Доказательства эволюции

Борисов Н. М.

Воробьев Ф. Ю.

Гиляров Алексей Меркурьевич

Еськов Кирилл Юрьевич

Журавлев Андрей Юрьевич

Марков Александр Владимирович

Оскольский Алексей Астафьевич

Петров Петр Николаевич

Шипунов Алексей Борисович

Эта книга не издавалась на бумаге, она существует только в интернете. Текст взят с сайта биолога, сотрудника Палеонтологического института РАН Александра Маркова «Вопросы эволюции» (http://evolbiol.ru/evidence.htm). Отличия файла от оригинала минимальны. В файле отсутствуют по понятным причинам несколько видеороликов, которые имеются в оригинале, но все изображения и гиперссылки сохранены. Кроме того, в файле отсутствует самая последняя глава — фрагменты из книги Ф. Коллинза.

Часть I. Вводная часть

Вступительное слово

Современная биология неотделима от концепции биологической эволюции. Как сказал один из крупнейших биологов-теоретиков XX века Феодосий Григорьевич Добржанский (1900–1975), «ничто в биологии не имеет смысла кроме как в свете эволюции» (nothing in biology makes sense except in the light of evolution) — так было озаглавлено его

эссе, опубликованное в 1973 г.

Мировое научное сообщество обоснованно считает, что имеющиеся доказательства эволюции настолько неопровержимы и всеобъемлющи, что отрицать факт биологической эволюции, оставаясь в рамках науки, сегодня уже невозможно. К каждому отдельному примеру или аргументу всегда можно при большом желании придраться (этим и занимаются антиэволюционисты, часто не совсем точно именуемые креационистами — люди, отвергающие научную концепцию эволюции), но с научными представлениями об эволюции согласуются миллионы фактов. Эволюция придает смысл, логику и стройность всему гигантскому массиву накопленных биологией знаний.

Однако то, что очевидно специалистам, далеко не всегда очевидно людям, не занимающимся наукой профессионально. К сожалению, антиэволюционистская пропаганда продолжает находить отклик в сердцах многих далеких от биологии людей. Этому есть целый ряд причин, в том числе психологических. Например, многим кажется, что происхождение от обезьян умаляет человеческое достоинство. По мнению ряда психологов, живучесть креационизма отчасти связана с врожденными особенностями человеческой психики. В частности, людям, особенно в детстве, свойственна так называемая «неупорядоченная телеология» — склонность приписывать некую изначальную цель всем объектам окружающего мира (тучи существуют, чтобы шел дождик, а львы — чтобы смотреть на них в зоопарке) (см.:

Неприятие научного знания уходит корнями в детскую психологию )

.

Помимо врожденных психологических особенностей, распространению креационизма и других ненаучных и лженаучных представлений и суеверий способствует и распространение демократических ценностей. Как это часто бывает, люди начинают применять законы и правила, справедливые и уместные в рамках определенного круга явлений, далеко за пределами области их применимости. Что хорошо для политики и социальных отношений, не обязательно хорошо для науки. В науке нельзя ни решать вопросы всеобщим голосованием, ни рассматривать любые точки зрения как изначально равноправные, ни считать одинаково весомыми мнения экспертов и дилетантов (подробнее см.:

Современная биология в значительной мере основана на фактах и идеях, которые противоречат врожденным склонностям нашей психики. Из всех наук именно биология, по мнению многих, вступает в самое сильное противоречие с религией. Не секрет, что у представителей многих конфессий факт происхождения человека от обезьян часто вызывает резкое неприятие.

1. Существуют ли среди ученых разногласия по поводу реальности биологической эволюции?

Самый большой успех, достигнутый противниками эволюции за годы активной пропагандистской деятельности, состоит в том, что им удалось внушить значительной части населения ложное представление о наличии разногласий

в науке

по поводу реальности эволюции. Устойчивость этого заблуждения базируется на непонимании того, что представляет собой современное мировое научное сообщество (мы говорим сейчас о естественных науках, которые соответствуют английскому слову

science

, а не о гуманитарных, в которых ситуация может быть иной). В отличие от религий, которых одновременно существует множество и которые принципиально не могут прийти к единому мнению по многим ключевым мировоззренческим вопросам, мировое научное сообщество де-факто является единым. Каждая новая гипотеза или теория проходит более или менее долгую экспериментальную проверку и в конце концов либо принимается сообществом, либо отвергается. Нет и не может (а главное, не должно) быть в современном мире таких естественнонаучных концепций, которые являются общепринятыми и почитаются за истину, например, в американской науке, но полностью отвергаются в германской, японской или индийской. Если подобная ситуация все же возникнет, ученые всего мира будут прилагать большие усилия, чтобы разрешить спор и установить истину. Если такое положение сохраняется надолго (как в случае с лысенковщиной в СССР), то это воспринимается как трагическая аномалия, как уход части ученых из мира науки в мир квази- или псевдонауки. Разумеется, есть разные научные школы и традиции, но в естественных науках в целом господствует твердое убеждение, что истина реально существует, ее в принципе можно установить научными методами, и именно к этому нужно всем стремиться. Отдельные разногласия, конечно, неизбежны (без них наука не может развиваться), но каждое отдельно взятое разногласие — это временное, преходящее явление. И если уж какой-то факт удается твердо доказать, то его принимает все научное сообщество, и разногласия между «школами» на этом заканчиваются. Эволюция — яркий пример такого факта. Теории, касающиеся механизмов и движущих сил эволюции, продолжают развиваться, и по некоторым из них сохраняются разногласия, но реальность самого факта эволюции в рамках мирового научного сообщества не оспаривается уже давно. В науке единство мнений по фундаментальным вопросам принципиально достижимо, потому что научные выводы основаны на объективных вещах — наблюдениях, расчетах и экспериментах, которые можно независимо повторить и проверить.

Поэтому когда мы говорим, что факт биологической эволюции признан мировым научным сообществом,

Крайне важно понять, что мировое научное сообщество давно уже вышло из того возраста, когда его можно было долго «водить за нос». Масштаб мировой науки уже давно не тот. Научное сообщество стало для этого слишком огромным и разнообразным.

Мы категорически отрицаем возможность «мирового заговора» ученых, о котором нередко говорят противники эволюции. Такой заговор был бы невозможен чисто технически, даже если бы у каких-то научных коллективов и возникло желание (достойное всяческого осуждения) такой заговор организовать. Ученых слишком много, они живут в слишком разных странах, и среди них слишком высока доля честных людей, для которых главным «корыстным интересом» является поиск истины, а не отстаивание каких-то догм, идеологий или традиций. Если уж говорить о «корысти», то для любого нормального ученого обнаружить факт, опровергающий какую-либо устоявшуюся точку зрения — это кладезь, золотое дно, мечта всей жизни. Такая находка дает ученому шанс войти в историю. Эволюционное учение рухнуло бы давным-давно, если бы против него можно было собрать убедительный с научной точки зрения, то есть объективный и проверяемый «компромат» в виде фактов, наблюдений, результатов экспериментов и т. п.

Иногда российские антиэволюционисты пытаются связать эволюцию с коммунизмом, пользуясь тем обстоятельством, что дарвинизм действительно был частью идеологической системы в период правления коммунистов в России. Но эволюция признавалась большинством русских биологов и до 1917 года, и после краха социалистической системы российские биологи по-прежнему убеждены в реальности эволюции, не говоря о том, что в странах «капиталистического лагеря» приверженность эволюционным взглядам среди ученых все эти годы была уж никак не меньше, чем в СССР.

2. Чем гипотезы и теории отличаются от доказанных фактов

Сначала давайте уточним, что такое «доказательство». Только в математике можно доказать что-либо (например, теорему) абсолютно строго. Такие математически строгие и неопровержимые доказательства по-английски называются

«proof»

. Биология — естественная наука, и поэтому в ней используются доказательства другого типа, которые соответствуют английскому слову

«evidence»

— «свидетельство в пользу». Мы собираем факты, потом выдвигаем гипотезу для их объяснения. Из этой гипотезы выводятся

проверяемые следствия

. После этого начинается самое главное — поиск новых фактов, которые позволяют эти предсказанные следствия проверить (либо подтвердить, либо опровергнуть). Полученные результаты позволяют оценить степень достоверности гипотезы. Чем больше подобных проверок выдержала гипотеза, тем ниже вероятность ее ошибочности. Разумеется, в ходе проверок в исходную гипотезу могут вноситься дополнения и уточнения. Постепенно, по мере накопления доказательств, вероятность ошибочности гипотезы снижается настолько, что ее перестают называть гипотезой и начинают называть теорией. Между гипотезой и теорией нет четкой грани: это постепенный переход. Если в дальнейшем суммарная «убедительность» собранных доказательств теории (свидетельств в ее пользу) вырастает настолько, что у компетентных ученых просто не остается причин сомневаться в ее справедливости, естественно-научную теорию начинают рассматривать как доказанную истину (доказанный факт).

Не только биология, но и другие естественные науки основаны преимущественно как раз на таких фактах, которые когда-то были просто гипотезами, потом стали теориями, а потом были признаны доказанными фактами. Например, биологическая эволюция до выхода в свет книги Дарвина «Происхождение видов» (1859) была скорее гипотезой, чем теорией. Дарвин сделал из нее хорошо обоснованную теорию. Кстати, всем, кто сомневается в реальности биологической эволюции, нужно обязательно прочесть эту книгу (русский перевод

здесь

). Если уж вы хотите возражать против научной теории, ознакомьтесь сначала с основными, самыми очевидными свидетельствами в ее пользу, которые были доступны еще в XIX веке.

Со времен Дарвина ученые нашли много новых свидетельств в пользу биологической эволюции. Примерно начиная с 30-х годов XX века, когда развитие генетики позволило ответить на важнейшие вопросы, оставленные Дарвином без ответа, мировое научное сообщество стало считать эволюцию доказанным фактом (конечно, такая периодизация не является общепризнанной — но мы думаем, что многие биологи с ней согласятся). Однако из-за многозначности слова «теория» сохранилось в науке и такое понятие, как «теория эволюции». Это вовсе не значит, что эволюция — «всего лишь теория». То, что биологическая эволюция реально происходила и происходит на нашей планете — это

3. Общие замечания

Многочисленные доказательства эволюции подтверждают эволюционное происхождение всех живых существ от общего предка. Сегодня мы уже довольно много знаем о том, что представляло из себя последний общий предок всех ныне живущих организмов (см.:

Последний универсальный общий предок

). Нужно помнить, что этот предок

не был:

1) ни первым живым организмом на Земле (его появлению предшествовала долгая эволюция), 2) ни самым примитивным или простым из когда-либо живших существ, ни 3) единственным существом, жившим в то время на Земле. Вместе с ним жило множество похожих на него существ, но в силу статистических обстоятельств — отчасти случайных, отчасти закономерных — именно он оказался ближайшим общим предком всех современных существ. В этом отношении этот предок схож с «

митохондриальной Евой

«, которая не была ни первой, ни единственной, ни самой примитивной, ни самой «приспособленной» из своих сородичей — ранних африканских

Homo sapiens

.

Следует также помнить, что мы сейчас говорим о

доказательствах эволюции

, а не о происхождении жизни. Это — отдельная тема, которой посвящены другие работы. Мы не будем здесь рассматривать вопрос о том, как появились РНК, ДНК, генетический код, белки и все прочее, из чего состояли первые живые клетки. В данной публикации мы рассматриваем существование первых одноклеточных организмов уже как данность. Мы делаем так вовсе не потому, что современная наука считает приемлемой гипотезу о Божественном сотворении первых одноклеточных форм жизни (как раз наоборот), а исключительно для того, чтобы хоть как-то ограничить круг рассматриваемых фактов и теорий. В данной публикации мы расматриваем факты, доказывающие, что

существующие на планете виды живых существ не были созданы какой-либо разумной силой в своем нынешнем виде, а произошли от других видов в результате естественных процессов; что эти виды-предки, в свою очередь, произошли от других видов, и так далее,

вплоть до Последнего универсального общего предка. Читателей, которые верят в то, что самые первые живые существа были сотворены, а не появились в результате естественных процессов, мы не будем пытаться переубедить, потому что это выходит за рамки нашей темы. В конце концов, вера в сотворение первого живого существа, которое затем эволюционировало самостоятельно, дав начало всему нынешнему многообразию жизни, наносит гораздо меньший ущерб реалистичной, основанной на научных фактах картине мира, чем вера в сотворение всех живых существ в их нынешнем виде. Сам Дарвин (в отличие от современной науки) допускал возможность сотворения жизни Богом, как видно из заключительной фразы его книги «О происхождении видов»:

«Есть величие в этом воззрении, по которому жизнь с ее различными проявлениями Творец первоначально вдохнул в одну или ограниченное число форм; и между тем как наша планета продолжает вращаться согласно неизменным законам тяготения, из такого простого начала развилось и продолжает развиваться бесконечное число самых прекрасных и самых изумительных форм.»

Эволюционные процессы наблюдаются как в естественных условиях, так и в лаборатории. Имеются документированные, непосредственно наблюдавшиеся человеком случаи образования новых видов (некоторые из этих случаев перечислены

Факт эволюции доказан экспериментально. Чтобы получить сведения об эволюционной истории жизни, палеонтологи анализируют ископаемые останки организмов. Степень родства между современными видами можно установить сравнивая их строение, геномы, развитие эмбрионов (онтогенез). Еще один источник информации об эволюции — закономерности географического распространения животных и растений, которые изучает биогеография. Все эти данные укладываются в единую картину —

4. Возможность появления новых, полезных для организма признаков посредством случайных мутаций подтверждена многочисленными фактами

Противники эволюции часто утверждают, что мутации (случайные изменения ДНК) якобы всегда вредны и не могут приводить к появлению новых полезных свойств. Эти утверждения просто-напросто ошибочны, о чем свидетельствуют результаты множества тщательно выполненных исследований. Приведем несколько примеров из научных публикаций последних лет.

1) Способность к сложному коллективному поведению может возникнуть благодаря единственной мутации .

Ученые из Института биологии развития им. Макса Планка (Тюбинген, Германия) на примере почвенной бактерии

Myxococcus xanthus

показали, что радикальные изменения коллективного поведения и межорганизменных взаимосвязей могут происходить в результате весьма незначительных модификаций генома. В экспериментах по искусственной эволюции удалось зарегистрировать мутацию, в результате которой бактерии

Myxococcus xanthus

приобрели сразу два полезных свойства: способность к сложному коллективному поведению (образованию плодовых тел) и защищенность от паразитов. Мутация состояла в замене одного нуклеотида в регуляторной области гена, предположительно участвующего в регуляции активности других генов.

2) Чтобы дикий рис превратился в культурный, хватило единственной мутации .

Как и в

случае с пшеницей

, ключевым моментом в доместикации (окультуривании) риса было появление разновидности с неопадающими семенами, что позволило древним земледельцам резко сократить потери при сборе урожая. Ученые из Мичиганского университета (США) выявили генетическую подоплеку этого события. Появление культурного риса было обусловлено заменой одной-единственной аминокислоты в регуляторном белке, управляющем формированием «отделительного слоя» между зерном и плодоножкой. Закрепление этой мутации у риса было обусловлено бессознательным искусственным отбором. Данное событие можно рассматривать не только как создание человеком нового

полезного человеку

свойства у одомашненного растения, но и как появление у риса нового свойства,

полезного для самого риса

в новых условиях, когда его стали культивировать люди.

3) Чтобы превратить самок в гермафродитов, достаточно двух мутаций .

4) Возбудитель малярии приобрел устойчивость к хлорохину благодаря мутации в транспортном белке .

Часть II. Группы доказательств

1. Наблюдаемая эволюция

Наблюдаемые мутации как основа эволюционных новшеств

Наблюдаемые сегодня изменения в популяциях доказывают не только существование эволюции, но и существование ряда механизмов, необходимых для эволюционного происхождения всех видов от общего предка. Было установлено, что геномы подвержены разнообразным мутациям, среди которых перемещение

интронов

,

дупликация

генов,

рекомбинации

,

транспозиции

, ретровирусные вставки,

горизонтальный перенос генов

, замена, удаление и вставка отдельных нуклеотидов, а также хромосомные перестройки.

Весьма интересны недавние открытия, показывающие роль дупликации генов в формировании эволюционных новшеств:

1)

Многофункциональные гены — основа для эволюционных новшеств

2)

Геном ланцетника помог раскрыть секрет эволюционного успеха позвоночных

Долгосрочный эволюционный эксперимент

Группе биологов из Университета штата Мичиган под руководством Ричарда Ленски удалось смоделировать в лаборатории процесс эволюции живых организмов на примере бактерий кишечной палочки

Escherichia coli

(см.

E. coli long-term evolution experiment

). Опыт был начат в 1988 году.

В силу скорости размножения смена поколений кишечной палочки происходит крайне быстро, поэтому ученые надеялись, что длительное наблюдение продемонстрирует механизмы эволюции в действии. На первом этапе эксперимента, в 1988 году, 12 колоний бактерий были помещены в идентичные условия: изолированную питательную среду, в которой присутствовал только один источник питательных веществ — глюкоза. Кроме этого, в среде был цитрат, который в присутствии кислорода эти бактерии не могут использовать в качестве источника пищи. За прошедшие двадцать лет сменилось более 44 тысяч поколений бактерий.

Ученые наблюдали за изменениями, происходящими с бактериями. Большинство из них носили одинаковый характер во всех популяциях — например, размер бактерий увеличивался, хотя и разными темпами. Однако где-то между поколениями номер 31 тысяча и 32 тысячи в одной из популяций произошли кардинальные изменения, не наблюдавшиеся в остальных. Бактерии стали способны усваивать цитрат.

Используя сохраненные образцы бактерий из различных поколений, исследователям удалось установить, что начало серии изменений, которые привели к образованию новой разновидности бактерий, произошло в районе поколения номер 20 тысяч и только в этой колонии (см:

Bob Holmes

Bacteria make major evolutionary shift in the lab

(англ.). New Scientist (9 июня 2008).

В ноябре 2009 года в большой статье в журнале Nature авторы подвели промежуточные итоги своего грандиозного эксперимента и сообщили о ряде удивительных подробностей. См.:

Подведены итоги эволюционного эксперимента длиной в 40 000 поколений

.

Развитие устойчивости к антибиотикам и пестицидам

Развитие и распространение устойчивых к антибиотикам бактерий и устойчивых к пестицидам растений и насекомых является доказательством эволюции видов. Появление устойчивых к ванкомицину форм

золотистого стафилококка

и та опасность, которую они представляют для пациентов больниц, это прямой результат эволюции путем естественного отбора. Еще один пример — развитие штаммов шигеллы, устойчивых к антибиотикам из группы сульфаниламидов. Появление малярийных комаров, устойчивых к ДДТ, и развитие у австралийских популяций кроликов устойчивости к миксоматозу демонстрируют действие эволюции в условиях давления отбора при быстрой смене поколений.

Естественный отбор также приводит к развитию устойчивости животных к естественным ядам, вирусам и прочим паразитам. Свежие примеры:

1)

Насекомые-вредители защищаются от биологического оружия

2)

Пути эволюции предопределены на молекулярном уровне

(молекулярный механизм формирования у бактерий устойчивости к антибиотикам)

3)

Неядовитые змеи вырабатывают устойчивость к смертоносному яду тритонов

Примеры видообразования

Судя по палеонтологической летописи и по измерениям скорости мутаций, полная репродуктивная изоляция (несовместимость геномов) достигается в природе в среднем за 3 миллиона лет. Иногда больше: например, у

африканских цихлид на это уходит

обычно от 4 до 14 млн лет. Однако на практике биологи в большинстве случаев считают разными видами такие группы особей, которые не скрещиваются или почти не скрещиваются в природе, независимо от того, могут ли они скрещиваться в принципе. Например, тетерев и глухарь — бесспорно разные виды, хотя в принципе могут скрещиваться и давать плодовитое потомство. Другие примеры: собака, волк и шакал; очень многие виды оленей; большинство видов и даже родов африканских цихлид. Поэтому ключевым событием в видообразовании является появление не «полной» изоляции (генетической несовместимости), а

фактической

изоляции, когда особи из двух популяций перестают скрещиваться в природных условиях, даже если проживают на одной территории. А значит, наблюдение образования нового вида в естественных условиях в принципе возможно, но это редкое событие. Например, рассчитано, что одних только жуков появляется в среднем по два новых вида в столетие (см.:

Невероятное разнообразие жуков получило эволюционное объяснение

)

В то же время, в лабораторных условиях скорость эволюционных изменений может быть увеличена, поэтому ученым неоднократно удалось зафиксировать основные этапы видообразования у лабораторных животных (см. ниже:

Опыты по искусственному видообразованию

).

Известны многие случаи видообразования посредством гибридизации и полиплоидизации у таких растений, как конопля, крапива, первоцвет, редька, капуста, а также у различных видов папоротников. У растений видообразование в природе часто происходит в результате межвидовой гибридизации и последующей полиплоидизации (удвоения хромосомного набора). Этот механизм видообразования интересен тем, что он ведет к мгновенному и автоматическому формированию полной генетической несовместимости нового вида с видами-предками. В ряде случаев видообразование у растений происходило без гибридизации и полиплоидизации (кукуруза,

Дрозофилы, также известные как плодовые мушки, входят в число наиболее изученных организмов. С 70-х годов детально изучены многие случаи видообразования у дрозофил, а отдельные этапы видообразования воспроизведены в экспериментах. Видообразование происходило в частности за счет пространственного разделения, разделения по экологическим нишам в одном ареале, изменения поведения при спаривании, дизруптивного отбора (= отбора на расхождение), а также за счет

Видообразование наблюдалось в лабораторных популяциях комнатных мух, мух

Видообразование также наблюдалось и у млекопитающих. Шесть случаев видообразования у домовых мышей на острове Мадейра за последние 500 лет были следствием географической изоляции, генетического дрейфа и слияния хромосом. Слияние двух хромосом — это наиболее заметное различие геномов человека и шимпанзе, а у некоторых мадейрских мышей за 500 лет было девять подобных слияний (

Яблонные мухи

Яблонные мухи-пестрокрылки

Rhagoletis pomonella,

а также паразитирующие на них наездники

Diachasma

являются примером наблюдаемого симпатрического видообразования (= видообразования без разделения популяции физическими барьерами). Первоначально вид обитал в восточной части США. До появления европейцев личинки этих мух развивались только в плодах боярышника. Однако с завозом в Америку яблонь (первое упоминание яблонь в Америке — 1647 год), открылась новая экологическая ниша. В 1864 году личинки

Rhagoletis pomonella

были обнаружены в яблоках, тем самым зафиксирована яблонная раса этого вида. За полтора века наблюдений расы очень сильно разошлись. Они почти не скрещиваются друг с другом (уровень гибридизации не превышает 4–6 %). Яблоневая раса спаривается почти исключительно на яблонях, а боярышниковая — на боярышнике, что, учитывая разное время созревания плодов, приводит к репродуктивной изоляции. Подробный «разбор полетов» яблонной мухи и ее паразитов-наездников см. в заметке: «

Цепная реакция видообразования

«.

У пестрокрылок известно еще несколько видов-двойников, которые живут на разных видах растений — предположительно, видообразование у них протекало именно по описанной схеме (см. также:

Для видообразования достаточно одного гена)

.

2. Эволюционное дерево

Филогенетическое дерево с указанием размера геномов.

Классификация живых организмов представляет собой многоуровневую иерархическую структуру: организмы делятся на царства, царства делятся на типы, типы — на классы, классы — на отряды, и так далее. В результате такого ветвления получается

филогенетическое дерево

. Наличие единственной (естественной) классификации означает, что существует объективная закономерность в основе этой классификации. Именно такой результат можно ожидать при эволюционном происхождении животных от общего предка. Ветвление филогенетического дерева соответствует делению популяций в процессе видообразования.

Несмотря на многочисленные разногласия между биологами по поводу отнесения тех или иных видов к конкретным группам (таксонам), эти противоречия имеют частный характер. Практика показывает, что биологические классификации, построенные на основе разных признаков (морфологических, эмбриологических, биохимических или генетических) в тенденции стремятся к одной и той же древовидной иерархической схеме —

естественной

классификации, отражающей последовательность расхождения эволюционных линий. Чем больше признаков учитывается в ходе классификации, тем выше сходство получаемых деревьев. Наличие естественной классификации было очевидно биологам еще в додарвиновские времена, и это изначально трактовалось как свидетельство иерархической организации замысла Творца. Однако в разнообразии других природных объектов, которые, в отличие от живых организмов, не происходят от общего предка, отсутствует единая древовидная иерархическая структура. Классификация таких объектов либо получается принципиально различной при использовании разных наборов признаков (например, минералы), либо имеет принципиально не «древесный» вид (например, химические элементы, звезды). Невозможно объективно построить иерархию элементарных частиц, химических элементов, планет Солнечной системы. Также не существует объективной иерархии таких сознательно созданных объектов, как книги в библиотеке, дома, мебель, машины и т. д… Можно при желании объединять эти объекты в произвольные иерархии, но нет единственной объективной иерархии, принципиально лучшей, чем все остальные.

3. Палеонтологические доказательства

Ископаемая летопись

Как правило, останки растений и животных разлагаются и исчезают без следа. Но иногда биологические ткани замещаются минеральными веществами, и образуются

окаменелости

. О том, как и при каких обстоятельствах это происходит, и почему иногда в древних остатках живых организмов могут сохраняться даже отдельные органические молекулы и тонкие структуры, такие как клетки или кровеносные сосуды, подробно рассказано в статье одного из авторов данной публикации, палеонтолога А.Ю.Журавлева «

Вечно неживые

«.

Обычно учёные получают в распоряжение окаменевшие кости или раковины, то есть твёрдые части, скелеты. Иногда находят отпечатки следов животных или следы их жизнедеятельности. Еще реже находят животное целиком — вмороженным в лёд в районах современной вечной мерзлоты, попавшим в смолу древних растений (янтарь) или в другую естественную смолу — асфальт (см.:

изображения окаменелостей

).

1850

1950

Биостратиграфия

Как и во многих других случаях, для того, чтобы получить верное представление о степени убедительности палеонтологических доказательств эволюции, необходимо прежде всего осознать

масштаб

происходящего, всю громадность объема накопленных данных. Для начала рассмотрим современную геохронологическую шкалу — результат многолетних трудов многотысячной международной армии геологов (

См. также: Стратиграфия и геохронология

).

{Ссылка на более крупное ищображение:

http://evolbiol.ru/evidence05_files/eviden1.jpg

}

На этой шкале выделено 115 временных (геохронологических) интервалов. Это «международные» интервалы, то есть такие, которые удается опознать по всему миру. В каждом регионе существуют еще и местные (региональные) стратиграфические шкалы, которые, как правило, намного более детальны. Однако многие региональные слои не удается точно соотнести («скоррелировать», как говорят геологи) со слоями, известными в других регионах. Поэтому общее количество выделяемых слоев на международной шкале значительно меньше, чем на региональных шкалах. Почему же не все региональные слои удается скоррелировать? Дело в том, что корреляция слоев в большинстве случаев осуществляется по комплексам окаменелостей. А в разных регионах во все времена, как и сегодня, жили разные организмы. Для межрегиональной корреляции удобнее всего использовать такие ископаемые организмы, которые: 1) были распространены всесветно (такие организмы называют «космополитами»), 2) были достаточно многочисленными и неплохо сохраняющимися в ископаемом состоянии (для этого весьма желательно наличие скелета), 3) существовали недолго (иначе они будут встречаться во многих слоях, и их нельзя будет использовать для идентификации конкретного слоя). Ископаемые организмы, удовлетворяющие этим условиям, называют «руководящими ископаемыми», и они играют ключевую роль в стратиграфии. Как правило, роль руководящих форм играют группы организмов, для которых была характерна наиболее быстрая эволюция, быстрая смена видового состава. Как видим, стратиграфия — это наука, в которой геология теснейшим образом переплелась с эволюционным учением. Очень хорошими руководящими ископаемыми являются споры и пыльца растений, а также разнообразные мелкие планктонные организмы (например, фораминиферы, радиолярии, диатомовые водоросли, кокколитофориды), а во многих случаях и более крупные животные (трилобиты, аммониты, конодонты, археоциаты, двустворчатые и брюхоногие моллюски, брахиоподы и мн. др.). Каждый интервал геохронологической шкалы, кроме докембрийских (показаны на рисунке справа),

Переходные формы

Общеизвестное доказательство эволюции — наличие так называемых промежуточных форм (переходных форм), то есть организмов, сочетающих в себе характерные признаки разных видов (или разных таксонов более высокого ранга — родов, семейств и т. д.). Как правило, говоря о промежуточных (или переходных) формах имеют ввиду ископаемые виды, хотя промежуточные виды вовсе не должны непременно вымирать. На основе филогенетического дерева теория эволюции предсказывает, какие промежуточные формы реально существовали (и поэтому могут быть найдены), а какие — нет. В соответствии с научным методом, сбывшиеся предсказания подтверждают теорию. Например, зная строение организмов пресмыкающихся и птиц, можно предсказать некоторые особенности переходной формы между ними. Мы прогнозируем возможность найти останки животных, подобных рептилиям, но с перьями, или останки животных, подобных птицам, но с зубами или с длинными хвостами. При этом мы предсказываем, что не будут найдены переходные формы между птицами и млекопитающими, например — ископаемые млекопитающие с перьями или подобные птицам ископаемые с костями среднего уха как у млекопитающих.

Вскоре после публикации «Происхождения видов» был обнаружен первый скелет

археоптерикса

 — промежуточной формы между рептилиями и птицами. У археоптерикса было развито оперение (типичная птичья черта), а по строению скелета он слабо отличался от динозавров. У него были когти на передних конечностях, зубы и длинный костяной хвост, а характерных «птичьих» особенностей скелета было немного (крючковидные отростки на ребрах, вилочка). Позднее были найдены и другие переходные формы между рептилиями и птицами.

Превращение динозавров в птиц («орнитизация динозавров-теропод»)

Серия блестящих палеонтологических находок, сделанных в последние годы, пролила свет на многие детали эволюционного превращения динозавров в птиц. Как выяснилось, многие хищные динозавры-тероподы в течение юрского и мелового периодов эволюционировали «в птичью сторону». Только одна из этих эволюционных линий дала начало современным птицам и не вымерла 65,5 млн лет назад вместе с остальными динозаврами.

Ниже приведены краткие обзоры нескольких недавних исследований (чтобы узнать подробности, воспользуйтесь гиперссылками):

1)

Перья сначала служили для красоты, а для полета пригодились позже

. В 2008 году был найден пушистый нелетающий «птицединозаврик» с четырьмя очень длинными перьями на хвосте, как у современных райских птиц. Исследователи полагают, что длинные хвостовые перья служили исключительно «для красоты», то есть для привлечения брачного партнера. Самцы многих современных птиц красуются перед самками длинными хвостовыми перьями, больше ни на что не годными и только мешающими летать, причем самки отдают предпочтение тем женихам, у которых эти перья длиннее. Палеонтологи и раньше предполагали, что у некоторых пернатых динозавров крупные и непригодные для других целей перья могли служить для брачных демонстраций, но такого «явного» случая до сих пор не находили. Это исследование, наряду со многими другими, показало, что происхождение птичьих перьев — типичный пример

смены функции

органа в эволюции. Перья сначала развились для термоизоляции, и, возможно, для улучшения аэродинамических качеств динозавра при быстром беге; потом начали использоваться для брачных демонстраций, и, наконец, пригодились для планирующего, а затем и для машущего полета.

2)

Малый размер птичьих геномов — наследие эпохи динозавров

. Американские и британские палеонтологи в 2007 году показали, что по микроструктуре ископаемых костей можно судить о размере генома вымерших четвероногих. Оказалось, что одна из отличительных особенностей современных птиц — малый размер генома — была характерна для предков птиц (динозавров-теропод) с самого начала их истории. Это еще одна «птичья» черта, которая, наряду с перьями и некоторыми особенностями скелета, сформировалась у динозавров задолго до того, как они научились летать.

3)

Другие переходные формы между крупными таксонами

Известно множество других переходных форм, в том числе — от беспозвоночных к рыбам,

от рыб к четвероногим

,

от земноводных к рептилиям

,

от рептилий к млекопитающим

(см. также:

List of transitional fossils

). Все эти хрестоматийные примеры имело бы смысл разобрать подробно, однако нельзя объять необъятное, поэтому приходится ограничиться ссылками.

Палеонтологи постоянно находят все новые и новые переходные формы и «недостающие звенья», и в результате общая картина развития жизни на Земле становится все более полной и объемной. Вот несколько избранных примеров переходных форм, найденных палеонтологами совсем недавно:

1)

Новая палеонтологическая находка проливает свет на раннюю эволюцию млекопитающих

. В 2007 году в Китае был найден скелет млекопитающего, жившего 125 млн лет назад, в строении которого удивительным образом сочетаются примитивные и продвинутые признаки. Находка подтвердила теоретические построения, согласно которым в эволюции среднего уха млекопитающих должна была быть промежуточная стадия, когда слуховые косточки уже не составляли единого целого с нижней челюстью, но еще оставались связанными с ней посредством особого хряща (таким образом, эта находка — еще один яркий пример сбывшегося эволюционного предсказания). Находка также подтвердила, что многие прогрессивные признаки высших млекопитающих формировались параллельно в разных эволюционных ветвях.

2)

Палеонтологи выяснили родословную лягушек и саламандр

В 2008 году Техасе было найдено долгожданное «недостающее звено» между современными лягушками и саламандрами и древними примитивными четвероногими — лабиринтодонтами. Изучение скелета ископаемой амфибии, жившей 270–280 млн лет назад (ранняя пермь) и получившей название

Gerobatrachus

, показало, что предками лягушек и саламандр были

темноспондильные лабиринтодонты

. «Переходный» статус геробатрахуса подтверждается строением всех частей скелета: черепа, позвоночника, поясов конечностей. Как говорилось выше, при становлении новых групп животных эволюция разных морфологических признаков идет с разной скоростью. Поэтому большинство классических «переходных форм» представляют собой мозаику примитивных и продвинутых признаков. Геробатрахус — не исключение. Одни признаки сближают его с типичными представителями группы Temnospondyli, другие — с лягушками, третьи — с саламандрами, четвертые находятся в промежуточном состоянии. Например, промежуточным является число позвонков: у геробатрахуса между черепом и тазом насчитывается 17 позвонков, у его ближайших темноспондильных родственников — 21, а у лягушек и саламандр — 14–15. Авторы находки особо отмечают, что общие пропорции тела, форма черепа, укороченные туловище и хвост сразу же создают у специалиста впечатление, что перед ним — палеозойский представитель батрахий (группы, объединяющей саламандр и лягушек). И это при том, что палеозойских батрахий никто ранее не видел. Иными словами, геробатрахус полностью соответствует «идеальному образу» общего предка лягушек и саламандр, который успел сложиться у специалистов к настоящему времени.

4. Морфологические доказательства

Введение

По мнению религиозных антиэволюционистов (включая сторонников «разумного замысла»), виды живых организмов были созданы разумным Существом, которое имело возможность

проектировать каждый вид «с чистого листа»

, то есть разрабатывать для каждого вида свой собственный, уникальный план строения, наилучшим образом соответствующий тем задачам, которые, по замыслу Творца, данный вид должен был выполнять на Земле. Антиэволюционизм, таким образом, либо предсказывает наличие множества совершенных (идеальных), уникальных и никак не связанных между собой планов строения (что резко противоречит наблюдаемым фактам), либо вообще отказывается от предсказаний (а значит, и от возможности что-либо понять и объяснить в окружающем мире), ссылаясь на «неисповедимость воли Творца» («раз так создано, значит, так было угодно Богу, а почему — не наше дело»).

Наука, напротив, утверждает, что виды в ходе эволюции происходили друг от друга в силу естественных причин, без вмешательства разумных сил. При этом каждый вид не «проектировался с чистого листа», а появлялся в результате относительно небольших модификаций предкового вида, наследуя большинство его свойств — в том числе и те, которые новому виду не очень-то и нужны, и которые вовсе не обязательно являются оптимальными для тех условий, в которых живет новый вид. Поэтому, если идея эволюции верна, мы должны наблюдать в живой природе повсеместные следы

происхождения путем модификации

, то есть многочисленные свидетельства «переделки» и «подгонки» старых признаков (органов, тканей, планов строения) под новые условия (экологические ниши) и новые задачи (функции). Именно это мы и наблюдаем в природе. Яркие примеры предсказываемых эволюционной теорией «следов происхождения путем модификации» — это

гомологичные органы

,

рудименты

,

атавизмы

, а также многочисленные случаи явного

несовершенства строения организмов

.

Гомологичные органы

Органы животных разных видов, имеющие один и тот же план строения, занимающие сходное положение в организме животного и развивающиеся из одних и тех же зачатков, называют гомологичными. Если такие органы у разных видов выполняют разные функции, то единственное объяснение сходства строения — происхождение от общего предка. Напротив, если у двух видов независимо развились органы, выполняющие одну и ту же функцию (аналогичные органы), то сходство между этими органами оказывается поверхностным.

Пятипалая конечность

Иллюстрация принципа гомологии на примере передней конечности млекопитающих. Конечности состоят из одного и того же набора костей, но при этом выполняют самые разные функции. Третья кость пясти отмечена красным цветом.

Пятипалая конечность, характерная для четвероногих позвоночных — пример гомологии органов. Более того, прослеживается гомология пятипалой конечности и плавников некоторых ископаемых видов кистеперых рыб, от которых произошли первые земноводные.

Части ротового аппарата насекомых

Строение головы и ротового аппарата у различных видов насекомых. a, усики; c, фасеточный глаз; lb, нижняя губа; lr, верхняя губа; md, жвалы (верхние челюсти); mx, максиллы (нижние челюсти).

Основные части ротового аппарата насекомых — верхняя губа, пара жвал (верхних челюстей), подглоточник (hypopharynx), две максиллы (нижние челюсти) и нижняя губа. У разных видов эти составные части различаются по форме и размеру, у многих видов некоторые из частей утрачены. Особенности строения ротового аппарата позволяют насекомым использовать различные источники пищи (см. рисунок):

(A) В исходном виде (у наиболее примитивных насекомых, и, например, у кузнечика) сильные жвалы и максиллы используются для кусания и жевания.

Рудименты

См. также:

Рудиментарные органы

Рудиментами называются органы, утратившие своё основное значение в процессе эволюционного развития организма. Рудименты также можно определить как структуры, редуцированные и обладающие меньшими возможностями по сравнению с соответствующими структурами у других организмов. Многие рудиментарные органы не являются совершенно бесполезными и выполняют какие-нибудь второстепенные функции. Если рудимент и оказывается функциональным, то он выполняет относительно простые или малозначимые функции с помощью структур, очевидно предназначенных для более сложных целей. Отсутствие функций не является необходимым критерием рудиментарности. Такие органы крайне распространены в природе.

Например, птичье крыло — крайне сложная анатомическая структура, специально приспособленная для активного полета, но крылья страусов не используются для полета. Эти рудиментарные, хотя и достаточно сложно устроенные (как и у других птиц) крылья могут использоваться для сравнительно простых задач, таких как поддержание равновесия на бегу и привлечение самок — с тем же успехом можно приспособить микроскоп для заколачивания гвоздей. Таким образом, специфическая сложность крыльев страуса неадекватна простоте задач, для которых эти крылья используются, и именно поэтому эти крылья называют рудиментами. В числе других нелетающих птиц с рудиментарными крыльями — галапагосские бакланы (Phalacrocorax harrisi), киви и какапо. Для сравнения, крыло пингвина имеет большое значение, действуя в качестве плавника, а значит — не может считаться рудиментом.

Какапо — нелетающий новозеландский попугай. Вот что пишет о нем Ричард Докинз в книге «

The greatest show on earth

«:

5. Эмбриологические доказательства

Свидетельства эволюции в индивидуальном развитии организмов

Однажды после публичной лекции великого биолога Джона Холдейна некая дама заявила: «Не могу себе представить, чтобы из одноклеточного существа развился такой сложнейший организм, как человеческий, состоящий из триллионов клеток, даже если у него были на это миллиарды лет». На что Холдейн ответил: «Мадам, вы сами это проделали. И у вас ушло на это всего девять месяцев».

Многоклеточные организмы развиваются из единственной клетки — оплодотворенного яйца. В геноме многоклеточных нет «чертежа» взрослого организма, а есть только «программа поведения», работающая на уровне индивидуальных клеток. Многоклеточный организм формируется в результате

согласованного поведения

делящихся клеток эмбриона. До сих пор сохранились виды организмов, представляющие собой фактически переходные стадии между одноклеточными и многоклеточными, у которых в ходе жизненного цикла индивидуальные клетки

самоорганизуются

в сложные многоклеточные структуры. О самоорганизации сложных структур в результате согласованного поведения индивидуальных клеток см. в заметках:

Способность к сложному коллективному поведению может возникнуть благодаря единственной мутации

Амёбы-мутанты не позволяют себя обманывать

Зачем цианобактерии вьют из себя веревки

Эво-дево: следы макроэволюции

Креационисты нередко признают образование новых видов, но решительно отрицают существование макроэволюции, то есть возникновения таксонов (групп организмов) надвидового ранга. Действительно, трудно спорить с тем фактом, что под действием отбора в популяции могут появиться группы особей, резко различающиеся по множеству мелких признаков, а иногда и утрачивающие способность к скрещиванию между собой. Об этом свидетельствует и богатый опыт селекции растений, животных и микроорганизмов (см. раздел «

Изменения видов при доместикации: от искусственного отбора к естественному

«), и лабораторные эксперименты, и наблюдения над природными популяциями (см. раздел «

Наблюдаемая эволюция

«).

Мы легко можем представить себе изменчивость особей одного вида по размерам, форме, окраске (вспомним хотя бы про породы собак), но вот перестройки плана строения организмов, то есть числа, положения и идентичности их органов, для нас не столь уж очевидны. Каким же образом могут возникать глубокие различия в строении или поведении организмов, позволяющие говорить о появлении новых родов, семейств, классов, типов, то есть о макроэволюции? На первый взгляд, происхождение таких крупных новаций кажется неразрешимой загадкой. Для того, чтобы её разгадть, нам надо ответить на три вопроса:

1. Как и почему может измениться план строения организмов?

2. Способны ли организмы, имеющие необычный план строения, выживать и размножаться в природе?

3. Действительно ли известные нам механизмы перестроек плана строения имеют отношение к происхождению надвидовых таксонов, т. е. к макроэволюционным событиям?

Монстры и макроэволюция

Предположим, что некая мутация, случившаяся десятки миллионов лет назад, привела к появлению вполне жизнеспособного «монстра». Но как нам доказать, это этот «монстр» стал родоначальником нового надвидового таксона? Заглянуть в прошлое и реконструировать ход событий на уровне генов позволяют методы

молекулярной филогенетики

вкупе с генетикой развития. Сопоставляя признаки разных организмов с информацией о структуре и работе генов, регулирующих их индивидуальное развитие, ученые могут строить и проверять модели, объясняющие механизмы возникновения крупных новаций. Этот подход лежит в основе нового научного направления — эволюционной генетики развития, часто называемой «эво-дево» (evo-devo). Рассмотрим его на примерах.

Для

Arabidopsis

, пастушьей сумки и подавляющего большинства других представителей семейства крестоцветных характерны цветки с лучевой симметрией венчика. Все 4 лепестка у них одинаковы по форме и размерам, и располагаются они под прямым углом друг к другу. У растений рода

Iberis

(иберис или стенник), однако, мы встречаем цветки с отчетливой двусторонней симметрией: два верхних лепестка у них заметно мельче, чем два нижних. Какие же причины привели к появлению таких цветков — и как нам доказать их эволюционную преемственность с цветками других крестоцветных?