Синергетика. Основы методологии

Басина Г. И.

Басин М. А.

В монографии кратко изложены основы синергетической методологии исследования систем и процессов. Методология основана на работах авторов, а также участников Семинара «Синергетика и методы науки» Санкт-Петербургского союза учёных (СПбСУ) и сотрудников Научно-исследовательского центра «Синергетика» СПбСУ, а также на работах других Российских и зарубежных учёных. В настоящее время разработанная методология используется при исследовании таких сложных самоорганизующихся систем как Internet, Человек, Человеческое общество.

Г. И. Басина, М. А. Басин

Синергетика. Основы методологии

Введение. Что такое синергетика?

Интенсивное развитие нелинейных методов исследования сложных систем и сделанные в процессе этого развития открытия привели к тому, что учёные различных специальностей почувствовали необходимость в обобщении и синтезе потока новых знаний. Возникшую при этом междисциплинарную науку Г. Хакен назвал красивым именем «Синергетика».

Термин Синергетика происходит от греческого synergeia «синергеиа» — содействие, сотрудничество. Более часто встречавшимся до появления синергетики было слово «синергизм»:

1) координированное функционирование органов и систем;

2) комбинированное действие лекарственных веществ на организм, при котором суммарный эффект превышает сумму воздействий, оказываемых каждым компонентом в отдельности.

Глава 1. Три языка Синергетики

Объектом исследования обычно является некоторая структура или система (совокупность связанных структур), которая может быть выделена из окружающей природы и в течение некоторого времени сохраняет собственную индивидуальность, то есть частичную или полную независимость от окружающей среды (поля).

Целостная структура может быть охарактеризована одним словом, названием объекта. Название объекта ассоциируется в человеческом мозгу с первоначальным образом объекта, сложившимся на основе визуальных, звуковых и других типов ощущений, связываемых в единое целое. При дальнейшем изложении до введения классификации волн, структур и систем мы будем рассматривать термины объект, структура, система как синонимы. При выделении объекта из природы мы составляем в мозгу его образ, даем ему имя и вводим два числа: единица и нуль, характеризующие соответственно существование и отсутствие объекта.

Тем самым, мы вводим в рассмотрение три языка синергетики и науки вообще:

Глава 2. Параметр целого

Этот творческий процесс обеспечивает переход от словесного описания к математическому. Любая целостная система, которая может быть описана одним словом, должна иметь определённую действительную скалярную меру — параметр целого, — изменение которого описывает процесс возникновения и развития системы. Выбор этого параметра с целью построения математической модели системы не является однозначным, так как сложные системы могут быть описаны большим (иногда бесконечным) числом координат. Удачный выбор параметра целого, характеризующего систему и соответствующий ей процесс, является следствием того мысленного образа изучаемого объекта, который сложился на предыдущих этапах исследований. Параметр целого должен быть выбран таким образом, чтобы он легко измерялся или вычислялся и характер зависимости его от времени был устойчив для ряда аналогичных систем (квантов).

На этом этапе нужно не точное знание о природе, а шарж, схватывающий характерные черты изучаемых объектов и процессов. Это связано с тем, что научные данные — это проверяемые опытом данные, то есть повторяющиеся с той или иной точностью. Чем более сложен объект научного исследования, тем больше в нем индивидуального, тем меньшее число частных особенностей предмета может быть научно исследовано на первом этапе. Если мы оставляем при исследовании сложного объекта лишь одну обобщенную координату (меру, параметр целого), то в качестве неё можно использовать величину, характеризующую объём многообразия координат, более детально описывающих систему. Это может быть действие, энергия, масса системы, энтропия или информация, реальный геометрический объем, количество входящих в неё подсистем, количество денег, прибыль, количество слов в языке и даже переменная возможность существования самой системы.

В ряде случаев можно принять за параметр целого изучаемого объекта число элементов — квантов, которые включены в объект как в обобщенную волну. Если каждый из них имеет свою меру или параметр целого и эти меры аддитивны, — суммарную меру всех квантов.

В этом случае введение параметра целого подразумевает значительное информационное сжатие, то есть идентификацию квантов, включённых в систему как в обобщённую волну.

Глава 3. Фазовое пространство динамической системы

Однако анализа динамики одного, хотя и удачно выбранного, параметра целого чаще всего бывает недостаточно для полного исследования поведения сложной системы, особенно в тех случаях, когда выбранный параметр принимает устойчивое стационарное значение. Система существует и активно функционирует при постоянном значении параметра целого. В этом, случае можно ввести некоторые обобщённые координаты, изменение которых более подробно характеризуют динамику системы. При этом исследуемый объект может быть описан как динамическая система в некотором фазовом пространстве обобщённых координат.

Величина X

i,

i=1,…, n, описывает изменение i-й координаты. X, может включать несколько переменных, характеризующих действие этой координаты, а возможно, и целого континуума. Эти координаты собраны в вектор состояния Х(Х

1

, Х

2

, …).

Состояние изучаемого объекта в данный момент времени может быть задано точкой в некотором множестве X, в частности в n-мерном многообразии, В этом случае изучаемому объекту соответствует некоторая n-мерная динамическая система, а множество всех точек, соответствующих различным состояниям, называется n-мерным фазовым пространством. Совокупность состояний данной системы в различные моменты времени формирует одномерное пространство (линию), называемую фазовой траекторией системы. Если фазовое пространство системы — n-мерное гладкое многообразие, то фазовая траектория системы гладкая кривая (за исключением некоторых особых точек) и для её описания (а также для описания пучка траекторий, начинающихся из различных точек фазового пространства) может быть использован аппарат системы дифференциальных уравнений dX/dt = f(X,t). Здесь dX/dt — производная вектора X по времени.

Пусть мы имеем какое-либо решение системы дифференциальных уравнений в виде Х(t) = Ф(Х

0

, t), где Х(t) — значения координат фазовой траектории, проходящей через точку Х

0

в момент времени t

0

. В принципе, эта система уравнений может быть разрешена относительно t: t = Ф

-1

(Х, Х

0

).

Глава 4. Анализ поля системы

Всякая самоорганизующаяся система является открытой системой, обменивающейся с окружающей средой (полем) материей, энергией и информацией. Этот обмен может происходить непрерывно и дискретно. Взаимодействие с внешней средой может способствовать как сохранению структуры, так и её разрушению. Поэтому адекватное и полное описание самоорганизующихся систем возможно лишь совместно с окружающей средой — полем, в котором существует система.

Поле системы может также рассматриваться как новая система. В частности, для него может быть выбран параметр целого и выполнен эмпирический анализ его динамического изменения от времени. Поле может во многих случаях определять управляющие параметры системы.

Введение при анализе взаимодействия системы и поля времени как основного параметра позволяет обратить внимание на одну очень важную особенность взаимодействия структуры и ее поля — на волновой характер выделяемых нами из окружающей природы структур.

Более детальное качественное и количественное исследование полей в большинстве случаев, в отличие от исследования отдельной структуры или системы должно проводиться не в рамках конечномерных, а в рамках континуальных моделей, то есть для описания поля должен быть использован глубоко развитый аппарат линейных и нелинейных дифференциальных уравнений в частных производных и связанных с ними бесконечномерных математических групп преобразований, а также конечно-разностных систем уравнений.