100 великих научных открытий

Коллектив авторов

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Биология и медицина

Строение человеческого тела

Удивительно, но один из самых значимых вкладов в развитие анатомии принадлежит не врачу, а художнику и изобретателю ― Леонардо да Винчи. Он жил в эпоху Возрождения, когда все деятели искусства и науки отчаянно пытались вырваться за рамки церковной схоластики и мистицизма. Широко известно, что Леонардо писал сочинения по геометрии, гидродинамике, гидравлике, астрономии, геологии и ботанике, а вот о его достижениях в области медицины и физиологии мало кто знает. Между тем он глубоко изучил строение тела человека и сделал открытия, заставившие пересмотреть многие положения анатомической науки, бытовавшие ранее.

Изысканиями в этой области Леонардо занялся под влиянием анатома Маркантонио делла Торре, читавшего лекции по медицине галлов. Впоследствии Маркантонио выпустил капитальный труд по анатомии, оформив его иллюстрациями великого художника. Да Винчи с удивительной точностью изобразил формы и пропорции всех частей скелета, впервые в истории науки предположил, что крестец состоит из пяти, а не из трех позвонков, описал лордозы и кифозы (искривления) позвоночного столба, рассмотрел наклон и изгибы ребер, что было необходимо для понимания механизма дыхания, безошибочно нарисовал суставные поверхности костей. А кроме того, «прикрепил» к скелету нервы и мускулы, чего раньше не делал никто.

Такой реалистичности художник добился только благодаря тому, что имел возможность исследовать тела умерших людей. Конечно, делал он это без ведома властей, и если бы инквизиторы узнали об этом, да Винчи мог бы понести наказание, но его мастерская была надежно скрыта в монастыре св. Аннунциаты, настоятели которого любезно позволили ему посещать монастырский морг и изучать тела почивших.

В процессе работы Леонардо не ограничивался анатомическими описаниями — он занимался также вопросами патологии, а еще интересовался изменениями, происходящими с человеком в процессе старения: почему с возрастом, сужается просвет кишок, чем отличаются мышцы молодого и пожилого человека, как с годами меняется сила голоса. Вот какие выводы он сделал после анатомирования тела одного старца: «Некоторые сведения, собранные мной о его жизни перед кончиной, говорят о его возрасте: он прожил сто лет и даже в самый последний день не чувствовал ничего, кроме старческой слабости. Я провел вскрытие, желая узнать секрет такой безболезненной смерти, и обнаружил, что она наступила вследствие бессилия, проявившегося в отказе работоспособности крови и артерии, обслуживающей сердце и другие сопутствующие органы…» Таким образом, Леонардо впервые описал атеросклероз.

Подробно изучая историю медицины, да Винчи осуждал эксперименты античных целителей, которые анатомировали живых преступников, приговоренных к смерти.

Кровообращение

Кровь от сердца бежит по артериям к органам, а от органов по венам поступает обратно в сердце. Об этом сейчас знают даже школьники, однако во времена Уильяма Гарвея (1578–1657) — английского врача, физиолога и анатома‑экспериментатора — данный факт вовсе не был очевидным.

«Он тверд в споре, непоколебим во взглядах, никогда не меняет своих суждений… Он слепо верит нашим древним учителям и не желает даже слушать о так называемых открытиях нашего века касательно кровообращения…» Так восхвалял достоинства врача доктор Диафуарус — герой комедии Мольера «Мнимый больной». Именно с такой позицией столкнулся выдающийся исследователь человеческого организма Гарвей после публикации своего сочинения о работе сердца и движении крови. Ученому пришлось вступить в борьбу с господствовавшей тогда традицией, основанной на учении античного лекаря Галена, а Парижский медицинский факультет, чьи профессора непоколебимо придерживались «допотопных» взглядов, объявил Уильяму настоящую войну.

Последователи «древнего учителя» полагали, что артерии содержат мало крови и много воздуха, в то время как вены наполнены кровью. Казалось бы, откуда возникло данное убеждение? Ведь при любом ранении, затронувшем артерию, кровь бьет ключом! Это знали даже первобытные люди, да и античная публика не раз наблюдала такую картину во время жертвоприношений. Но медики основывались на ином опыте ― полученном при вскрытиях. Естественно, в мертвом теле артерии бескровны, тогда как вены полны. К реальному кровообращению это не имеет никакого отношения, и все же «светила медицины» упорно придерживались устаревших методов исследования. Они считали, что кровь образуется в печени и оттуда через большую полую вену поступает в сердце: «Части пищи, всосанные из пищеварительного канала, подносятся воротной веной к печени и под влиянием этого большого органа превращаются в кровь. Обогащенная пищей, кровь наделяет эти самые органы питательными свойствами, но сама она является еще недоработанной, негодной для высших целей в организме. Приносимые из печени через

Между тем исторические документы свидетельствуют, что малый круг кровообращения был открыт еще в Средневековье арабским врачом Ибн‑аль‑Нафисом. Вслед за ним истинным механизмом кровообращения заинтересовался астроном, метролог, географ, врач и теолог эпохи Возрождения Мигель Сервет, который слушал в Падуе лекции немецкого анатома Ф. Сильвия и, возможно, встречался с Везалием. В книге «Восстановление христианства» Сервет писал, что «мы должны сначала изучить возникновение в крови самого жизненного духа. Жизненный дух берет начало в левом сердечном желудочке, при этом особое содействие его производству оказывают легкие, поскольку там происходит смешение входящего в них воздуха с кровью, поступающей из правого сердечного желудочка. Этот путь крови вовсе не пролегает через перегородку сердца (

Однако по‑настоящему понять значение сердца и сосудов удалось именно Гарвею, который в своей научной деятельности руководствовался многочисленными опытами, связанными со вскрытием еще живых животных. Известный своим скептицизмом, Гарвей писал: «Когда я впервые обратил все свои помыслы и желания к наблюдениям на основе вивисекций (в той степени, в которой мне их приходилось делать), чтобы посредством собственных созерцаний… распознать смысл и пользу сердечных движений у живых существ, — я обнаружил, что вопрос этот весьма сложен и преисполнен загадок».

Клеточное строение организма

Первые «кирпичики» в построение клеточной теории были заложены более 350 лет назад английским натуралистом Робертом Гуком (1635–1703). Пытаясь заглянуть за горизонт человеческих познаний, Гук установил на термометре «точки отсчета» — кипения и замерзания воды, изобрел воздушный насос и прибор для определения силы ветра, а затем его чрезвычайно увлекли необыкновенные возможности микроскопа. Под стократным увеличением он рассматривал все, что попадалось под руку, будь то муравей, блоха, песчинка или водоросли. Однажды под объективом Гука оказался кусочек пробки, и молодой ученый увидел нечто невероятное, похожее на пчелиные соты. Позже, обнаружив подобные ячейки и в живой ткани, Гук назвал их клетками и вместе с полусотней других наблюдений описал в книге «Микрография». Вскоре он переключил все внимание на другие идеи и больше никогда не возвращался к микроскопу, а о клетках и думать забыл. Зато другие ученые открытием заинтересовались. Так, рассматривая в микроскоп разные части растений, итальянец Марчелло Мальпиги обнаружил, что те состоят из мельчайших «трубочек», «мешочков» и «пузырьков». Вдохновленный, Мальпиги взялся исследовать кусочки тканей человека и животных, но из‑за несовершенства техники никаких клеток там не увидел.

Дальнейшая история открытия связана с именем голландца Антони ван Левенгука (1632–1723). Сын коммерсанта, он сумел усовершенствовать микроскоп и первым описал клетки человека — в частности, эритроциты и сперматозоиды (по его терминологии, «шарики» и «зверьки»). Конечно, Левенгук не предполагал, что это были клетки, зато ему удалось рассмотреть и очень подробно зарисовать строение волокна сердечной мышцы. Кроме того, Левенгук первым заметил и описал ядро клетки в эритроцитах рыб, однако не придал этому значения.

Его исследования продолжил немецкий ученый Каспар Фридрих Вольф (1733–1794): при описании «пузырьков», «зернышек» и «клеток» животных и растений он первым заметил сходство этих структур, а также предположил, что клетки могут играть определенную роль в развитии организма. Еще позже английский ботаник Роберт Броун (1773–1858), первооткрыватель хаотичного теплового движения частиц (названного впоследствии броуновским в его честь), исследовал срезы тропических орхидей и заметил в центре клеток какие‑то странные сферические структуры. Эту клеточную конструкцию он назвал ядром. В то же время чешский биолог Ян Эвангелиста Пуркине (1787–1869), рассматривая яйцеклетки птиц, тоже обратил внимание на ядро: «Сжатый сферический пузырек, одетый тончайшей оболочкой. Он… преисполнен производящей силой, отчего я и назвал его “зародышевый пузырек”».

В 1837 г. Пуркине сообщил научному миру результаты своей многолетней работы: в каждой клетке организма животного и человека есть ядро. К сожалению, ученый не сумел обобщить накопленные знания о клетках и оказался слишком осторожным в выводах. Через пять лет после открытия ядра появился термин, определяющий остальное содержимое клетки — протоплазма (теперь ее называют цитоплазмой). В течение последующих лет ученые обстоятельно исследовали роль протоплазмы в живой клетке, и к середине XIX в. формирование клеточной теории было почти завершено.

Последние «кирпичики» в нее положили юрист Маттиас Якоб Шлейден (1804–1881) и священнослужитель Теодор Шванн (1810–1882). Увлекшись наукой, оба они выучились на медиков, и Шлейден занялся физиологией растений, а Шванн — исследованием строения спинной струны (основного органа нервной системы) животных из отряда круглоротых, в том числе миног. Шлейден методично просматривал срезы самых разных растений, выискивая ядра, а затем оболочки, и за пять лет доказал, что все органы растений имеют клеточную природу. Однако, описывая возникновение клеток, ученый предположил, что каждая новая клетка развивается внутри старой, что было в корне неверно, поэтому сформулировать основные постулаты клеточной теории ему так и не удалось. Зато удалось Шванну. Познакомившись со Шлейденом в Берлине, Шванн часто беседовал с ним на научные темы. И вот однажды, во время обеда, Маттиас указал Теодору на важную роль ядра в развитии растительных клеток. По воспоминаниям Шванна, «я тотчас припомнил, что видел подобный орган в клетках спинной струны, и в тот же момент понял, насколько важно показать: в клетках спинной струны ядро играет ту же роль, что и ядра растений в развитии их клеток…».

Деление клеток

Как образуются клетки? Этим вопросом впервые задались Маттиас Якоб Шлейден и Теодор Шванн. Шлейден выдвинул теорию свободного клеткообразования из слизи, заключенной в существующих клетках. Шванн поначалу поддерживал эту мысль, однако, как ни старался, не мог найти убедительных картин рождения новых клеток внутри старых (нечто подобное обнаружилось только в хряще и хорде). Поэтому у него возникло предположение, что новые клетки появляются не только в старых, но еще и в особом межклеточном веществе — цитобластеме.

Надо заметить, в то время уже было известно о размножении клеток путем деления. В 1832 г. Б. Дюмортье наблюдал за делением клеток у нитчатых водорослей. А три года спустя этот процесс был описан в труде Г. Моля. Изучая водоросли

Conferva glomerata

, Моль обнаружил перешнуровку протоплазмы и образование перегородки между дочерними клетками, более того — определил различные стадии деления, но, к сожалению, упустил из виду ядро. Не сумев обобщить результаты своих наблюдений, Моль так и не создал на их основе новую теорию клеткообразования.

Первым возразить Шлейдену осмелился русский ботаник Николай Железнов (1816–1877). Работая над диссертацией, он наблюдал за развитием волосков традесканции и не заметил ничего подобного тому, что описал Шлейден, — новые клетки рождались путем разделения материнской клетки перегородками. Не подтвердил Железнов и обязательного, по мнению Шлейдена, первичного образования ядрышка («центрального тела»). Вдобавок ученый заявил, что клеточные процессы в растительном и животном царствах одинаковы.

Вслед за Железновым развенчивать шлейденовскую теорию взялся анатом и ботаник Франц Унгер (1800–1870). В своей работе о размножении клеток в точке роста растений он подчеркнул, что клетки образуются не свободной кристаллизацией из «слизи», а путем деления, или «почкования», ранее существующих клеток. Впоследствии Унгер еще не раз возвращался к проблеме клеткообразования, но так и не решился окончательно опровергнуть теорию Шлейдена. В «Основах анатомии и физиологии растений» он описал первичное и вторичное клеткообразование, под первым подразумевая «возникновение» клеток без посредничества ранее существовавших структур, а под вторым — «размножение».

Ознакомившись с работами Унгера, Шлейден внес во 2‑е издание «Основ ботаники» описание клеточного деления наряду со своей теорией клеткообразования. Правда, понятие о делении в то время было расплывчатым. Основной частью клетки считалась оболочка, поэтому исследователи говорили о делении лишь в тех случаях, когда видели образование клеточной перегородки. Если же оболочка была неясной, то есть клетка выглядела «голой», ученые употребляли термин «свободное клеткообразование», хотя речь шла тоже о делении.

Гомеостаз

Гомеостаз — один из четырех важных принципов современной биологии, наряду с эволюцией, генетикой и клеточной теорией. Основная идея умещается в короткую фразу: организмы сами регулируют свою внутреннюю среду.

Впервые идею гомеостаза выдвинул Клод Бернар (1813–1878), плодовитый ученый, который добился серьезных успехов в понимании физиологии, невзирая на то, что любовь к вивисекции разрушила его первый брак. Однако истинная важность гомеостаза, названного им

milleu interieur

, была признана спустя десятилетия после смерти Бернара.

В чем же состояло открытие ученого? Он считал, что для живого организма существуют «две среды: внешняя, в которую помещен организм, и внутренняя, в которой живут элементы тканей». В 1878 г. Бернар сформулировал концепцию, согласно которой внутреннюю среду составляет не только кровь, но также все происходящие из нее плазматические и прочие жидкости. «Внутренняя среда, — писал ученый, — образуется из всех составных частей крови: азотистых и безазотистых, белковины, фибрина, сахара, жира… за исключением кровяных шариков, которые являются самостоятельными органическими элементами». Главным свойством внутренней среды Бернар считал то, что она находится «в непосредственном соприкосновении с анатомическими элементами живого существа». А значит, изучая физиологические свойства этих элементов, необходимо учитывать их зависимость от окружающей внутренней среды.

Ученый справедливо считал, что все явления жизни обусловлены конфликтом между существующими силами организма (конституцией) и влиянием внешней среды. В любом организме постоянно происходят процессы синтеза и распада, в результате чего мы приспосабливаемся, адаптируемся к условиям среды.

Согласно работам Бернара, все физиологические механизмы служат сохранению постоянства условий во внутренней среде. То есть организм должен совершенствоваться так, чтобы внешние изменения в каждое мгновение компенсировались бы и уравновешивались. А для этого ему необходимы вода, кислород, питательные вещества и определенная температура.

Химия

Медь и бронза

Какой металл первым вошел в жизнь людей? Золото? Серебро? Железо? Нет, это была медь: ее нашли 6000 лет назад. Правда, в то время наши предки орудовали каменными топориками и костяными ножами, потому находкой не особо заинтересовались. Однако со временем древний человек разочаровался в материалах, из которых мастерил свои инструменты: камень был очень тяжелым, а кость часто ломалась. Довелось искать что‑то иное, попрочнее да полегче, и тут на помощь пришел необычный минерал — желто‑красный, с зеленцой, еще и блестящий.

Это оказалась медь — точнее, медная руда, но люди приняли ее за камень и попытались делать с ней то же, что с обычными камнями: придавать нужную форму, многократно откалывая по кусочку. Результат получался неожиданный: мягкая медь гнулась, принимая самые причудливые формы, и становилась тверже. Значит, из нее можно что‑то выковать, сообразили древние мастера. Потом кто‑то случайно сунул породу в огонь, она стала плавиться, и людей осенило: в таком состоянии из материала можно ковать все, что угодно, — хоть наконечники копий, хоть крючки для ловли рыбы, хоть бусы и браслеты. Да, медные ножи выходили не такими крепкими, как костяные и каменные, зато затачивать их не составляло труда, да и починить можно было на раз‑два, вместо того чтобы делать новые.

Кроме того, оказалось, что из податливой меди очень удобно ковать тонкие, острые лезвия, которым каменные аналоги и в подметки не годились. Медным топором древний дровосек мог срубить довольно‑таки толстое дерево втрое быстрее, чем каменным. Медная пила справлялась с распиливанием ствола на бревна в 20 раз быстрее каменной, а скорость обработки досок медным ножом вдесятеро превышала скорость строгания каменным инструментом.

Постепенно люди привыкали к работе с медью, экспериментировали с ней, выковывая такие орудия, о которых раньше и помыслить не могли, а те помогали им осваивать новые занятия, делали их жизнь удобнее и проще. Так на смену каменному веку пришел медный.

Раньше всех с медью подружились народы, населявшие территорию Турции, — именно там археологи нашли самые древние предметы из красного металла, возраст которых составлял 7―8 тысячелетий. Жители Месопотамии — одной из самых развитых ранних цивилизаций Ближнего Востока — начали мастерить медные украшения в VI‑м тысячелетии до н. э. Через тысячу лет добывать и использовать медь научились египтяне, китайцы и балканские народы, затем к обработке красного металла подключились европейцы, а за ними — индейцы Южной Америки.

Золото

О существовании этого волшебно красивого желтого металла, словно позаимствованного Землей у Солнца, люди узнали в глубокой древности — более 5 тысячелетий назад, еще в ту эпоху, когда все предметы быта и оружие делались из камня. Однако древний человек быстро оценил преимущества золота: из него легко можно было выковать любую вещь, оно не портилось ни в воде, ни при долгом пребывании на воздухе, не билось и вдобавок роскошно выглядело.

В 1972 г. обычный болгарский рабочий Райчо Маринов рыл траншею в городе Варна, чтобы проложить подземный кабель, как вдруг заметил в ковше что‑то блестящее. Присмотревшись, Райчо ошеломленно присвистнул: вместе с грунтом ему попались настоящие золотые украшения и ритуальные фигурки вроде амулетов. Вещицы явно были старинными, потому Маринов отнес их археологам. Те сразу же приехали на место, где был найден клад, и провели тщательные раскопки, которые привели их к древнему, 5,5‑тысячелетнему захоронению. Рядом со скелетами людей в могильнике лежали рабочие инструменты, луки, копья, булавы, бусы и прочие интересные предметы — все из золота.

Вслед за народами, населявшими территорию Болгарии, золотодобычей занялись египтяне, китайцы, индусы и жители Месопотамии, но, поскольку отделять чистый металл от примесей они еще не умели, в их золотых вещах оказывалось немало медных и серебряных добавок. В чистом виде золото впервые получили египтяне, для которых желтый металл символизировал солнечное божество, однако случилось это не раньше VI в. до н. э. Египтяне верили, будто небесная богиня Нут каждое утро рождает золотого теленка — Солнце, а тот трансформируется в солнечного бога Ра, который за день объезжает небосвод на своей колеснице, и вечером Нут глотает его, чтобы на следующее утро снова произвести на свет теленка.

У греков было собственное золотое мифическое животное — барашек, который спас детей богини неба и земного царя от их злой мачехи. Барашек должен был переправить царевича и его сестру в Колхиду (сейчас это территория Грузии, Абхазии, Аджарии, Турции), но девочка по дороге утонула, и выжить удалось только мальчику. Выполнив миссию, барашек сбросил свою золотую шкуру, чтобы его пассажир подарил руно царю Колхиды. Впрочем, надолго шкурка там не задержалась. Через некоторое время греческий герой Ясон вместе с командой аргонавтов выкрал золотое руно, умертвив его охранника — страшного дракона, — и драгоценность вернулась в Элладу.

Высокий статус, присвоенный золоту изначально, сделал этот металл объектом кровопролитных сражений. К примеру, ассирийцы, не желая ограничиваться торговлей с египтянами и честной прибылью за свои товары, отвоевали часть египетских земель и обложили местное население данью — конечно же, в виде желтого металла. Потом на завоеванное ассирийцами золото позарились персы, а у них сокровища отобрал правитель греческой Македонии — всем известный Александр. Но и греки не смогли удержать чужое добро: соседи‑римляне отбили у них все запасы желтого металла, после чего пошли войной на Карфаген, чтобы захватить еще и места золотодобычи, расположенные на территории современной Испании.

Железо

Железо в прямом смысле слова свалилось людям на голову — в составе метеорита. Осколки небесного тела были найдены 5 тысяч лет назад жителями Египта и Шумера — они‑то и обнаружили, что кусочки этой породы представляют собой металл, более твердый, чем уже известные в то время медь, олово и золото. Данное свойство определило название металла: «железо» («залізо») на праславянском языке означало «камень, скала». А латинское «феррум» восходит к словам из санскрита, переводящимся как «твердеть» и «крепкий, тяжелый». Правда, в метеоритной породе был еще и никель, который укреплял мягкое железо, но древние об этом не знали. Обрадовавшись находке, они принялись плавить новый металл и ковать из него кинжалы, бусы, браслеты, а также разнообразные подвески в оправе из… золота. Поскольку последнее родилось на Земле, а железо было ниспослано небом, шумеры и египтяне посчитали «крепыша» божественным подарком и оценили выше желтого металла.

Однако во II тысячелетии до н. э. выяснилось, что в земных недрах железо тоже есть, только существует оно не самостоятельно, а в составе руд: бурого железняка, болотной руды, шпата, гематита и пр. Первыми выплавлять железо из руды и обрабатывать его научились хатты — народ, населявший территорию современной Турции. Когда во владения хаттов вторглись воинственные соседи хетты, какой‑то местный кузнец подарил хеттскому царю железный трон и скипетр. Вскоре завоеватели и сами научились управляться с дивным металлом, более того, впервые изготовили из него боевую колесницу собственной конструкции, а также придумали много новых видов оружия (сам фараон Египта попросил однажды хеттских мастеров выковать ему железный кинжал). Очевидно, именно это и стало залогом непобедимости хеттов.

Чуть позже, в I тысячелетии, был изобретен еще один способ выплавлять железо. Авторство данного метода принадлежит халибам: этот народ жил на побережье Черного моря, где было много магнетитового песка, состоявшего из мелкой крошки разных пород. Так вот, халибы добывали железо именно из него, а не из руды. Песок тщательно промывался, затем смешивался с древесным углем и плавился в специальных печах. В итоге получалась очень прочная нержавеющая форма железа — сталь, которую греки в честь ее создателей назвали халибасом.

Коренное население Америки о железе и слыхом не слыхивало аж до Средневековья: индейцам для жизни с лихвой хватало меди, которой полнились недра их земель, а добычу «крепыша» развернули уже бледнолицые пришельцы из Европы. Между тем в Африке о меди ничего не знали — ее там попросту никогда не было, зато за тысячу лет до нашей эры местные наткнулись на железные руды и быстренько придумали, как превращать породу в металл. Уже тогда в Африке были сооружены первые плавильные печи, являвшие собой конусообразную глиняную башню с ямой внутри.

Конечно, жители Черного континента не догадывались, что железо производить далеко не так просто, как медь, а вот европейским мастерам было с чем сравнивать. Если медная руда не требовала никаких дополнительных условий, кроме высокой температуры в печи, то железную приходилось нагревать сильнее, причем вместе с углем и непременно в ветренном, хорошо вентилируемом месте. Но даже при соблюдении всего этого материал получался пористым, ломким и с кучей лишних примесей.

Гальванопластика

Чеканенные картины, золоченые рамы, пластмассовые безделушки, искусно замаскированные под серебряные или бронзовые украшения, гипсовые копии старинных скульптур, для красоты и солидности покрытые бронзой… Все эти вещи имеют кое‑что общее: их делают с помощью гальванопластики.

Что это за техника такая? Если в двух словах — это такой процесс, в ходе которого электричество пропускается через соли металлов, и они распадаются, покрывая своими частичками другие предметы. Ну а если подробнее, все происходит примерно так. Сначала вещица, которую нужно одеть в металлические доспехи, опускается в раствор соли — поскольку такие растворы хорошо проводят ток — и подсоединяется к минусовому полюсу источника, превращаясь в катод. Затем в ту самую жидкость погружаются металлические пластинки, которые подводятся уже к плюсовому полюсу и берут на себя роль анода. Электрическая цепь замыкается, атомы анода и катода заряжаются — первые превращаются в положительные ионы, а вторые в отрицательные, — и тогда положительные ионы металла отрываются от пластинок и мчатся к катоду, у которого имеются лишние электроны. Цепляясь за эти отрицательные частицы, атомы металла снова становятся нейтральными и оседают на поверхности катода (покрываемой вещи).

Данная технология, по мнению историков, была открыта еще до нашей эры. Древнегреческие писатели рассказывали о том, что мастера, служившие при дворе царицы Клеопатры, знали секрет изготовления драгоценных металлов. Возможно, подразумевалось искусство покрывать разнообразные предметы (в частности, те, что использовались в религиозных ритуалах) серебром или золотом. А это и есть гальваника.

Знали о ней и римляне, только применяли не для создания предметов искусства, а с несколько иной целью. Для того чтобы соленая морская вода не растворяла медную обшивку кораблей, предохранявшую суда от ракушечных наростов и жуков‑вредителей, в нее заколачивались гвозди — снова‑таки из меди. И это удивительно, ведь древние люди понятия не имели о химических взаимодействиях между солевыми растворами и металлами.

В 30‑х годах ХХ в. в столице Ирака, городе Багдад, было найдено интересное устройство, происхождение которого можно было отнести к III–II вв. до н. э. Внешне это была просто глиняная ваза высотой 13 см, но внутри нее скрывался цилиндрический сосуд из меди, откуда торчал ржавый железный прут. Ученые высказали догадку, что древние мастера заполняли сосуд раствором щелочи и использовали его в качестве источника тока (позже подобные батареи получили название гальванических элементов — в честь итальянского медика Луиджи Гальвани, открывшего свойство металлов проводить ток). Дабы подтвердить свою гипотезу, исследователи налили в сосуд сначала винный уксус, а потом морскую воду — и в обоих случаях ваза генерировала слабенькое электричество.

Каучук

История каучука началась в XVI в., в период Великих географических открытий. Вернувшись из Америки в Испанию, путешественник и первооткрыватель Христофор Колумб привез множество диковин, одной из которых был эластичный мяч из «древесной смолы». Снаряд, которым туземцы играли в нечто наподобие баскетбола, легко подпрыгивал, отскакивая от земли, сжимался и быстро восстанавливал свою первоначальную форму. Материал мяча был странным на ощупь — индейцы называли его «каучук», что переводится как «слезы млечного дерева». Чтобы изготовить каучук, коренные американцы сцеживали в чашечки белый, словно молоко, сок бразильской гевеи (латекс), затем сливали в большой сосуд и нагревали. Сок быстро сворачивался, превращаясь в темный смолоподобный эластичный материал. Помимо мячей, индейцы делали из него непромокаемые ткани, обувь, сосуды, детские игрушки.

Все эти вещи частенько завозились в Европу последователями Колумба, но европейцы почему-то не оценили материал по достоинству, хотя самим испанцам очень нравилось играть с экзотическим мячом — на основе индейских правил они даже придумали свою игру, похожую на современный футбол.

Со временем о южноамериканской диковинке забыли, и только в XVIII в. члены французской экспедиции обнаружили в Южной Америке дерево, выделяющее удивительную, затвердевающую на воздухе смолу, которая была названа резиной (от лат.

resina

 ― смола). В 1738 г. французский исследователь Ш. Кондамин представил в Парижской академии наук образцы каучука, изделия из него и описание процесса его добычи, после чего начались поиски всевозможных способов применения этого вещества. В Испании каучук додумались использовать в качестве ластика. Во Франции были изобретены подтяжки и подвязки из сплетенных с хлопком резиновых ниток. А в 1823 г. шотландец Чарльз Макинтош догадался прокладывать тонкий слой резины между двумя кусками ткани и шить из этого материала непромокаемые плащи — макинтоши, которые сразу же полюбились всем британцам. Примерно в то же время в Америке вошло в моду надевать в дождливую погоду поверх башмаков неуклюжую индейскую резиновую обувь — галоши.

Затем англичанин Чаффи изобрел прорезиненную ткань, растворяя сырую резину в скипидаре, смешивая с сажей и нанося тонким слоем на обычную ткань с помощью специально сконструированной машины. Из такого материала можно было делать не только одежду, обувь и головные уборы, но также крыши домов и фургонов. Однако у изделий из прорезиненной ткани обнаружился большой недостаток: в жару они становились липкими и зловонными, а в мороз растрескивались. Постепенно фирмы по производству резины разорялись, и все бы позабыли про макинтоши и галоши, если бы не американец Чарльз Гудьир, который верил, что из каучука можно создать хороший материал. Современники смеялись над ним: «Если вы увидите человека в резиновом пальто, резиновых ботинках, резиновом цилиндре и с резиновым кошельком, а в кошельке ни единого цента, то можете не сомневаться — это Гудьир». Но Чарльз упорно смешивал каучук со всем подряд: солью, перцем, песком, маслом и даже супом — и в конце концов добился успеха. В 1839 г. он обнаружил, что каучук при нагревании с серой становится менее чувствительным к изменениям температуры, более упругим и гибким.

Новый вулканизированный каучук, незатейливо названный резиной, быстро завоевал популярность. Резина оказалась идеальным материалом для изготовления покрышек для автомобилей, амортизаторов, приводных ремней, рукавов, транспортных средств, гибкой изоляции, различных прокладок и многого другого. С середины XIX в. начался массовый выпуск резиновых изделий, и спрос на каучук возрос в несколько раз. Дикая гевея уже не могла удовлетворять потребности промышленности, и ее начали выращивать в тропиках Суматры, Явы, Малайского архипелага, только и этого было мало.