На кого упало яблоко

Кессельман Владимир Самуилович

Каждое открытие в физике — лишь последнее звено в длинной череде исследований, опытов и наблюдений. Ученые часто идут параллельными путями и приходят к одним и тем же выводам одновременно — или почти одновременно. И так уж сложилось, что многие законы носят не имена первооткрывателей, а тех, кто лишь обнародовал то, что прежде открыли другие. Борьба за приоритет сопровождает почти все великие научные достижения, и поэтому, по выражению Роджера Бэкона, «наука смотрит на мир глазами, затуманенными всеми человеческими страстями». Ньютон, Лейбниц, Гук, Гюйгенс, сотни других ученых пылко сражались за публичное признание своего первенства — и эта драматически схватка самолюбий продолжается по сей день…

Владимир Кессельман — популяризатор науки, автор многих книг, живет в Израиле.

Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г. № 436-ФЗ, ст. 1, п. 2, пп. 3. Возрастных ограничений нет

Предисловие

Поворотные вехи в истории науки отмечаются не только открытиями, но и именами людей, эти открытия совершивших. Наука, как и искусство, немыслима без имени творца. Историю естествознания украшают имена Архимеда, Коперника, Галилея, Ньютона, Ломоносова, Рентгена, Эйнштейна и многих других. Эти имена вписаны в учебные пособия и известны миллионам людей.

В школьных учебниках нам дается стройная, установившаяся картина физики, которую мы усвоили на всю жизнь. Но она очень далека от реальной. В действительности каждое открытие в физике было лишь последним звеном в длинной череде исследований, опытов и наблюдений. И даже имя ученого, которое носит тот или иной закон, не всегда соответствует исторической правде. Достижения науки сродни айсбергам. Вершины сияют в ярких солнечных лучах, а девять десятых их массы, их фундамента спрятаны в глубинах вод. Поэтому и возникают неизбежно вопросы: «Кто открыл закон Бойля-Мариотта первым?», «Правда ли, что „вольтову дугу“ получил не Вольта?», «Кто автор теории относительности — Эйнштейн или Пуанкаре?». Список можно продолжить… Науку творят живые люди, стремящиеся получить признание окружающих. Мало кто желает остаться анонимным, зато многие вступают в ожесточенную борьбу за свой приоритет.

Борьба за приоритет — одна из захватывающих страниц мировой науки. Даже выдающиеся ученые, занявшие твердое место в пантеоне науки, страстно сражались за публичное признание своих идей. Достаточно назвать имена Ньютона, Лейбница, Гука, Гюйгенса, Майера и многих-многих других. Зачастую научное открытие становится предметом спора о приоритете — о том, кто первый его сделал.

Такие споры, отравляющие жизнь многим выдающимся ученым, неизбежны, когда «идеи носятся в воздухе». Даже такой полностью погруженный в науку человек, как Ньютон, тратил время, и немалое, на проблемы, далекие от поиска научной истины. В конце XVIII и в течение почти всего XIX века в математике, астрономии, да и в других науках шло настоящее сражение между английскими и французскими учеными. Сейчас эти битвы стали историей науки, но борьба за приоритет открытий не прекращалась и в двадцатом веке. Известно, как непросто утверждались в физике такие фундаментальные научные теории, как теория относительности, квантовая теория. Наука сродни спорту — «наука так же безжалостна, как война»

Настоящая книга не о физике, а о людях, ее творящих, о драматизме отношений в их сообществе — отнюдь не меньшем, чем в среде писателей, артистов или политиков. История открытий, которые сейчас входят в учебники как фундаментальные законы или мировые физические константы, полна борьбы мнений и самолюбий, по выражению Р. Бэкона, «наука смотрит на мир глазами, затуманенными всеми человеческими страстями»

1. Люди и открытия

Об открытиях мы слышим и читаем почти каждый день. Наука заставляет мир развиваться. В самом деле, что было бы с нами сегодня, не будь среди нас пытливых ученых и любознательных энтузиастов, стремящихся раскрыть тайны мироздания и понять суть вещей? Но многие ли представляют, как делаются открытия, какой путь проходит ученый, прежде чем объявить: «Я открыл то-то и то-то»? Путь этот труден и тернист, и исследователю требуется затратить много сил и времени, прежде чем он сможет произнести долгожданное «Эврика!»

Ответы на вопрос, как же происходит чудо открытия, обычно сводятся к известному афоризму: «Главное в профессии ученого — это сесть и задуматься». Но однажды на вопрос, как он открыл периодическую систему, Менделеев ответил: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово». Или Исаак Ньютон — ведь он со своей идеей о тяготении не расставался ни на минуту. Отдыхал ли он, был ли он одиноким, председательствовал ли на заседании Королевского общества, он все время думал об одном и том же. Ясно, что эта идея преследовала его всюду, каждую минуту.

Великий Гельмгольц в одной из своих речей ставит вопрос, чем он отличается от других людей. И отвечает, что разницы нет никакой, кроме одной только черты. Ему казалось, что никто другой так, как он, не впивается в предмет. Он говорит, что когда ставил перед собою какую-нибудь задачу, то не мог уже от нее отделаться, она преследовала его постоянно, пока он ее не решал. Вот это упорство, эта сосредоточенность мысли есть общая черта большинства ученых, открывших многие законы природы. А еще любопытство и увлеченность. Рассказывают, как однажды к Майкельсону, отрабатывавшему на железной дороге свой знаменитый опыт по определению скорости света, подошли рабочие. Они поинтересовались, что он делает. «Определяю скорость света», — ответил Майкельсон. «А зачем?» — спросил один из них. «Интересно», — ответил Майкельсон.

Любопытно поведение ученых в момент озарения, когда после долгих мучительных размышлений перед ними начинает проясняться решение мучившей их задачи. Всем известна история с Архимедом, обнаружившим в ванне решение вопроса и выбежавшим нагишом, забыв от радости все на свете, а Гей-Люссак и Дэви после сделанного ими открытая пустились в пляс по кабинету…

Наблюдения и размышления над диковинными явлениями — удел немногих, но такие люди были даже тогда, когда слова «наука» не было и в помине. В древности, когда науки о природе еще не существовало, одни и те же открытия делали, вероятно, много раз, в разных местах и в разное время, пока наконец они стали общим достоянием человечества. Любознательность и стремление накапливать знания были свойственны людям с самых давних времен. Достойно восхищения, например, то, как люди, не обладая практически никакими приборами, смогли узнать размер Земли, расстояние до Луны и многое другое. И все это происходило более двух тысячелетий тому назад.

«Рабочее место» физиков в XVII–XIX ВЕКАХ

Ничего похожего на современные лаборатории в то время не было. В прошлом физик работал в одиночку. Приборы обычно покупались на собственные деньги или изготовлялись самими учеными. Нередко лабораториями служили частные комнаты. Опыты по разложению белого света Ньютон проделал в своей квартире в Кембридже. Физическим прибором ему служила призма, купленная на собственные деньги. И через сто пятьдесят лет в той же обстановке проводил свои оптические исследования Дж. Стокс.

Франклин для исследования атмосферного электричества соорудил в своем доме в Филадельфии железный изолированный стержень. Джоуль свои эксперименты по определению механического эквивалента теплоты проводил дома в Манчестере. Лабораторией Гей-Люссаку служило сырое полуподвальное помещение. Ученый, предохраняясь от сырости, работал в деревянных башмаках. Френель в селе Матье близ Канна, в доме матери, проводил исследования по дифракции с примитивными приборами и приспособлениями, сделанными для него сельским слесарем. Фуко экспериментировал в своем доме. Лаборатория, где работали Дэви, Фарадей и Тиндаль, открытая в 1803 году, как вспоминал Тиндаль, «плохо вентилировалась, плохо освещалась и была совершенно неподходящей для ежедневной многочасовой работы. Это, вероятно, наихудшая лаборатория во всем Лондоне». И эта лаборатория оставалась почти семьдесят лет в первоначальном состоянии.

Работа в таких условиях была сопряжена с опасностью для жизни и сказывалась на здоровье исследователей. Рихман и Ломоносов исследовали атмосферное электричество с «громовыми машинами», построенными каждым у себя на квартире. При попытке количественно оценить явление электризации при разряде молнии Рихман слишком близко наклонился к стержню своей «громовой машины». Он был поражен молнией в голову и упал мертвый, а находившийся тут же гравер Соколов был повален на пол.

Однажды во время опытов Дэви с неизвестными металлами произошло несчастье: расплавленный калий попал в воду, произошел взрыв, в результате которого Дэви жестоко пострадал. Неосторожность обернулась для него потерей правого глаза и глубокими шрамами на лице.

Сам Фарадей в своих исследованиях обходился мотками проволоки, кусками железа, магнитными стрелками. Он никогда не щадил себя, занимаясь наукой. Серьезно укоротили его жизнь химические опыты, где широко использовалась ртуть, беспрерывно проливавшаяся на пол, а затем испарявшаяся. Оборудование его лаборатории было абсолютно негодным с точки зрения самой элементарной техники безопасности. Вот письмо самого Фарадея: «В прошлую субботу у меня случился еще один взрыв, который опять поранил мне глаза. Одна из моих трубок разлетелась вдребезги с такой силой, что осколком пробило оконное стекло, точно ружейной пулей. Мне теперь лучше, и я надеюсь, что через несколько дней буду видеть так же хорошо, как и раньше. Но в первое мгновение после взрыва глаза мои были прямо-таки набиты кусочками стекла. Из них вынули тринадцать осколков…»

В стране Серендипити

В восемнадцатом веке английский писатель и известный коллекционер фарфора Горацио Уолпол написал основанную на древнеперсидском эпосе сказку «Три принца из Серендипа», в которой герои, путешествуя, неожиданно делают различные открытия. Впервые в английском языке слово «Серендипити» всплыло 28 января 1754 года в частном письме Уолпола. Он определил его как «очень выразительное, характеризующее открытие, совершенное без предварительных действий». В дальнейшем это слово стало часто употребляться для обозначения случайных творческих находок. Один из проектов поиска разумной жизни во Вселенной так и называется «SERENDIP». А какими бывают серендипические открытия не в сказке, а в жизни?

Можно утверждать, что до появления экспериментального метода открытия делались случайным образом. Известно, что к середине XIV века довольно широкое распространение получили очки. Однако линзы, скорее всего, были случайным открытием средневековых ремесленников. В XVI веке появилась подзорная труба, но ее случайно создали мастера-ремесленники по изготовлению очков, а не ученые, так как оптические теории того времени не только не приводили к открытию трубы, а даже уводили от него. Удача посещает ученых очень по-разному, и нечаянное наблюдение может обернуться замечательным открытием. Впервые дефект цветового зрения описал английский химик Джон Дальтон после того, как случайно обнаружил, что сам страдает им, — однажды он надел вместо черной академической мантии малиновую. С тех пор цветовая слепота стала называться дальтонизмом.

Наверное, каждый ученый в своей жизни хоть раз сталкивался со «случайным» открытием. Причем, не только наблюдатели, но и теоретики. Вспомним, например, предсказание позитрона Дираком, который вовсе не думал о целом мире античастиц, выписывая свое знаменитое уравнение. Такое нередко бывает, когда при численных расчетах часто обнаруживается что-то, что в них не закладывалось.

А всегда ли мы способны замечать случайные, побочные результаты исследований, фиксировать их? Посмотрим, что дает нам история открытий.

«Эврика!»

Хрестоматийной стала легенда об открытии закона Архимеда. Это открытие, кажется, было совершенно случайным. Великий сиракузец изучал силы, действующие на тела, и среди них — силу тяжести. Согласно открытому им закону, на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости. Это открытие связано с легендой, передаваемой многими историками. Архимед родился в 287 году до н. э. в Сиракузах, на острове Сицилия. Сицилия в те времена была дальним западным форпостом греческой культуры. В годы детства Архимеда эпирский царь Пирр вел здесь войну с римлянами и карфагенянами, пытаясь создать новое греческое государство. В этой войне отличился один из родственников Архимеда — Гиерон, ставший в 270 году до н. э. правителем Сиракуз. Согласно легенде, Гиерон поручил Архимеду выяснить, сделана ли его корона целиком из золота, или же в нее подмешано серебро. Эта задача занимала Архимеда довольно долго, пока не помог случай в бане. Произошло то, что бывает всякий раз, когда любой человек, даже не ученый, садится в любую ванну, — вода в ней поднимается. Но то, на что обычно Архимед не обращал никакого внимания, вдруг заинтересовало его. И еще Архимед констатировал с удивлением, что в воде нога стала легче. Он понял, что эти явления дадут ему ключ к разгадке задачи. С криком «Эврика!» (нашел!) он выскочил из ванны, позабыв обо всем на свете. Настолько поразила его пришедшая в голову мысль. Анекдот занятный, но, переданный таким образом, он не совсем точен.

Римский архитектор Витрувий, сообщая о поразивших его открытиях разных ученых, приводит следующую историю: «Что касается Архимеда, то изо всех его многочисленных и разнообразных открытий то открытие, о котором я расскажу, представляется мне сделанным с безграничным остроумием. Во время своего царствования в Сиракузах Гиерон после благополучного окончания всех своих мероприятий дал обет пожертвовать в какой-то храм золотую корону бессмертным богам. Он условился с мастером о большой цене за работу и дал ему нужное по весу количество золота. В назначенный день мастер принес свою работу царю, который нашел ее отлично исполненной; после взвешивания корона оказалась соответствующей выданному весу золота. После этого был сделан донос, что из короны была взята часть золота и вместо него примешано такое же количество серебра. Гиерон разгневался на то, что его провели, и, не находя способа уличить это воровство, попросил Архимеда хорошенько подумать об этом. Тот, погруженный в думы по этому вопросу, как-то случайно пришел в баню и там, опустившись в ванну, заметил, что из нее вытекает такое количество воды, каков объем его тела, погруженного в ванну. Выяснив себе ценность этого факта, он, не долго думая, выскочил с радостью из ванны, пошел домой голым и громким голосом сообщал всем, что он нашел то, что искал. Он бежал и кричал одно и то же по-гречески: „Эврика, эврика!“ Затем, исходя из своего открытия, он, говорят, сделал два слитка, каждый

Вообще, согласно описанию Витрувия, Архимед сделал больше того, что требовалось. Чтобы обнаружить примесь, достаточно было сравнить объем короны с объемом равного ей веса золота. Ныне задача, которую решал Архимед, по плечу даже школьнику. Удельный вес каждого из металлов есть в любом справочнике, определить удельный вес сплава совсем не трудно: взял образец, взвесил его, потом опустил в воду и определил объем вытесненной им жидкости, поделил первое число на второе и по соотношению удельных весов нашел долю каждого металла. Вот и вся премудрость. Но 2200 лет назад Архимед, выйдя после царской аудиенции, даже не знал, что такое удельный вес. Задача перед ним стояла в самом общем виде, и никаких конкретных путей ее решения он найти не мог. Но искал их. Так что случай пришелся как раз на то время, когда Архимед искал решение поставленной задачи, искал постоянно, не переставая думать об этом, когда занимался другими делами. И нашел решение!

Наблюдательная жена

Открытие Гальвани произошло довольно случайно. Он пишет: «Я разрезал и препарировал лягушку… и, имея в виду совершенно другое, поместил ее на стол, на котором находилась электрическая машина… при полном разобщении от кондуктора последней и на довольно большом расстоянии от него. Когда один из моих помощников острием скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки, то немедленно все мышцы конечностей начали так сокращаться, что казались впавшими в сильнейшие тонические судороги. Другой же из них, который помогал нам в опытах по электричеству, заметил, как ему казалось, что это удается тогда, когда из кондуктора машины извлекается искра… Удивленный новым явлением, он тотчас же обратил на него мое внимание, хотя я замышлял совсем другое и был поглощен своими мыслями. Тогда я зажегся невероятным усердием и страстным желанием исследовать это явление и вынести на свет то, что было в нем скрытого». Однако, согласно мнению большинства историков науки, случай явился в лице молодой жены Гальвани — Лючии Галеацци, дочери учителя Гальвани, которая крутила ручку электрофорной машины, в то время как ассистент препарировал лягушку. Лапка билась под скальпелем, и наблюдательная женщина заметила, что судороги случаются тогда, когда между шарами машины проскакивает искра. Она обратила внимание мужа на это совпадение, и революция в физике началась. Галантные болонцы всегда с удовольствием подчеркивают: не Гальвани, а его жена открыла «животное электричество».

Ей был даже посвящен сонет, написанный пятьдесят лет спустя Дюбуа-Реймоном:

Описываемые события произошли в 1780 году, а трактат Гальвани вышел только в 1791-м, и за эти одиннадцать лет было поставлено огромное число экспериментов, в ходе которых ярко проявился удивительнейший талант Гальвани обращать внимание на детали и выносить на свет сокрытое.

Вильгельм Оствальд в своей «Истории электрохимии» комментирует эту историю следующим образом: «Перед нами здесь типичная история

случайного открытия.

Исследователь занят совсем другими вещами, но среди условий его работы оказываются налицо, между прочим, такие условия, которые вызывают новые явления. Случайности этого рода встречаются гораздо чаще, чем об этом может поведать нам история, ибо в большинстве случаев такие явления или вовсе не замечаются, или если и замечаются, то не подвергаются научному исследованию.