Нейтрино - призрачная частица атома

Азимов Айзек

В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.

Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.

Введение

Много-много лет назад человек, ведя тяжелую борьбу с силами природы за собственное существование, обратил вдруг свое внимание на окружающий мир. С тех пор, вероятно, люди и не перестают удивляться. Что представляет собой окружающий мир? Что им управляет? Каково его назначение?

Бесконечные вопросы, неуверенные попытки ответить.

Первые наивные ответы дошли до нас в виде Мифов.

Систематические попытки решить загадку Вселенной с помощью разума, а не мистицизма, двадцать пять столетий назад предприняли греки. Во второй половине шестнадцатого столетия ученые окончательно пришли к выводу, что одних только умозаключений недостаточно, необходим эксперимент.

Начавшийся с 1580 года подъем экспериментальной науки дал возможность человечеству получить часть ответов на загадки Вселенной. Раньше люди даже не мечтали о таких исчерпывающих ответах.

Глава 1. Импульс

Обобщения

Мы любим иногда придумывать фантастические места, где случаются самые невероятные вещи. Известны описания подобных мест в книгах Льюиса Кэрролла «Алиса в стране чудес» и «В Зазеркалье». В этих книгах кролики, лягушки, гусеницы разговаривают, играют в карты и шашки. Алиса становится внезапно то больше, то меньше, летает без крыльев и прыгает с большой высоты. Она встречает легендарных чудовищ и наблюдает за тем, как женщина превращается в овцу.

В таких местах интересно бывать, но наверняка никто не захотел бы жить в них. Гораздо удобнее жить в обычном мире, где происходят только вполне привычные события.

Другими словами, мы верим, что наш мир подчиняется определенным правилам, и дело ученых — попытаться выяснить, что это за правила. Ученый внимательно наблюдает события и, если замечает, что какое-нибудь явление происходит периодически, приходит к выводу, что иначе и быть не может. Тогда он формулирует правило, которое тем лучше, чем большее число случаев оно охватывает и чем меньше исключений имеет. Хорошее научное правило не должно иметь никаких исключений.

В качестве примера рассмотрим правило: все зеленые камни, подброшенные в воздух, падают обратно.

Такое правило полезно, так как оно говорит нам о том, чего следует ждать от зеленых камней, а чего нет. Если вы подбрасываете вверх зеленый камень, вы уверены, что он упадет обратно, и на этой основе планируете свои действия. Но опыт, однако, говорит, что все голубые камни, подброшенные в воздух, тоже падают обратно. И все серые камни ведут себя точно так же. Значит, правило станет более общим, если сказать: все камни, подброшенные в воздух, падают обратно. Можно сделать правило даже еще более общим: все, что подбрасывается вверх, должно падать вниз.

Столкновение бильярдных шаров

Сознательно или бессознательно мы доверчиво полагаемся на некоторые события, имеющие место потому, что определенные свойства окружающего мира мы считаем неизменными.

Например, знаток бильярда не без основания уверен в исходе своих ударов, если он точно ударяет шар своим кием (что следует ожидать, так как он хороший игрок), и в момент удара не происходит внезапного землетрясения или другой подобной неожиданности. Что делает его таким уверенным? Откуда он знает, что шары будут ложиться точно так, как он ожидает? Конечно, главная причина — опыт.

Поведение движущихся бильярдных шаров так регулярно, что после наблюдения нескольких сот или тысяч ударов игрок становится уверенным в своих ударах. Тем не менее вы можете всю жизнь играть на скачках или на бирже и никогда не сумеете точно предсказать, что случится в следующий момент, с той определенностью, с ка кой это сделает бильярдный игрок. Очевидно, движущиеся бильярдные шары представляют собой систему более простую, чем скачущие лошади или цены на бирже, и по-этому из поведения шаров легче сделать полезное обобщение.

Вообразите бильярдный шар, движущийся по поверхности стола самым простым образом, без каких-либо вращений, с постоянной скоростью 10 

см/сек.

Предположим далее, что этот бильярдный шар налетает на неподвижный, который тотчас начинает двигаться, а первый останавливается. При этом, если столкновение было центральным, второй бильярдный шар движется со скоростью 10 

см/сек

точно в том же направлении, в каком двигался раньше первый. Многочисленными наблюдениями установлено, что при таком столкновении сумма скоростей шаров до и после соударения одинакова (на самом деле имеется небольшое замедление из-за трения шара о поверхность стола и сопротивления окружающего воздуха но этими эффектами пока можно пренебречь). Короче, общая скорость остается неизменной, в то время как другие факторы, например положение и скорость каждого шара в отдельности, меняются. Казалось бы, общая скорость «сохраняется».

Значение такого обобщения в том, что оно исключает все виды случайностей из области возможного. Вы можете быть уверены, что ни один шар не будет двигаться быстрее определенного предела. Более того, если в такой системе из двух шаров известна скорость одного шара тем самым уже предопределена скорость другого. Но будет ли общая скорость «сохраняться» во всех случаях или только в том, который я только что описал?

Сохранение импульса

Теперь вы, вероятно, начнете подозревать, что «сохранение суммарной скорости» будет иметь место при всех условиях. Подождите — мы еще не рассмотрели всевозможные ситуации.

Предположим, например, что шар ударяет о борт бильярдного стола и отскакивает назад. Стол, неподвижный до удара, остается таким же неподвижным и после него. Казалось бы, нет ничего, что могло бы скомпенсировать изменение скорости бильярдного шара. Если шар ударяется о борт «в лоб», его скорость

+х см/сек

изменяется на —

х см/сек.

Если он ударяется под углом, горизонтальная составляющая изменяет свой знак на противоположный. В этом случае суммарная скорость не сохраняется, а поскольку обнаружен даже один случай несохранения, обобщение нарушается. От него следует отказаться и, если это возможно, найти лучшее.

Почему же не годится наш закон «сохранения суммарной скорости»? Одна из причин в том, что мы рассматривали нереальные, слишком ограниченные условия. Все наши сталкивающиеся и отскакивающие бильярдные шары были одинакового размера. Ну а что, если рассмотреть шары разного размера или, выражаясь более точно, разной массы? Слово «масса» было использовано раньше, когда я дал определение второго закона движения Ньютона. Действительно, массу лучше всего определять с помощью второго закона. Масса есть отношение силы, приложенной к телу, к вызываемому ею ускорению.

Однако на поверхности Земли при обычных условиях масса тела пропорциональна его весу, поэтому массу обычно измеряют взвешиванием и с уверенностью можно сказать: чем больше вес, тем больше масса, и чем меньше вес, тем меньше масса. В метрической системе массу принято измерять в граммах.

Рассмотрим далее два шара: движущийся с массой 70 г и неподвижный — 35 г. Если 70-граммовый шар движется со скоростью 10 

см/сек

и ударяет неподвижный «в лоб», то последний может покатиться вперед со скоростью 8 

см/сек,

а первый шар будет продолжать свое движение со скоростью 6 

см/сек.

До столкновения суммарная скорость была равна 10 

см/сек,

а после соударения 8+6=14 

Сохранение момента количества движения

Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии и одновременно вращаться. Любое тело, которое движется по окружности или вращается вокруг своей оси (например, Земля вращается вокруг своей оси и вокруг Солнца), обладает

угловой скоростью

и имеет угловой импульс, или

момент количества движения.

По аналогии с обычным импульсом можно также предположить, что момент количества движения равен угловой скорости, умноженной на массу

[3]

. Но это неверно. Вообразите, что вы стоите на вращающемся столике, держа в каждой руке по тяжелой гире и прижимая их к себе. Вы раскручиваетесь и, если столик вращается почти без трения, будете продолжать вращаться с примерно постоянной угловой скоростью довольно долго. Пусть, например, эта скорость равна двум оборотам в секунду. Если бы момент количества движения равнялся произведению массы на угловую скорость и если бы он сохранялся, вы могли бы изменить угловую скорость, меняя свою массу. Если бы, например, кто-нибудь взял гири из ваших рук, масса на вращающемся столике уменьшилась бы, а ваша угловая скорость увеличилась. Если бы вам в руки дали добавочный груз, ваша угловая скорость уменьшилась бы. Если бы момент количества движения зависел только от массы и угловой скорости, то вы, казалось, могли бы изменить угловую скорость, только изменяя массу.

Предположим, вы стоите на вращающемся столе, держа свои гири у туловища и делая два оборота в секунду. Выпрямите руки с гирями насколько возможно. Внезапно ваша угловая скорость уменьшится, и вы будете двигаться со скоростью, возможно, не более одного оборота в секунду. Прижмите руки опять к туловищу — и угловая скорость станет прежней.

Что же случилось? Ведь общая масса на столе не изменилась от того, что вы вытянули руки! Тогда почему же изменилась угловая скорость? Она должна измениться в ответ на определенные изменения в системе, зависящие не от величины массы. Логично предположить, что в момент количества движения входит расстояние массы от оси вращения. Расстояние части массы (ваших рук с гирями в них) от оси вращения увеличилось. Если это расстояние входит в момент количества движения, следует ожидать уменьшения угловой скорости, компенсирующего увеличение расстояния. Когда руки и гири опять прижаты к туловищу, их расстояние от оси вращения снова уменьшается и угловая скорость увеличивается, компенсируя это уменьшение.

Можно утверждать, что момент количества движения сохраняется, если его определять как произведение массы, угловой скорости и квадрата среднего расстояния массы от оси вращения. Тогда закон сохранения момента количества движения, нарушения которого никто никогда не наблюдал, можно сформулировать так:

Я говорю «суммарный момент количества движения» поскольку угловая скорость, так же как линейная, может иметь разные направления. Различают направление вращения