измерений которого втрое превышает число частиц (причем это число измерений можно уменьшить, если существуют соотношения, ограничивающие свободу движения частиц). В этом абстрактном пространстве, носящем название конфигурационного пространства, каждое состояние системы представлено в виде точки, координаты которой равны координатам частиц системы. Эволюция системы с течением времени будет, таким образом, описываться перемещением этой изображающей точки в конфигурационном пространстве. Вся задача механики состоит в этом случае в вычислении траектории и скорости изображающей точки. Группу уравнений классической динамики можно рассматривать как уравнения движения этой точки. Итак, мы свели изучение движения множества точек в физическом трехмерном пространстве к исследованию поведения единственной точки в абстрактном конфигурационном пространстве. Механический детерминизм при этом просто выражается словами, что движение изображающей точки полностью определено, если известны ее начальное положение и скорость в конфигурационном пространстве.

Использование конфигурационного пространства становится обязательным, когда хотят применить к динамике систем теорему Якоби. Говоря языком физики, сущность этой теоремы заключается в разбиении возможных движений рассматриваемой системы на группы таким образом, чтобы в каждой группе совокупность всевозможных траекторий движения соответствовала лучам распространяющихся волн. Очевидно, что если все движущиеся частицы описывать в физическом пространстве, то такого соответствия установить невозможно просто из-за обилия траекторий. С другой стороны, его легко установить, если рассматривать конфигурационное пространство, ибо в нем каждому движению соответствует единственная траектория изображающей точки. Следовательно, в этом случае теория Якоби позволяет нам классифицировать возможные движения системы, т е. возможные движения изображающей точки в конфигурационном пространстве, таким образом, что траектории изображающей точки, принадлежащие одному классу, представляют в последнем лучи волн, распространяющихся в смысле геометрической оптики. Уравнение Якоби, зависящее от координат всех частиц системы, т е. от всех координат конфигурационного пространства, будет уравнением геометрической оптики для распространения этих волн в рассматриваемом многомерном пространстве. Принцип наименьшего действия оказывается в этом случае эквивалентным принципу Ферма.

Поскольку теория Якоби и принцип наименьшего действия открывают самый легкий путь для перехода от старой механики к волновой, можно было ожидать, что дальнейшее развитие волновой механики будет происходить с применением представления о конфигурационном пространстве. Именно так это и произошло. Обобщая процедуру, разработанную для уравнения распространения волны одной частицы, Шредингер сумел записать в конфигурационном пространстве уравнение распространения для «КСИ»-функции, связанной с системой. Это уравнение построено таким образом, что если выполняется приближение геометрической оптики, то получается вновь уравнение Якоби.

Однако здесь «КСИ»-функция зависит не только от времени, но и от координат всех частиц системы, и ее изменение происходит в конфигурационном пространстве. Таким образом, здесь еще больше проявляется символический характер «КСИ»-волны, чем в случае одной частицы. Могло бы даже показаться странным, что движение системы нельзя рассмотреть в трехмерном пространстве, ибо, чтобы это сделать, мы обязательно должны начать с представления об абстрактном конфигурационном пространстве. Ведь в классической механике использование конфигурационного пространства часто оказывается полезным, но совершенно необязательным: все частицы системы всегда можно описать в физическом пространстве.

Автор этой книги в течение долгого времени ощущал некоторое беспокойство по поводу обязательного применения конфигурационного пространства в квантовой механике: даже сегодня он надеется, что, когда мы сможем заменить наши современные представления о физическом пространстве, о частицах и т д. представлениями, лучше соответствующими действительности, законы волновой механики систем будут выражены в менее искусственной форме. В случае систем, содержащих частицы одинаковой природы, можно избежать обязательного использования абстрактного пространства конфигураций, применив метод вторичного квантования, Этот метод основан на том, что при любых эволюциях такой системы полное число частиц должно оставаться неизменным.

Так или иначе, в настоящее время волновая механика систем формулируется в терминах волн в конфигурационном пространстве, и мы увидим, что ее методы увенчались успехом. Квантование системы заключается в исследовании того, для каких значений полной энергии системы (равной частоте «КСИ»-волны, умноженной на h) существуют в конфигурационном пространстве стационарные «КСИ»-волны, т е. в поисках собственных значений уравнений распространения. Далее, для этих квантованных систем находятся дискретные спектры собственных значений, которым соответствуют собственные функции, образующие полный набор и т д. Таким образом, производится непосредственное обобщение физического объяснения волновой механики.

Интенсивность «КСИ»-волны дает в каждой точке конфигурационного пространства вероятность того, что эксперимент, обнаруживающий частицы системы в данных точках, позволит приписать системе конфигурацию, соответствующую данной точке. Аналогично, парциальная интенсивность компонент спектрального разложения волновой функции по собственным функциям энергии дает вероятности того, что точное измерение энергии даст то или иное собственное значение гамильтониана. Короче говоря, сюда непосредственно переносятся все принципы вероятностной интерпретации. Следует также попутно отметить, что здесь можно определить понятие центра тяжести и что некоторые классические теоремы механики, такие, как теорема Кенига, имеют свои аналоги в волновой механике.

Волновая механика систем, развитая в работах Шредингера, не является релятивистской. Это волновое обобщение ньютоновой, а не эйнштейновой механики систем по той причине, что релятивистская механика систем никогда не будет окончательно создана. Эта неспособность релятивистской механики строго описать движение систем обусловлена несколькими причинами, в частности тем, что теория относительности существенно отвергает все мгновенные воздействия на расстоянии. Релятивистская волновая механика Дирака применима только к изолированным частицам, помещенным в заданное силовое поле: ее обобщение на случай систем представляет собой сложную проблему, далекую еще от окончательного решения.

В п. 4 еще будет идти речь о нескольких замечательных приложениях волновой механики систем. Однако, прежде чем сделать это, мы должны рассмотреть один важный случай, где ярко проявляются некоторые специфические свойства новой механики: случай систем, содержащих частицы одинаковой природы.

 

2. Системы, состоящие из частиц одинаковой природы. Принцип Паули

Вопрос, который мы собираемся обсудить, всецело связан с важной и совершенно новой идеей, возникающей в квантовой теории в связи с введением в статистическую механику кванта действия.

В атомной физике раньше всегда предполагали, что две частицы одинаковой природы, например два электрона, тождественны. Однако эту тождественность нельзя считать абсолютной, не позволяющей, хотя бы мысленно, различить две частицы одинаковой природы. Так, например, при статистических расчетах два состояния одной и той же системы, в которых лишь переставлены две частицы одинаковой природы, считаются различными. Следовательно, если представить себе систему, образованную электронами, то коллективное состояние системы, в котором первый электрон находится в состоянии a, а второй – в состоянии b, считается отличным от коллективного состояния системы, когда первый электрон находится в состоянии b, а второй – в состоянии a. При этом индивидуальные состояния остальных электронов остаются в обоих случаях одинаковыми. Развитие квантовой статистики привело к полному отрицанию возможности различить две частицы одинаковой природы внутри одной системы. Квантовая статистика считает, что два состояния системы, отличающиеся друг от друга только перестановкой двух частиц одинаковой природы, тождественны и неразличимы.

Перестановка частиц одинаковой природы приводит в квантовой механике систем к очень важным последствиям. Рассмотрим систему, состоящую из частиц одинаковой природы. Пусть «КСИ» – одна из возможных волновых функций системы. Согласно определению, эта волновая функция называется симметричной по отношению к двум частицам, если при перестановке координат двух частиц выражение для «КСИ»-функции не меняется. Наоборот, она называется антисимметричной по отношению к двум частицам, если перестановка координат двух частиц меняет лишь знак «КСИ»-функции. Важно отметить, что в общем случае «КСИ»-функция не будет ни симметричной, ни антисимметричной. Однако взаимозаменяемость частиц одинаковой природы позволяет нам доказать следующую важную теорему: если система состоит из частиц одинаковой природы, то всегда существуют волновые функции, одни симметричные, другие антисимметричные по отношению ко всем парам частиц одинаковой природы.

Будем называть состояние, волновая функция которого симметрична, симметричным состоянием системы, а состояние, волновая функция которого антисимметрична, – антисимметричным состоянием системы. Тот факт, что потенциал взаимодействия симметрично зависит от координат каждой пары частиц, позволяет нам доказать теорему, не менее важную, чем первая: невозможно осуществить переход системы из симметричного состояния в антисимметричное и обратно.

Иными словами, невозможны никакие иные комбинации, в смысле Ритца, кроме как между состояниями одинаковой природы. Отсюда следует, что симметричные состояния, с одной стороны, и антисимметричные, с другой, образуют два совершенно отдельных ансамбля, между которыми невозможны никакие переходы. Таким образом, волновая механика допускает принцип, который утверждает, что для частиц определенного сорта существуют в природе лишь симметричные или лишь антисимметричные состояния, поскольку если в начальный момент времени существовали только состояния одного типа, то они навсегда и останутся такими. Этот принцип не является следствием волновой механики, допускающей любые состояния, однако он ей и не противоречит. Теперь мы должны пояснить, как Паули пришел к предположению о существовании этого принципа по крайней мере для электронов.

При изучении строения атома мы отмечали, что существует насыщение энергетических уровней, и подчеркивали фундаментальную важность этого явления, так как именно оно определяет эволюцию структуры атома в периодической системе элементов и все различия в химических, оптических и магнитных свойствах этих элементов. Мы также говорили о том, что порядок последовательного заполнения уровней при добавлении новых электронов был установлен эмпирически: он задается правилом Стонера, которое вначале теоретически не было подтверждено.

Благодаря правилу Стонера стало известно максимальное число электронов, которое может находиться на каждом энергетическом уровне атома. Пытаясь объяснить эти факты, Паули выдвинул замечательную идею о расщеплении уровней, происходящем в результате того, что два электрона не могут находиться в строго тождественных квантовых состояниях, т е. описываться одними и теми же квантовыми числами. Иными словами, наличие электрона в одном квантовом состоянии запрещает появление в том же состоянии еще одного электрона. Отсюда название принцип запрета, данное этому новому физическому постулату. На языке волновой механики принцип Паули выражается следующим образом: электроны могут находиться только в антисимметричных состояниях.Мы видели, что такое утверждение не противоречит принципам новой механики. Чтобы показать, что обе приведенные формулировки принципа запрета действительно совпадают, предположим, что система содержит два электрона в одном и том же индивидуальном состоянии. Но в соответствии со второй формулировкой это предположение означает, что волновая функция антисимметрична по отношению к этой паре электронов, она должна, следовательно, менять знак при перестановке этих электронов местами. Однако, так как индивидуальные состояния электронов тождественны, то такая перестановка не должна менять волновую функцию.

Итак, поскольку волновая функция одновременно и меняет и не меняет знак при перестановке электронов, то она должна быть равна нулю. На языке волновой механики это означает, что такого состояния не существует. Таким образом, два электрона не могут находиться в одном и том же индивидуальном состоянии и мы видим, что вторая формулировка приводит нас к первой. Легко доказать также и обратное.

Принцип Паули можно, следовательно, выразить в волновой механике аналитически, записав волновые функции систем, содержащих электроны, в антисимметричной форме по отношению к электронным парам. Однако, применяя этот принцип на деле, следует помнить, что электрон обладает спином. Поэтому его индивидуальное состояние является функцией не только его координат, но также и значения его спина. Волновые функции, допускаемые принципом Паули, антисимметричны по отношению ко всем пространственным координатам и спину.

Огромная важность принципа Паули заключается в том, что он дал возможность объяснить насыщение уровней. Он позволил прямым путем получить правило Стонера. Достаточно учесть, что несколько различных состояний, т е. состояний, соответствующих различным комбинациям квантовых чисел, обладают одинаковой энергией и, следовательно, относятся к одному энергетическому уровню. Таким образом, достаточно подсчитать для каждого энергетического уровня, сколько ему соответствует различных квантовых состояний, и мы узнаем, согласно принципу Паули, максимальное число электронов на этом уровне, ибо оно достигает максимума, когда заполнено каждое квантовое состояние. Из этого подсчета и вытекает правило Стонера. Принцип Паули имеет фундаментальное назначение при построении волновой механики систем. В частности, он приводит к статистике Ферми – Дирака для электронов.

Для электронов единственно возможными оказываются антисимметричные состояния. Возникает вопрос, а как обстоит дело с другими элементарными и неэлементарными частицами микромира? Применим ли принцип Паули также и к ним? Или, наоборот, для них возможны лишь симметричные состояния? Или, наконец, допустимы и те и Другие? По-видимому, эта последняя альтернатива никогда не реализуется: в Природе осуществляются только симметричные или антисимметричные состояния.

Первый случай – это случай электронов, а также некоторых атомных ядер: в одном квантовом состоянии не может быть больше одного электрона, и они всегда подчиняются, как мы видели, статистике Ферми – Дирака.

Второй случай охватывает фотоны, «альфа»-частицы и остальные атомные ядра. При этом нет никаких препятствий для накопления любого числа частиц в одном квантовом состоянии, ибо симметричная функция не меняется при перемене местами двух частиц одной природы: поэтому в этом случае частицы подчиняются статистике Бозе – Эйнштейна. Для фотонов она изображается формулой Планка. Вообще оказывается, что частицы, спин которых нечетный в единицах h/4»пи», подчиняются принципу Паули и статистике Ферми – Дирака. Частицы же, спин которых равен нулю или четный в единицах h/4»пи», подчиняются статистике Бозе – Эйнштейна. Это очень важное правило. Вопросы спина и статистики играют большую роль в исследовании полосатых спектров, а также в изучении строения атомного ядра.

Принцип Паули выражает весьма специфическое свойство электронов и других частиц, которые ему подчиняются. Действительно, на сегодняшний день почти невозможно понять, каким образом две тождественные частицы взаимно запрещают друг другу занять одно и то же состояние. Этот тип взаимодействия совершенно отличается от взаимодействий в классической физике. Его физическая природа пока нам совершенно неизвестна. По-видимому, это одна из самых важных задач и к тому же самых трудных, которую предстоит решить физикам-теоретикам будущего, чтобы выяснить физические истоки принципа запрета.

Чтобы показать, насколько далеко мы ушли от старых представлений, рассмотрим случай газа из частиц одинаковой природы, подчиняющихся принципу Паули, например электронного газа. Согласно принципу запрета, никакие два электрона этого газа не могут находиться в одном и том же состоянии прямолинейного равномерного движения, ибо здесь состояния прямолинейного равномерного движения квантованы. С. классической точки зрения это означало бы, что частица, расположенная в некоторой точке сосуда, содержащего газ, будет мешать любой другой частице газа иметь Такое же состояние. Это совершенно парадоксально, так как сосуд с газом можно взять сколь угодно большим и, следовательно, расстояние между частицами может быть сколь угодно велико. Однако этот парадокс тесно связан с соотношениями неопределенности Гейзенберга и исчезает, если принять их во внимание. Действительно, прямолинейное и равномерное движение частиц соответствует вполне определенной энергии этих частиц.

Таким образом, соотношения неопределенности запрещают говорить одновременно о положении и состоянии движения двух частиц. Сам факт, что мы говорим о том, что энергетические состояния частиц вполне определены, не позволяет нам больше говорить о расстоянии между ними, ибо они при этом никак не локализованы. Этот пример показывает, что физическую интерпретацию принципа запрета нужно обязательно проводить целиком вне рамок классических представлений.

 

3. Приложения волновой механики систем

Волновая механика систем, развитая с учетом принципа Паули и спина, добилась многочисленных блестящих успехов. Одним из них было объяснение спектра гелия. В то время как спектр ионизованного гелия нашел свое объяснение еще в теории Бора (ионизованный гелий относится к простейшей группе систем с одним электроном), спектр нейтрального гелия оставался загадкой. Действительно, линии нейтрального гелия делились на две отдельные категории, соответствующие термам, которые, по крайней мере в первом приближении, не были взаимно связаны.

Эти две системы совершенно независимых линий получили название спектров ортогелия и парагелия. Долгое время считалось, что эти два различных типа атомов гелия реально существуют, причем каждый испускает свой спектр. Но, наконец, удалось обнаружить, что различия между парагелием и ортогелием нет: один и тот же атом гелия в зависимости от обстоятельств излучает то орто-, то пара-спектр.

Гейзенберг в своей знаменитой работе дал ключ к разгадке этого явления. Поскольку оба орбитальных электрона нейтрального атома гелия подчиняются принципу Паули, то волновая функция этого атома должна быть антисимметричной по отношению ко всем координатам и спинам обоих электронов. Но эта антисимметрия может осуществляться двумя путями: волновая функция может быть симметрична по отношению к координатам и антисимметрична по отношению к спинам или наоборот. Таким образом, существует два типа волновых функций и, следовательно, спектральных термов. Наконец, поскольку спектральные термы относятся к разным категориям, они не могут быть взаимосвязаны, по крайней мере в первом приближении. Теперь достаточно отождествить одну из категорий термов с термами ортогелия, а другую – с термами парагелия, чтобы получить вполне удовлетворительное объяснение распада спектра гелия на две независимые части. С помощью такой интерпретации Гейзенбергу удалось объяснить некоторые особенности спектров ортогелия и парагелия, в частности: в то время как линии парагелия одинарные, линии ортогелия тройные и образуют триплеты. Объяснение Гейзенбергом этого незначительного факта теории представляет само по себе прекрасное подтверждение принципа Паули, ибо такое различие между тонкой структурой этих двух серий возникает именно из-за принципа Паули. Без него мы получили бы иной результат, противоречащий эксперименту.

Другим замечательным приложением волновой механики систем стала теория молекулы водорода или, в более общем виде, теория гомеополярной молекулы. Классическая теория в некоторой степени позволяет нам понять происхождение связей, соединяющих атомы гетерополярной молекулы, т е. молекулы, атомы которой обладают различным сродством к электрону. Действительно, в этом случае можно себе представить, что различные атомы молекулы превращаются в ионы, отдавая или присоединяя электроны. Поэтому можно думать, что стабильность молекулярной структуры обусловлена действием кулоновых сил между различными образовавшимися ионами. Однако случай гомеополярных молекул, например, весьма важный случай молекул, состоящих из двух атомов одинаковой природы, был раньше для физиков наиболее затруднительным, так как не существовало никаких причин, чтобы атомы с одинаковым сродством к электрону превращались в ионы различных знаков.

Следовательно, оставалось неясным, какого типа силы могут действовать между этими нейтральными атомами, чтобы обеспечить их связь в молекуле. Все, что приходило в голову, оказывалось для этой роли слишком слабым. Волновая механика позволяет, и это немалый успех, понять природу гомеополярных связей, введя понятие обменной энергии. Вот что означает это несколько таинственное выражение: если тщательно исследовать с помощью волновой механики поведение системы, содержащей тождественные частицы, оказывается, что в выражении для энергии системы наряду с членами, описывающими известное взаимодействие между частицами, появляются члены нового типа, связанные с тем, что тождественные частицы могут меняться местами.

Эти члены и описывают то, что мы назвали обменной энергией. Им соответствуют силы совершенно нового типа, которые невозможно представить в классической векторной форме и которые огромны по величине. Эти новые силы – неизбежное следствие формализма новой механики, однако, оказывается, их нельзя объяснить физически, в старом смысле этого слова. Мы снова оказались перед фактом, выходящим за рамки всех классических представлений и показывающим, сколь ошибочен наш обычный прием локализации физических величин в непрерывном пространстве трех измерений. Весьма поучительно следующее замечание: обменная энергия существует лишь тогда, когда вероятность найти две одинаковые частицы в одной области пространства не равна нулю. Иными словами, так как частицы в волновой механике, вообще говоря, не локализованы, то существует некоторое распределение плотностей вероятности. Обменная энергия существует в том и только в том случае, когда распределения плотности вероятности для двух частиц одного сорта перекрываются. Это замечание проливает свет на зависимость между обменной энергией и невозможностью локализовать частицу в пространстве.

Не останавливаясь больше на этих очень интересных свойствах обменной энергии, мы хотели бы показать, как объяснить образование гомеополярной молекулы. Простейший пример такой молекулы дает молекула водорода, состоящая из двух атомов, каждый из которых содержит один электрон. Когда два атома водорода, вначале находящиеся далеко друг от друга, начинают сближаться, они стремятся образовать механическую систему с двумя электронами. Поэтому между этими двумя электронами появляется обменная энергия.

Эту энергию можно вычислить методами волновой механики с учетом принципа Паули и существования спина. Это и проделали Гайтлер и Лондон. Они получили следующий результат: если спиновые векторы обоих электронов имеют одинаковые знаки, то обменная энергия соответствует отталкиванию между атомами, и молекула образоваться не может. Если, наоборот, векторы спинов имеют противоположные знаки, обменная энергия соответствует притяжению атомов, когда же атомы сближаются еще больше, снова возникает отталкивание. Это как раз и есть случаи, когда появляется тенденция к образованию стабильной молекулы.

Эта теория хорошо объясняет образование и свойства молекулы водорода. По существу ее можно трактовать следующим образом: электроны двух атомов водорода способны образовать пару с противоположно направленными векторами спина. Эта пара, обладая очень большой стабильностью, представляет собой связующее звено между двумя атомами и заставляет их соединяться в единую молекулу. В таком виде объяснение можно обобщить на случай всех двухатомных молекул и даже молекул, содержащих больше двух атомов. Рассмотрим, например, любую двухатомную молекулу. Два атома, способных объединиться в эту молекулу, содержат то или иное число электронов; определенное число этих электронов образует внутри атома пары электронов одинаковой энергии и противоположных спинов, некоторые же из них таких пар не образуют.

Электроны, не имеющие пары, остроумно названные холостыми электронами, стремятся, как только представится такая возможность, объединиться с электронами другого атома и образовать пару. Действительно, расчеты показывают, что в большинстве случаев сближение двух атомов приводит к образованию молекулы, в которой по крайней мере некоторые из холостых электронов этих двух атомов образуют пары. Образование таких пар и оказывается причиной молекулярной связи между двумя атомами. Очевидно, что это объяснение можно обобщить на случай молекул, содержащих более двух атомов.

Представление о том, что образование молекул происходит благодаря формированию электронных пар с противоположно направленными векторами спинов, позволяет нам дать объяснение понятию валентности, играющему фундаментальную роль в химии. Вообще можно сказать, что атом, содержащий в основном состоянии некоторое число nхолостых электронов, будет иметь химическую валентность n. Действительно, такой атом способен присоединить к себе еще nатомов водорода, поскольку каждый из его nсвободных электронов может образовать пару с электроном атома водорода.

Таким образом, валентность данного атома или по крайней мере максимальная его валентность равна n. Отсюда видно, что существование химической валентности связано с наличием обменной энергии между электронами. Теперь понятно, почему попытки объяснить валентные силы с помощью векторной схемы, применимой в остальных случаях, не дали по-настоящему удовлетворительного результата. Кроме того, тот факт, что два электрона, образуя пару, как бы нейтрализуются и не влияют больше ни на какие молекулярные взаимодействия, объясняет валентное насыщение, абсолютно несовместимое с представлением о валентностях как о силах старого типа. Отсюда уже видно, насколько удовлетворительна и разумна новая теория валентности, основанная на волновой механике.

В то время как это новое основание теории валентности кажется вполне несомненным, детальное объяснение различных фактов химии, связанных с этой теорией (многократная или направленная валентность, стереохимия, свободные связи и т д.), остается еще трудной задачей. Решением ее уже начали заниматься серьезно, однако такая математическая химия оказывается сложной наукой, и многое еще предстоит сделать, чтобы довести ее до конца. За исключением простого случая молекулы водорода, точный расчет собственных значений и собственных функций невозможен и приходится ограничиваться вычислением собственных значений и классификацией их в соответствии со свойствами симметрии отвечающих им волновых функций, выражения для которых остаются неизвестными. Для этого приходится обращаться к весьма общим методам, основанным на теории групп. Эта теория пока еще мало известна физикам, но она оказывается незаменимой в этом разделе волновой механики. Кроме того, мы с ее помощью очень быстрым и красивым путем приходим к прекрасным весьма общим результатам. Однако, поскольку физики-теоретики, умеющие обращаться с этим сложным методом, за недостатком времени не всегда занимаются изучением даже основных многочисленных и сложных химических фактов, для успешного завершения уже начавшей развиваться теории необходимо тесное сотрудничество между физиками и химиками. Что же касается нынешнего состояния науки о квантах, то во всяком случае одним из славных успехов новой механики стало объяснение некоторых важнейших законов химии.

 

4. Квантовая статистика

Методы классической статистики Больцмана и Гиббса, успех которых в макроскопической физике известен, должны были претерпеть изменения в связи с развитием новой механики. Мы не можем здесь вдаваться в детали того, как видоизменились с введением кванта действия сами основы статистической механики. Рассмотрим лишь случай идеального газа с точки зрения представлений волновой механики. В идеальном газе атомы все время, не считая моментов соударений, находятся в состоянии прямолинейного равномерного движения. В классической статистике эти состояния движения образуют непрерывные наборы, ибо все значения и направления скоростей одинаково возможны. Методы Больцмана и Гиббса состоят по существу в подсчете возможных распределений атомов газа между состояниями движения с данной энергией и нахождении наиболее вероятного из них.

Хотя квант действия был введен, как и в волновой механике, при сопоставлении распространяющейся волны с движущимся атомом, ситуация здесь несколько иная, ибо в случае газа, заключенного в сосуд определенного размера, физически возможны только стационарные волны, находящиеся в резонансе с размерами сосуда (в согласии с принципами квантования в новой механике). Поэтому сначала необходимо подсчитать число этих стационарных соединений, затем рассчитать возможное распределение атомов по этим состояниям с заданной полной энергией.

Для сосуда макроскопических размеров, а это единственно реальный случай, стационарные состояния из-за малой величины постоянной Планка представляют собой дискретный, но очень тесно расположенный набор. Поэтому практически можно считать, что этот набор состояний непрерывен и, следовательно, справедлива статистическая механика. Этим и объясняется успех старых статистических методов. Тем не менее можно показать, что введение кванта действия в явления микроскопического Масштаба становится существенным. Прежде всего это позволяет установить постоянную энтропии.

В классической статистической механике постоянная энтропии бесконечна, что выглядит весьма странно и, как мы теперь знаем, оказывается результатом легкомысленного пренебрежения квантом действия, обязательным элементом устойчивости физического мира. Правда, некоторые думают, что можно обойти эту трудность, заявляя, что, поскольку постоянная энтропии является в термодинамике произвольной постоянной, нет ничего страшного в том, что она бесконечна! Квантовая теория позволяет нам приписать энтропии конечное значение и вычислить ее как функцию постоянной Планка. При этом видно, что величина постоянной энтропии существенно входит в расчет равновесия между паром и его конденсатом, а это позволяет нам количественно проверить предсказания квантовой теории.

Чтобы развить квантовую статистическую механику, необходимо вычислить ряд распределений атомов или Других элементов данной системы по различным возможным квантовым состояниям и, отвечая на этот вопрос, мы должны принять во внимание, что соображения, развитые в предпоследней главе, играют здесь важную роль. Мы уже видели, что тождественность одинаковых частиц заставляет нас считать два распределения, отличающиеся только перестановкой двух одинаковых частиц, совпадающими. Этот новый способ подсчета распределений дает результаты, в принципе сильно отличающиеся от результатов статистики Больцмана – Гиббса. Но он дает еще больше: нумеруя наши распределения, необходимо учесть, подчиняются или не подчиняются наши элементы принципу Паули, т е. если их волновые функции антисимметричны, то в одном состоянии может находиться самое большее один элемент. Если, наоборот, они не подчиняются принципу Паули, т е. их волновые функции симметричны, то ничто не ограничивает число этих элементов в каждом возможном состоянии. Поэтому в каждом из этих случаев подсчет следует проводить совершенно различным образом. В первом случае получается статистика Ферми – Дирака, которую можно с таким же успехом назвать статистикой Паули, ибо она потенциально заключена в принципе Паули. Во втором случае мы имеем статистику Бозе – Эйнштейна, потенциально содержащуюся в наших первых работах по волновой механике.

Эти две новые статистики асимптотически переходят в классическую статистику при стремлении величины hк нулю, как и следовало a priori ожидать. Если развить две термодинамики, соответствующие этим двум статистикам, то мы получим две теории, несколько отличные друг от друга, которые также перейдут в классическую термодинамику, если считать, что hбесконечно малая величина. Если для каждого из этих случаев вывести законы идеального газа, то мы получим законы, отклоняющиеся от классических в противоположных направлениях. Так, например, в одном случае газ более сжимаем, а в другом – менее сжимаем, чем следует из закона Мариотта – Гей-Люссака. К сожалению, для газов при обычных условиях эти отклонения необычайно малы. По этой причине обнаружить их совершенно невозможно, тем более, что реальные газы далеки от идеальности, и отклонения от закона Мариотта – Гей-Люссака, возникающие из-за других причин (взаимодействие между молекулами, конечный объем самих молекул и т д.), совершенно маскируют эффекты статистик. Поэтому новые статистики не находят своего Подтверждения при изучении реальных газов.

Однако, к счастью, для каждой из них существует важный объект, на котором можно доказать их справедливость. Для статистики Бозе – Эйнштейна – это излучение черного Тела. Для статистики Ферми – Дирака – случай электронов в металле. Скажем несколько слов о каждом из них.

Мы видели, что фотоны не подчиняются принципу Паули, поэтому ничто не мешает любому числу фотонов пребывать в одном и том же состоянии. Фотонный газ подчиняется, таким образом, статистике Бозе – Эйнштейна. Далее, равновесное излучение в изотермическом замкнутом объеме вполне можно рассматривать как фотонный газ, с той лишь разницей, что, поскольку стенки сосуда поглощают или испускают излучение, число фотонов не обязательно остается постоянным. Применяя статистику Бозе – Эйнштейна к равновесному излучению, мы очень легко получим планковский закон спектрального распределения. Поскольку формула Планка надежно подтверждается экспериментально, то мы получаем здесь замечательное подтверждение и статистики Бозе – Эйнштейна. И это подтверждение очень убедительно, ибо ни классическая статистика, ни статистика Ферми – Дирака не позволяют получить Правильного спектрального распределения фотонов равновесного излучения.

Статистика Ферми – Дирака нашла замечательное подтверждение в электронной теории металлов. Еще в старой электронной теории Друде и Лоренц, нашли объяснение ряда свойств металлов, например, их способности проводить тепло и электричество. Они предположили, что атомы в металле частично ионизованы, причем в результате этой ионизации внутри металла образуется газ из свободных электронов. Применив к этому электронному газу методы статистической механики, они сумели удовлетворительно объяснить большинство свойств металлов.

Однако в этой теории еще оставалось много трудностей, Самая большая была связана с удельной теплоемкостью металлов, которая из-за наличия внутри металла свободных электронов должна была быть во много раз больше, чем это есть в действительности.

Развитие новой статистики позволило Зоммерфельду разрешить некоторые из этих трудностей. Поскольку электроны подчиняются принципу Паули, они должны описываться статистикой Ферми – Дирака. Простой численный расчет показывает, что условия, в которых находятся электроны внутри металла, весьма отличаются от условий существования атомов обычного газа. Для этих последних результаты, полученные с помощью статистики Ферми – Дирака, не сильно отличаются от результатов, которые дает классическая статистика. Что же касается электронов внутри металла, то там, наоборот, статистика Ферми приводит к иным результатам, чем статистика Больцмана.

Это различие – прямое следствие необычайно малой массы электрона по сравнению с массой атома. Если предположить, что справедлива квантовая статистика, то нужно пересмотреть теории Друде и Лоренца. Это и сделал Зоммерфельд. Он сохранил правильные результаты старой теории, внеся в них поправки, и разрешил большое число возникших в ней трудностей. Например, он легко объяснил, исходя из положений статистики Ферми – Дирака, почему свободные электроны не вносят заметного вклада в теплоемкость металлов и, следовательно, почему их теплоемкость почти не отличается от теплоемкости, найденной без учета свободных электронов. Таким образом, устранялось основное ошибочное предсказание старой теории. Многие теоретики, среди которых мы упомянем Леона Бриллюэна, Феликса Блоха и Пайерлса, встали на путь, указанный работой Зоммерфельда, и в значительной степени развили первые результаты. Это – самостоятельная важная область физики, о которой из-за ограниченного объема этой книги мы, к сожалению, не можем больше говорить. Мы лишь заметим, что наряду с этими блестящими результатами еще остаются кое-какие неясности.

Из других приложений квантовой статистики мы только укажем (без обсуждения), что Ферми блестяще применил свою статистику к исследованию свойств атомов, рассматривая каждый атом как газ из нескольких электронов, помещенный в поле центральных сил ядра.

 

5. Замечание о принципе тождественности

Волновая механика систем, содержащих частицы одинаковой природы, и их квантовая статистика требуют, как видно, чтобы мы в какой-то мере отказались от представления о различности частиц. Однако полный отказ от признания различности частиц мог бы показаться несколько чрезмерным требованием. Казалось, что возможность различать частицы связана с возможностью локализовать их в различных областях пространства. Последняя возможность всегда существует, поэтому всегда можно различать частицы экспериментально, локализуя их в различных областях пространства. В то же время, когда распределения плотности вероятности нескольких частиц перекрываются, т е. когда становятся возможными обменные эффекты, то различить отдельные частицы уже невозможно: об этом мы уже говорили, когда речь шла об обменной энергии. Но именно такой случай реализуется в большинстве систем, рассматриваемых квантовой механикой, в частности, в газе, где предполагается, что частицы обладают строго определенной энергией: энергией, соответствующей плоской монохроматической волне (или почти такой), заполняющей весь сосуд. Таким образом, понятно, почему в классической механике не возникает проблема неразличимости частиц, она связана с тем, что две квантовые частицы могут занимать (по крайней мере потенциально) одну и ту же область пространства, что характерно для квантовомеханических представлений.

Если вернуться к замечаниям, сделанным в п. 3 и 4, то увидим, что и неразличимость частиц, и принцип Паули, и обменная энергия – это три внутренне связанных таинственных свойства: все они вытекают из невозможности точно описать физические явления в трехмерном непрерывном пространстве или (в более общем случае) в четырехмерном пространственно-временном континууме. Возможно, что когда-нибудь, исходя из других представлений, мы сумеем глубже проникнуть в смысл этих великих руководящих принципов новой физики. Но сегодня они еще совершенно неясны.

Мы могли бы сказать также, что физическое понятие индивидуального является дополнительным к понятию системы в том смысле, какой придавал этому термину Бор. Действительно, частицу можно различить лишь тогда, когда она изолирована. Если же она вступает во взаимодействие с другими частицами, то она теряет свою индивидуальность. Хотя в классических теориях это подчеркивается недостаточно, представление о потенциальной энергии взаимодействия системы означает некоторую потерю индивидуальности компонент системы благодаря объединению части их полной энергии в потенциальную энергию системы.

В тех случаях, которые рассматривает новая механика, когда тождественные частицы занимают, иногда в тот же самый момент времени, одну область пространства, индивидуальность отдельных частиц уменьшается до нуля. Если постепенно переходить от случая изолированных частиц без взаимодействия к только что рассмотренным случаям, то понятие индивидуальности частиц будет становиться все более и более неясным, в то время как представление о системе будет проявляться все более четко. Таким образом, оказывается, что эти два понятия являются дополнительными идеализациями. Впрочем, это всего лишь некая идея, требующая более тщательного исследования.