Океан и атмосфера

Кан Слава Иосифовна

Океан, занимающий две трети нашей планеты, и атмосфера, окутывающая ее, играют огромную роль в жизни человечества. Составляя вместе оболочку Земли, они функционируют как единая механическая и термодинамическая система. Совместное изучение этих сфер и их взаимодействия — основное направление современной мировой гидрометеорологической науки. Этим вопросам посвящена и предлагаемая вниманию читателя книга. В пей показано также, что знание процессов, которые происходят в океане и атмосфере, имеет большое практическое значение, и в первую очередь для мореплавания, эксплуатации ресурсов океана, для морских и метеорологических прогнозов.

Для читателей, интересующихся проблемами окружающей среды.

АКАДЕМИЯ НАУК СССР

Ответственный редактор доктор географических наук Л. Л. Аксенов

Океан

Открытие и изучение океанов

Большую часть нашей планеты занимают моря и океаны. Их площадь составляет 361 млн. км

2

, т. е. 71 % от поверхности всего Земного шара (510 млн. км

2

). Кроме того, Мировой океан — это непрерывное водное пространство, в то время как суша представляет собой отдельные массивы, как бы острова в безбрежной массе океана.

Самые протяженные участки суши располагаются в северном полушарии, а воды — в южном. Более всего выдвинута в Северный Ледовитый океан северная оконечность Гренландии — до 84° с. ш., а далее этой точки водная поверхность неразрывна. Постепенно к югу поверхность суши все более сужается и на 35°—50° ю. ш. выклинивается лишь мысами на юге Южной Америки, Африки и Австралии. У мыса Горн, на 55°59′ ю. ш., суша исчезает. Здесь океан охватывает Землю сплошным кольцом, встречаются лишь небольшие острова. Однако с 68° ю. ш. суша появляется вновь — это Антарктида.

Следовательно, у Северного полюса планеты расположен обширный и глубокий (до 5 тыс. м) океан, а у Южного — обширный и высокий (более 5 тыс. м) материк.

Неровность земной поверхности обусловила распределение суши и океана, хотя эти неровности и незначительны по отношению к общим размерам Земли. Повышенные части земной коры образовали материки, а пониженные (тоже, впрочем, выпуклые, как и общая поверхность материков) заполнены водами океанов.

В целом Мировой океан не имеет естественного деления, но все же материки разбивают его на три большие части. Полагают, что первым был открыт Индийский океан. Это название появилось на карте в 1555 г., ранее океан именовали Восточным. Был и Западный, но с 1507 г. он становится известен как Атлантический. Мореплаватель Магеллан первым пересек Тихий океан, также имевший другое название. Первый европеец, обозревший океан с возвышенных берегов Мексики, назвал его Великим. Однако Магеллан решил, что «Тихий» ему больше подходит, ибо за время его длительного плавания, океанские воды были удивительно спокойны. Очень долго существовали оба названия, пока не стало принятым Магелланово — «Тихий океан».

Ложе океанов и морей

Долго не было известно, каков размер дна океана, на чем покоятся его воды. Древние мореплаватели оставили лишь сведения о промерах глубин вблизи берегов, которые производились для безопасности подхода к ним. Как мы уже знаем, первая попытка Магеллана измерить глубину в центре Тихого океана успеха не принесла. Опыты по измерению глубин возобновились лишь через 300 лет, но на первых порах они тоже были неудачны. Это объяснялось тем, что большие глубины нельзя было измерить тем простым способом, который использовался в мелких прибрежных водах. Англичанин Дж. Росс в экспедиции 1839–1841 гг. нашел способ усовершенствовать эти наблюдения, а в 1854 г. мичман американского флота Р. Брук предложил новый лот с лотлинем и трубкой, берущей образец грунта. Это изобретение (за ним закрепилось на долгие годы название «лот Брука») позволило сделать первые систематические измерения глубин, проложить телеграфные кабели по океанскому дну. На их основе лейтенант М. Мори составил карту рельефа дна северной части Атлантического океана. Заметим, кстати, что Мори, который был начальником Брука, считал, что последний использовал для конструкции своего лота идею Петра I. Тросовым лотлинем в последний раз работали на «Челленджере».

В то же время был предложен новый глубомер, тросовый лотлинь заменили проволочным (для этой цели сначала использовались фортепьянные струны, а потом начали изготовлять цинковую проволоку) — и техническая идея измерения глубин стала иной. Это изобретение, значительно облегчившее и уточнившее измерение глубин, принадлежало английскому физику У. Томсону (впоследствии барону Кельвину). Далее исследователи разных стран ввели в глубомеры много усовершенствований. В XX в. изобретен эхолот — глубина определяется с помощью звукового сигнала, отправляемого на дно и возвращающегося на судно. Скорость прохождения звука позволяет судить о глубине. Этот метод дал возможность сделать наблюдения массовыми и постоянными. Особенно быстрое развитие он получил в 50-е годы, после второй мировой войны.

Одновременно с уточнением и детализацией данных о рельефе океана удалось провести и совершенно новые наблюдения. Так, советской экспедицией Главсевморпути в 1948 г. был открыт хребет Ломоносова, пересекающий Северный Ледовитый океан от Новосибирских островов до Канады. «Витязь» в Тихом и Индийском океанах, а «Михаил Ломоносов» в Атлантическом обнаружили плосковершинные горы, многие глубоководные впадины, огромные подводные хребты. Именно «Витязю» принадлежит треть открытий всех глубоководных впадин Тихого океана. При составлении карты рельефа Тихого океана было использовало 300 тыс. промеров глубин, в то время как карта глубин всего Мирового океана в начале века основывалась менее чем на 18 тыс. промеров. В Советском Союзе на основе единой методики составлена и издана серия карт по самым современным и надежным данным.

Однако несмотря на большие достижения в изучении океана мы еще не можем сказать, что ложе его хорошо известно. В некоторых районах промерные галсы лежат далеко друг от друга, а что находится между ними, никто не знает. В первую очередь это относится к южной части Тихого океана. Изученность рельефа дна океана все еще сильно отстает от изученности рельефа суши, на которой пока не охвачены инструментальной съемкой только высокогорные области Азии и Америки, внутренние части материка Антарктиды.

Сравнивая рельеф суши и океана, установили, что средняя высота суши — 875 м, а глубина океана — 3795 м. На суше высоты до 1 тыс. м составляют 71 % ее поверхности, что равно 21 % от всего Земного шара. В океане же преобладают большие глубины 3–6 тыс. м — это 76 % площади океанов, или 54 % поверхности планеты. Высокие горы (более 4 тыс. м) и глубоководные океанические впадины (свыше 6 тыс. м), в общем, очень невелики по площади: горы занимают 0,5 %, а впадины около 1 % поверхности всей Земли. При изменениях уровня океана существенные перемены претерпит суша и малозаметные — сам океан. Подсчитано, что, если уровень океана повысится на 200 м, он зальет 32 % суши, а при понижении уровня на те же 200 м поверхность океана уменьшится только на 12 %.

Морская вода

В природе нет химически чистой воды. Даже самые чистые природные воды — дождь и снег — содержат примеси, поглощаемые на пути к земле из воздуха. Текущая вода растворяет горные породы, по которым она протекает или сквозь которые просачивается. Воды много и в самой твердой коре планеты в свободном и в связанном состоянии. Водяные пары, выделяющиеся при извержении вулканов, позволяют думать, что вода есть и на значительной глубине в толще Земли, хотя пока трудно сказать, в какой форме и в каких объемах.

Вода — главная составная часть гидросферы — представляет собой окись водорода (Н

2

O); она состоит из 11,2 % водорода и 88,8 % кислорода. Морская вода содержит в своем растворе многие соли (об этом подробнее будет рассказано ниже) и газы — кислород, азот, углекислый газ. Вода способна при колебаниях температур принимать различные состояния: жидкое, твердое и газообразное. При переходе из одного состояния в другое поглощается или освобождается большое количество тепла.

Вода как физическое тело имеет ряд аномалий, объясняемых строением ее молекул и очень сложной структурой. Так, при нагревании пресной воды от 0 до 4 °C плотность воды растет, а затем при увеличении температуры уменьшается. Вторая аномалия — увеличение объема при замерзании примерно на 10 %. Лишь немногие вещества в твердой фазе легче, чем в жидкой, — это висмут, галлий, германий и др. Для воды характерны и такие аномалии, как очень большая теплота плавления и парообразования, высокая теплоемкость и др. Есть еще ряд любопытных аномалий. Так, аномальна привычная для всех температура кипения, равная 100°: ведь водород кипит при 253°, а кислород при 180 °C.

Количество солей в морской воде невелико по сравнению с ее массой, но соли весьма существенно изменяют физические и химические свойства воды. Ее состав определяется с помощью химического анализа взятых проб (эти опыты стали проводить в 60-х годах прошлого столетия) вначале на поверхности, а затем и на различных глубинах, вплоть до придонных участков. Уже первые исследования показали (а последующие их подтвердили), что вдали от берегов состав морской воды везде одинаков — как на поверхности, так и на глубине. Это постоянство сохраняется весьма длительное время, измеряемое геологическими эпохами.

Количество растворенных твердых минеральных веществ (солей), выраженное в граммах на килограмм морской воды, называется ее соленостью. Тысячные доли целого называются промилле и обозначаются значком ‰. В открытых частях океанов соленость равна в среднем 0,035 кг, т. е. средняя соленость Мирового океана 35‰. Морская вода имеет горько-соленый вкус, обладает большим удельным весом, чем пресная, не растворяет мыло, образует накипь в паровых котлах. Все это происходит оттого, что в морской воде растворены твердые минеральные вещества, причем в разных количествах — некоторые в граммах на килограмм воды, а иные — только в тысячных долях грамма на тонну воды. Но именно последняя группа микроэлементов наиболее многочисленна. В то же время соленость морской воды определяется преобладающими по весу элементами. Химический состав морской воды, полученный из анализов проб, взятых в трех океанах еще во время плавания на «Челленджере», следующий (табл. 2);

Температура моря

В понятие тепловых свойств воды входят теплоемкость, теплота плавления и кристаллизации, испарения и конденсации. По всем этим свойствам вода сильно отличается от других жидкостей. Поэтому рассмотрим их более подробно.

Под теплоемкостью понимают количество теплоты, которое необходимо для повышения температуры 1 г морской воды на 1 °C. Теплоемкость воды значительно выше, чем у всех других веществ (как жидких, так и твердых), исключение здесь составляют лишь водород и жидкий аммиак. Теплоемкость льда, например, вдвое меньше теплоемкости воды, чугуна — почти в 8 раз, а гранита — в 5 раз. Теплоемкость морской воды очень мало отличается от пресной — следовательно, значение теплоемкости можно считать одинаковым для всего Земного шара.

Воды Земли соприкасаются с воздушным океаном, охватывающим ее. Разница в теплоемкости этих двух океанов огромная, благодаря чему Мировой океан является источником запаса тепла для атмосферы. Если мысленно охладить слой воды толщиной в 200 м всего на полградуса, выделится столько тепла, что воздух над всей Европой до высоты 4 тыс. м нагреется на 10 °C.

Вода, лед и воздух — плохие проводники тепла, так как теплопроводность морской воды чрезвычайно мала. С увеличением температуры и уменьшением солености теплопроводность морской воды возрастает слабо.

Теплота, поглощаемая при плавлении 1 г вещества при условии постоянства температуры, называется теплотой плавления. Теплота плавления чистого льда значительно превышает теплоту плавления всех других веществ на Земле, за исключением аммиака. Теплота плавления морского льда зависит от его солености и при небольших отрицательных температурах заметно убывает с повышением солености льда. Теплота испарения — это количество теплоты, необходимое для поддержания неизменной температуры при испарении (или конденсации) 1 г жидкости. Для тепловых процессов в море и атмосфере очень важно то, что теплота испарения у воды больше, чем у какого-либо другого вещества. Большая часть солнечной энергии тратится на испарение морской воды. В среднем за год поверхность океана испаряет слой воды, равный примерно 1 м. Если принять эту величину (определить ее точно пока невозможно), то получится, что на испарение каждого квадратного сантиметра морской поверхности затрачивается ежегодно около 60 ккал.

Морские льды

К особенностям теплового режима океанов относится удивительное явление образование, развитие и исчезновение льда. Пресная и морская вода замерзают при разных условиях: пресная — при 0 °C, наибольшей плотности достигает при 4° (дистиллированная при 3,8 °C). Температура замерзания морской воды всегда ниже 0 °C, и чем больше соленость, тем температура замерзания ниже. Так, при средней для океана солености 35‰ замерзание происходит при —1,9, а при солености 40‰ — при —2,2 °C. Например, вода Финского залива начинает замерзать при —0,3…—0,5° (соленость ее 15–10‰). В Черном море, где соленость 15–20‰, для появления льда нужно охлаждение в пределах (—0,8…—1,1°), а в полярных странах — еще большее.

Для образования льда необходима сильная потеря тепла водой, некоторое переохлаждение и присутствие в воде ядер кристаллизации. К последним относятся мельчайшие частицы пыли, снежинки и т. д. Вокруг этих ядер образуются мельчайшие диски льда. Срастаясь между собой, они превращаются в иглы — это кристаллики чистого льда, растущие преимущественно в горизонтальном направлении. На спокойной воде иглы могут достигать 10 см, на взволнованной — от 0,5 до 2 см. Ледяные иглы скапливаются, смерзаются — появляется «сало». Это название дано не случайно — пятна и налет серовато-свинцового, темного цвета, действительно, напоминают сало.

Когда на холодную морскую поверхность выпадает снег (а осенью это — обычное явление), он не тает, так как температура ниже 0 °C, пропитывается водой, уплотняется и также превращается в вязкую массу льда — снежуру. Сало и снежуру ветер и течения сбивают в полосы или пятна рыхлого, пропитанного водой льда — шугу. Если вода энергично перемешивается волнением и течениями, кристаллы появляются не только на ее поверхности, но и в толще, а иногда и на дне — это внутриводный глубинный и донный лед. Он губчатого строения, между кристаллами самой разнообразной формы вкраплены пузырьки воздуха, вода, рассол. Лед, образовавшийся на дне (обычно скалистом), может достигать полуметровой толщины. Всплывая на поверхность, такие глыбы поднимают со дна камни, затонувшие якоря. Вышедший на поверхность внутриводный лед непрозрачен и непрочен. Когда море спокойно, сало превращается в сплошной тонкий эластичный слой — нилас. На пресной воде он выглядит прозрачной, блестящей, хрупкой коркой, разбивающейся со звоном и потому называемой «склянка».

Блинчатый лед появляется при слабом волнении одновременно в разных точках, образуя небольшие округлые диски («блины») диаметром 30–50 см и более. Края таких льдин из-за трения друг о друга обрамлены валиком из разрушенных кристаллов. По образному выражению Н. Н. Зубова, соли постепенно вытекают из льда, как слезы. Но молодой лед еще соленый, часто на его поверхности остаются кристаллы соли. Те соли, которые не успевают вытечь, сохраняются между кристаллами льда в виде ячеек концентрированного рассола. При температуре ниже —55 °C рассол замерзает, выпадает хлористый кальций, образуя смесь кристаллов льда и соли. Однако кристаллизация солей начинается и при небольшом понижении температуры: ниже —8° из рассола ячеек выпадает сульфат натрия, ниже —23 °C — хлориды. Довольно часто ледообразование начинается при положительных температурах воздуха. В этих случаях поверхностный слой очень тонок и резко отличается от нижележащих по плотности.

По мере того как зима все больше входит в свои права, первичные льды нарастают, наслаиваются, смерзаются и постепенно образуется сплошной, довольно ровный морской лед серого цвета. Теперь вода гораздо меньше теряет тепла. Лед нарастает снизу медленно, он более прозрачен, имеет почти правильную кристаллическую структуру. Так происходит в защищенных бухтах, полосе неподвижного льда у берега. Но в открытом море лед постоянно взламывается, нагромождается, переслаивается.