Десять самых красивых экспериментов в истории науки

Джонсон Джордж

В наше время научные открытия совершатся большими коллективами ученых, но не так давно все было иначе. В истории навсегда остались звездные часы, когда ученые, задавая вопросы природе, получали ответы, ставя эксперимент в одиночку.

Джордж Джонсон, замечательный популяризатор науки, рассказывает, как во время опытов по гравитации Галилео Галилей пел песни, отмеряя промежутки времени, Уильям Гарвей перевязывал руку, наблюдая ход крови по артериям и венам, а Иван Павлов заставлял подопытных собак истекать слюной при ударе тока.

Перевод опубликован с согласия Alfred A, Knopf, филиала издательской группы Random House, Inc.

Джордж Джонсон

ДЕСЯТЬ САМЫХ КРАСИВЫХ ЭКСПЕРИМЕНТОВ

В ИСТОРИИ НАУКИ

Предисловие

Несколько лет назад солнечным зимним утром я поднимался на машине на горку, на которой расположен колледж Святого Иоанна, чтобы поиграть с электронами. Незадолго до того я познакомился с президентом этого учебного заведения, расположенного в предгорьях Санта-Фе. Признаться, я был поражен, узнав, что студентов гуманитарных факультетов тут учили, как повторить знаменитый эксперимент, проведенный в 1909 году Робертом Милликеном, в котором ему удалось изолировать и измерить электрон, а также показать, что он является переносчиком электричества.

Этот колледж, как и аналогичный колледж в Аннаполисе, строит обучение на основе классической программы — изучение физики начинается с VI века до н. э., с трудов философов-досократиков. Именно тогда Фалес Милетский заложил первый камень в Теорию Великого Объединения, заявив: «Всё сотворено из воды». Будь он жив сегодня, наверняка работал бы над теорией суперструн.

Фалес также отметил, что порода, называемая магнетит, — та, что находят в Магнезии, — невидимой силой притягивает металлы, а если кусочек янтаря, который древние греки называли

электроном

, обо что-нибудь потереть, то он приобретает чудесное свойство: начинает притягивать к себе мелкую солому и чешуйки зерна. Пройдет еще более двух тысяч лет, и врач королевы Елизаветы I по имени Уильям Гилберт заметит, что, если шелком потереть стекло, оно «наянтарится», то есть наэлектризуется (Гилберт оказался первым, кто использовал этот термин), и более того — другие материалы тоже можно «оживить» подобным образом! Трение, рассуждал Гилберт, нагревает некую содержащуюся в телах жидкость, которая начинает источать липкий, газообразный заряд. Французский физик Шарль Франсуа де Систерне Дюфе пошел еще дальше. Он обнаружил, что натертый янтарь отталкивает те предметы, которые натертое стекло притягивает, и сделал вывод: электричество бывает двух видов — «смоляное» и «стекольное». Однако только Милликену удалось найти разумное объяснение всем этим явлениям.

Физическая лаборатория колледжа располагалась в цоколе окруженного соснами двухэтажного дома в стиле территорий

Идея эксперимента Милликена, пояснял мистер фон Бризен, заключается в следующем: используя пульверизатор для духов, впрыскивать мельчайшие капельки масла в пространство между двумя металлическими пластинами, одна из которых заряжена «смоляным» электричеством, а вторая — «стекольным». Некоторые капельки, натираемые воздухом так же, как натирал янтарь Фалес, электризуются. Меняя напряжение на пластинах, можно заставить капельки подниматься, опускаться или зависать в определенном положении.

Глава

I

ГАЛИЛЕЙ

Правда о движении

Когда вы бросаете камень, ловите мяч или прыгаете достаточно энергично, чтобы взять барьер, мозжечок, представляющий собой древнюю, бессознательную часть мозга, естественным образом ощущает на себе действие фундаментальных законов движения. Сила равна массе, умноженной на ускорение. Всякое действие вызывает равное ему противодействие. Но физическая сущность этого скрыта от более нового, головного мозга, благодаря которому мы мыслим и осознаем себя. Можно прыгать с грациозностью кошки, но при этом не иметь никакого понятии о гравитации.

В IV веке до н. э. Аристотель сделал первую амбициозную попытку сформулировать законы движения. Предмет падает пропорционально своему весу — чем тяжелее камень, тем быстрее он достигает поверхности земли. Для других видов движения (толкание книги на поверхности стола, движение плуга по полю) силу нужно прилагать постоянно. Чем больше прилагаемая сила, тем быстрее двигается предмет. Как только перестаешь его толкать, он тут же останавливается.

Хотя это звучит на первый взгляд разумно и кажется очевидным, но, по сути, такое утверждение ложно.

Что станет с книгой, если ее положить на лед и легонько толкнуть? Она будет двигаться еще какое-то время и после того, как сила на нее перестала действовать. (Когда Аристотеля спросили, почему стрела летит, расставшись с тетивой, он ответил, что она летит, подталкиваемая воздухом.) Теперь мы знаем, что все, чему сообщается движение, продолжает двигаться до тех пор, пока ему на пути не встретится что-нибудь другое или пока его не остановит трение. Кроме того, если с одной высоты бросить килограммовую и пятикилограммовую гири, то они, как показал Галилей, приземлятся одновременно.

Глава 2

УИЛЬЯМ ГАРВЕЙ

Тайны сердца

Зародыш курицы, лежащий в контейнере с теплой водой, кажется крохотным облачком. Скорлупа аккуратно снята, и видно, как внутри бьется миниатюрное сердце — красная точечка с каждым сокращением то исчезает, то появляется вновь. Когда-то, в 1628 году, лондонский врач по имени Уильям Гарвей описал эту картину так: «Между видимым и невидимым, между бытием и небытием, если так можно выразиться, оно своим биением объявляет о начале жизни».

Возможно, никто и никогда до Гарвея не исследовал столько всевозможных сердец — сердца собак, свиней, лягушек, жаб, змей, рыб, улиток и крабов. У некоторых креветок, обитающих в океане и в водах реки Темзы, тело абсолютно прозрачно, и Гарвей со своими друзьями наблюдал за работой сердца — «словно через оконное стекло». Иногда он вынимал сердце и наблюдал, как замедляются его сокращения до тех пор, пока рука не почувствует последний удар.

От наблюдения к наблюдению Гарвей убеждался, что великий Гален, знаменитый врач гладиаторов и римских императоров, был не прав. Во II веке Гален писал, что в организме два вида крови, для каждой из которых есть своя сосудистая система. Вегетативная жидкость, которая является эликсиром питания и роста, производится в печени и курсирует по телу с помощью сетки синеватых вен. В то же время ярко-красная жизненная жидкость циркулирует по другой системе, в которую входит сердце и артерии; она приводит в движение мышцы и побуждает движение. (В мозге часть этой жизненной жидкости преобразуется в эфир, который течет по нервам.) Все жидкости насыщены невидимой пневмой — духами, которые с каждым вздохом поступают в организм через легкие, а потом достигают сердца через толстую трубку, называемую легочной веной. Спустя тысячу четыреста лет именно этому продолжали учить на медицинских факультетах в университетах Европы будущих врачей.

Гарвей начал постигать науки, вероятно, в Кембридже, когда в 1593 году поступил в колледж Гонвилля и Кая в возрасте шестнадцати лет. Доктор Джон Кай, в честь которого колледж получил свое название, был ярым сторонником Галена, а потому договорился, чтобы в анатомический театр колледжа ежегодно доставляли для иссечения и изучения анатомии тела двух казненных преступников. Помимо изучения риторики, классических наук и философии Гарвей знакомился с азами анатомии. Не исключено, что этот предмет его заинтересовал особо. Из Кембриджа он отправился в Падуанский университет, который считался тогда самой престижной медицинской школой в Европе.

Глава з

ИСААК НЬЮТОН

Что такое цвет

При подходе к гробнице Исаака Ньютона нельзя не задержать взгляд на линиях огромного пространства сводчатого мраморного потолка и на массивных опорах, которые не дают этому потолку подчиниться законам тяготения. Такой же тяжелой кажется и тишина, нарушаемая только эхом ваших шагов, когда вы поднимаетесь по лестнице к урне с прахом великого ученого.

Только теперь вы заметите луч света. Входя через крохотное отверстие примерно в шести метрах от уровня пола, он под углом попадает на зеркало, вмонтированное в декорированную стойку, и отражается от него. Затем луч пересекает помещение, проходит через призму и распадается на последовательность цветных лучей, хорошо известных в природе: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.

Этот пантеон существует только на картине «Аллегорический памятник сэру Исааку Ньютону» кисти венецианского художника Джованни Баттиста Питтони. Полотно было написано в 1729 году сразу после смерти Ньютона. (На самом деле великий ученый похоронен в Лондоне, в Вестминстерском аббатстве.) Памятник Ньютону — весьма неожиданная тема для Питтони, более известного своими композициями на религиозные и мифологические темы («Святое семейство», «Принесение в жертву Поликсены»). Но эта его картина необычна еще и по другой причине.

Глава 4

Антуан Лоран Лавуазье

Флогистон и кислород

Однажды осенним днем 1772 года парижане, прогуливавшиеся недалеко от Лувра, в саду Инфанты, вдоль набережной Сены, могли видеть странное, напоминавшее плоскую подводу сооружение в виде деревянной платформы на шести колесах. На ней были установлены огромные стекла. Две самые большие линзы, имевшие в радиусе восемь футов, были скреплены вместе так, чтобы из них получилось увеличительное стекло, собиравшее солнечные лучи и направлявшее их на вторую линзу, поменьше, а затем на поверхность стола. На платформе стояли занятые в эксперименте ученые в париках и черных очках, а их ассистенты сновали, как матросы по палубе, настраивая все это сложное сооружение на солнце, непрерывно держа плывущее по небосклону светило «под прицелом».

Среди людей, которые воспользовались этой установкой — «ускорителем элементарных частиц» XVIII века, — был Антуан Лоран Лавуазье. Его тогда занимало, что происходит при сжигании алмаза.

Давно было известно, что алмазы горят, и местные ювелиры попросили Французскую академию наук исследовать, не таится ли в этом какой-нибудь риск. Самого Лавуазье интересовал несколько иной вопрос: химическая сущность горения. Вся прелесть «поджигающего стекла» заключалась в том, что оно, фокусируя солнечные лучи в точке, находящейся внутри контейнера, нагревало все, что в эту точку можно было поместить. Дым из сосуда можно было направить по трубке в сосуд с водой, осадить содержащиеся в нем частицы, затем выпарить воду и проанализировать остаток.