Самоучитель UML
Первое издание.
В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.
ГЛАВА 1 Введение
Если попытаться охарактеризовать современный уровень развития компьютерных и информационных технологий, то первое, на что следует обратить внимание – это возрастающая сложность не только отдельных физических и программных компонентов, но и лежащих в основе этих технологий концепций и идей. Кажется, еще совсем недавно профессиональному программисту было достаточно в совершенстве владеть одним-двумя языками программирования, чтобы разрабатывать серьезные программные приложения. Выбор платформы и операционной системы, как правило, не являлся серьезной проблемой. А сопровождение программы, хотя и было сопряжено с объективными трудностями, могло быть реализовано простым добавлением или изменением кода исходной программы.
1.1. Методология процедурно-ориентированного программирования
Появление первых электронных вычислительных машин или компьютеров ознаменовало новый этап в развитии техники вычислений. Казалось, достаточно разработать последовательность элементарных действий, каждое из которых преобразовать в понятные компьютеру инструкции, и любая вычислительная задача может быть решена. Эта идея оказалась настолько жизнеспособной, что долгое время доминировала над всем процессом разработки программ. Появились специальные языки программирования, которые позволили преобразовывать отдельные вычислительные операции в соответствующий программный код.
Основой данной методологии разработки программ являлась процедурная или алгоритмическая организация структуры программного кода. Это было настолько естественно для решения вычислительных задач, что ни у кого не вызывала сомнений целесообразность такого подхода. Исходным понятием этой методологии являлось понятие алгоритма, под которым, в общем случае, понимается некоторое предписание выполнить точно определенную последовательность действий, направленных на достижение заданной цели или решение поставленной задачи. Примерами алгоритмов являются хорошо известные правила нахождения корней квадратного уравнения или корней линейной системы уравнений.
Примечание 1
С этой точки зрения вся история математики тесно связана с разработкой тех или иных алгоритмов решения актуальных для своей эпохи задач. Более того, само понятие алгоритма стало предметом соответствующей теории – теории алгоритмов, которая занимается изучением общих свойств алгоритмов. Со временем содержание этой теории стало настолько абстрактным, что соответствующие результаты понимали только специалисты. Как дань этой традиции какой-то период времени языки программирования назывались алгоритмическими, а первое графическое средство документирования программ получило название блок-схемы алгоритма. Соответствующая система графических обозначений была зафиксирована в ГОСТ 19.701-90, который регламентировал использование условных обозначений в схемах алгоритмов, программ, данных и систем.
Однако потребности практики не всегда требовали установления вычислимости конкретных функций или разрешимости отдельных задач. В языках программирования возникло и закрепилось новое понятие процедуры, которое конкретизировало общее понятие алгоритма применительно к решению задач на компьютерах. Так же, как и алгоритм, процедура представляет собой законченную последовательность действий или операций, направленных на решение отдельной задачи. В языках программирования появилась специальная синтаксическая конструкция, которая получила название процедуры.
1.2. Методология объектно-ориентированного программирования
Со временем ситуация стала существенно изменяться. Оказалось, что трудоемкость разработки программных приложений на начальных этапах программирования оценивалась значительно ниже реально затрачиваемых усилий, что служило причиной дополнительных расходов и затягивания окончательных сроков готовности программ. В процессе разработки приложений изменялись функциональные требования заказчика, что еще более отдаляло момент окончания работы программистов. Увеличение размеров программ приводило к необходимости привлечения большего числа программистов, что, в свою очередь, потребовало дополнительных ресурсов для организации их согласованной работы.
Но не менее важными оказались качественные изменения, связанные со смещением акцента использования компьютеров. Если в эпоху «больших машин» основными потребителями программного обеспечения были крупные предприятия, компании и учреждения, то позже появились персональные компьютеры и стали повсеместным атрибутом мелкого и среднего бизнеса. Вычислительные и расчетно-алгоритмические задачи в этой области традиционно занимали второстепенное место, а на первый план выступили задачи обработки и манипулирования данными.
Стало очевидным, что традиционные методы процедурного программирования не способны справиться ни с растущей сложностью программ и их разработки, ни с необходимостью повышения их надежности. Во второй половине 80-х годов возникла настоятельная потребность в новой методологии программирования, которая была бы способна решить весь этот комплекс проблем. Такой методологией стало объектно-ориентированное программирование (ООП).
Фундаментальными понятиями ООП являются понятия класса и объекта. При этом под классом понимают некоторую абстракцию совокупности объектов, которые имеют общий набор свойств и обладают одинаковым поведением. Каждый объект в этом случае рассматривается как экземпляр соответствующего класса. Объекты, которые не имеют полностью одинаковых свойств или не обладают одинаковым поведением, по определению, не могут быть отнесены к одному классу.
Примечание 4
1.3. Методология объектно-ориентированного анализа и проектирования
Необходимость анализа предметной области до начала написания программы была осознана давно при разработке масштабных проектов. Процесс разработки баз данных существенно отличается от написания программного кода для решения вычислительной задачи. Главное отличие заключается в том, что при проектировании базы данных возникает необходимость в предварительной разработке концептуальной схемы, которая отражала бы общие взаимосвязи предметной области и особенности организации соответствующей информации. При этом под предметной областью принято понимать ту часть реального мира, которая имеет существенное значение или непосредственное отношение к процессу функционирования программы. Другими словами, предметная область включает в себя только те объекты и взаимосвязи между ними, которые необходимы для описания требований и условий решения некоторой задачи.
Выделение исходных или базовых компонентов предметной области, необходимых для решения той или иной задачи, представляет, в общем случае, нетривиальную проблему. Сложность данной проблемы проявляется в неформальном характере процедур или правил, которые можно применять для этой цели. Более того, такая работа должна выполняться совместно со специалистами или экспертами, хорошо знающими предметную область. Например, если разрабатывается база данных для обслуживания пассажиров крупного аэропорта, то в проектировании концептуальной схемы базы данных должны принимать участие штатные сотрудники данного аэропорта. Эти сотрудники должны хорошо знать весь процесс обслуживания пассажиров или данную предметную область.
Для выделения или идентификации компонентов предметной области было предложено несколько способов и правил. Сам этот процесс получил название концептуализации предметной области. При этом под компонентой понимают некоторую абстрактную единицу, которая обладает функциональностью, т. е. может выполнять определенные действия, связанные с решением поставленных задач. На предварительном этапе концептуализации рекомендуется использовать так называемые CRC-карточки (Component, Responsibility, Collaborator– компонента, обязанность, сотрудники) [1]. Для каждой выделенной компоненты предметной области разрабатывается собственная CRC-карточка (рис. 1.6).
Рис. 1.6.
1.4. Методология системного анализа и системного моделирования
Системный анализ как научное направление имеет более давнюю историю, чем ООП и ООАП, и собственный предмет исследования. Центральным понятием системного анализа является понятие системы, под которой понимается совокупность объектов, компонентов или элементов произвольной природы, образующих некоторую целостность. Определяющей предпосылкой выделения некоторой совокупности как системы является возникновение у нее новых свойств, которых не имеют составляющие ее элементы. Примеров систем можно привести достаточно много – это персональный компьютер, автомобиль, человек, биосфера, программа и др. Более ортодоксальная точка зрения предполагает, что все окружающие нас предметы являются системами.
Важнейшими характеристиками любой системы являются ее структура и процесс функционирования. Под структурой системы понимают устойчивую во времени совокупность взаимосвязей между ее элементами или компонентами. Именно структура связывает воедино все элементы и препятствует распаду системы на отдельные компоненты. Структура системы может отражать самые различные взаимосвязи, в том числе и вложенность элементов одной системы в другую. В этом случае принято называть более мелкую или вложенную систему подсистемой, а более крупную – метасистемой.
Процесс функционирования системы тесно связан с изменением ее свойств или поведения во времени. При этом важной характеристикой системы является ее состояние, под которым понимается совокупность свойств или признаков, которые в каждый момент времени отражают наиболее существенные особенности поведения системы.
Рассмотрим следующий пример. В качестве системы представим себе «Автомобиль». Для этого случая система охлаждения двигателя будет являться подсистемой «Автомобиля». С одной стороны, двигатель является элементом системы «Автомобиль». С другой стороны, двигатель сам является системой, состоящей из отдельных компонентов, таких как цилиндры, свечи зажигания и др. Поэтому система «Двигатель» также будет являться подсистемой системы «Автомобиль».
Структура системы «Автомобиль» может быть описана с разных точек зрения. Наиболее общее представление о структуре этой системы дает механическая схема устройства того или иного автомобиля. Взаимодействие элементов в этом случае носит механический характер. Состояние автомобиля можно рассматривать также с различных точек зрения, наиболее общей из которых является характеристика автомобиля как исправного или неисправного. Очевидно, что каждое из этих состояний в отдельных ситуациях может быть детализировано. Например, состояние «неисправный» может быть конкретизировано в состояния «неисправность двигателя», «неисправность аккумулятора», «отсутствие подачи топлива» и пр. Важно иметь четкое представление, что подобная детализация должна быть адекватна решаемой задаче.
ГЛАВА 2 Исторический обзор развития методологии объектно-ориентированного анализа и проектирования сложных систем
2.1. Предыстория. Математические основы
Представление различных понятий окружающего нас мира при помощи графической символики уходит своими истоками в глубокую древность. В качестве примеров можно привести условные обозначения знаков Зодиака, магические символы различных оккультных доктрин, графические изображения геометрических фигур на плоскости и в пространстве. Важным достоинством той или иной графической нотации является возможность образного закрепления содержательного смысла или семантики отдельных понятий, что существенно упрощает процесс общения между посвященными в соответствующие теории и идеологии.
Теория множеств
Как одну из наиболее известных систем графических символов, оказавших непосредственное влияние на развитие научного мышления, следует отметить язык диаграмм английского логика Джона Венна (1834-1923). В настоящее время диаграммы Венна применяются для иллюстрации основных теоретико-множественных операций, которые являются предметом специального раздела математики – теории множеств. Поскольку многие общие идеи моделирования систем имеют адекватное описание в терминологии теории множеств, рассмотрим основные понятия данной теории, имеющие отношение к современным концепциям и технологиям исследования сложных систем.
Исходным понятием теории множеств является само понятие множество, под которым принято понимать некоторую совокупность объектов, хорошо различимых нашей мыслью или интуицией. При этом не делается никаких предположений ни о природе этих объектов, ни о способе их включения в данную совокупность. Отдельные объекты, составляющие то или иное множество, называют элементами данного множества. Вопрос «Почему мы рассматриваем ту или иную совокупность элементов как множество?» не требует ответа, поскольку в общее определение множества не входят никакие дополнительные условия на включение отдельных элементов в множество. Если нам хочется, например, рассмотреть множество, состоящее из трех элементов: «солнце, море, апельсин», то никто не сможет запретить это сделать.
Примеров конкретных множеств можно привести достаточно много. Это и множество квартир жилого дома, и множество натуральных чисел, с которого начинается знакомство каждого ребенка с великим таинством счета. Совокупность компьютеров в офисе тоже представляет собой множество, хотя, возможно, они и соединены между собою в сеть. Множество живущих на планете людей, как и множество звезд на небосводе, тоже могут служить примерами множеств, хотя природа их существенно различна.
Примечание 11
В теории множеств используется специальное соглашение, по которому множества обозначаются прописными буквами латинского алфавита, и традиция эта настолько общепризнана, что не возникает никакого сомнения в ее целесообразности. При этом отдельные элементы обозначаются строчными буквами, иногда с индексами, которые вносят некоторую упорядоченность в последовательность рассмотрения этих элементов. Важно понимать, что какой бы то ни было порядок, вообще говоря, не входит в исходное определение множества. Таким образом, множество, например, квартир 100-квартирного жилого дома с использованием специальных обозначений можно записать следующим образом: A={aj, 02, а3, ..., а{00}. Здесь фигурные скобки служат обозначением совокупности элементов, каждый из которых имеет свой уникальный числовой индекс. Важно понимать, что для данного конкретного множества элемент ato обозначает отдельную квартиру в рассматриваемом жилом доме. При этом вовсе необязательно, чтобы номер этой квартиры был равен 10, хотя с точки зрения удобства это было бы желательно.
Теория графов
Граф можно рассматривать как графическую нотацию для бинарного отношения двух множеств. Бинарное отношение состоит из таких кортежей или списков элементов, которые содержат только два элемента некоторого множества. Хотя основные понятия теории графов получили свое развитие задолго до появления теории множеств как самостоятельной научной дисциплины, формальное определение графа удобно представить в теоретико-множественных терминах.
Графом называется совокупность двух множеств: множества точек или вершин и множества соединяющих их линий или ребер. Формально граф задается в виде двух множеств: G=(V, Е), где V={v1v2, ..., vn} – множество вершин графа, а Е={е1, е2, ..., еm} – множество ребер графа. Натуральное число n определяет общее количество вершин конкретного графа, а натуральное число m – общее количество ребер графа. Следует заметить, в общем случае не все вершины графа могут соединяться между собой, что ставит в соответствие каждому графу некоторое бинарное отношение PQ, состоящее из всех пар вида <vi, vj>, где vi, vj = V. При этом пара <vi, vj> и, соответственно, пара <vj, vi> принадлежат отношению PG в том и только в том случае, если вершины vi и vj соединяются в графе G некоторым ребром ek=Е. Вершины графа изображаются точками, а ребра – отрезками прямых линий. Рядом с вершинами и ребрами записываются соответствующие номера или идентификаторы, позволяющие их идентифицировать однозначным образом.
Примечание 14
Ниже представлены два примера конкретных графов (рис. 2.4). При этом первый из них (рис. 2.4, а) является неориентированным графом, а второй (рис. 2.4, б) – ориентированным графом. Как нетрудно заметить, для неориентированного графа ребро е1 соединяет вершины v1 и v2, ребро е2 – вершины v1 и v3, а ребро e3 – вершины v2 и v3 и т. д. Последнее ребро, e8, соединяет вершины v4 и v5, тем самым задается описание графа в целом. Других ребер данный граф не содержит, как не содержит других вершин, не изображенных на рисунке. Так, хотя ребра е6 и e7 визуально пересекаются, но точка их пересечения не является вершиной графа.
Для ориентированного графа (рис. 2.4, б) ситуация несколько иная. А именно, вершины v1 и v2 соединены дугой е1, для которой вершина v2 является началом дуги, а вершина v1 – концом этой дуги. Далее дуга е2 соединяет вершины v1 и v4, при этом началом дуги e2 является вершина v1, а концом – вершина v4.
Семантические сети
Семантические сети получили свое развитие в рамках научного направления, связанного с представлением знаний для моделирования рассуждений человека. Эта область научных исследований возникла в рамках общей проблематики искусственного интеллекта и была ориентирована на разработку специальных языков и графических средств для представления декларативных или, что менее точно, статических знаний о предметной области. Результаты исследований в области семантических сетей в последующем были конкретизированы и успешно использованы при построении концептуальных моделей и схем реляционных баз данных.
В общем случае под семантической сетью понимают некоторый граф Gs= =(Vs, Es), в котором множество вершин Vs и множество ребер Es разделены на отдельные типы, обладающие специальной семантикой, характерной для той или иной предметной области. В данной ситуации множество вершин может соответствовать объектам или сущностям рассматриваемой предметной области и иметь вместо номеров вершин соответствующие явные имена этих сущностей. Подобные имена должны позволять однозначно идентифицировать соответствующие объекты, при этом общих формальных правил записи имен не существует. Множество ребер также делится на различные типы, которые соответствуют различным видам связей между сущностями рассматриваемой предметной области.
Так, при построении семантической сети для представления знаний о рабочем персонале некоторой компании в качестве объектов целесообразно выбрать отдельных сотрудников, каждого из которых идентифицировать собственным именем и фамилией. Дополнительно в сети могут присутствовать такие объекты, как рабочие проекты и подразделения компании. В качестве семантических связей можно выделить такие виды, как должностное подчинение сотрудников, участие сотрудников в работе над проектами, принадлежность сотрудников тому или иному подразделению компании.
Важной особенностью семантических сетей является разработка специальных графических обозначений для представления отдельных типов вершин и ребер. При этом вершины не изображаются, как ранее – точками, а имеют вид прямоугольников, овалов, окружностей и других геометрических фигур, конкретный вид которых определяет тот или иной тип сущностей предметной области. Более разнообразным становится и изображение ребер, приобретающих вид различных линий со стрелками или без них, а также имеющих специальные обозначения или украшения в виде условных значков. Соответствующая система обозначений, предназначенная для представления информации об отдельных аспектах моделируемой предметной области, получила название графической нотации.
Примечание 15
2.2. Диаграммы структурного системного анализа
Под структурным системным анализом принято понимать метод исследования системы, который начинается с наиболее общего ее описания с последующей детализацией представления отдельных аспектов ее поведения и функционирования. При этом общая модель системы строится в виде некоторой иерархической структуры, которая отражает различные уровни абстракции с ограниченным числом компонентов на каждом из уровней. Одним из главных принципов структурного системного анализа является выделение на каждом из уровней абстракции только наиболее существенных компонентов или элементов системы.
В рамках данного направления программной инженерии принято рассматривать три графические нотации, получивших названия диаграмм: диаграммы «сущность-связь» (Entity-Relationship Diagrams, ERD), диаграммы функционального моделирования (Structured Analysis and Design Technique, SADT) и диаграммы потоков данных (Data Flow Diagrams, DFD).
Диаграммы «сущность-связь»
Данная нотация была предложена П. Ченом (P. Chen) в его известной работе 1976 года [17] и получила дальнейшее развитие в работах Р. Баркера [16] (R. Barker). Диаграммы «сущность-связь» (ERD) предназначены для графического представления моделей данных разрабатываемой программной системы и предлагают некоторый набор стандартных обозначений для определения данных и отношений между ними. С помощью этого вида диаграмм можно описать отдельные компоненты концептуальной модели данных и совокупность взаимосвязей между ними, имеющих важное значение для разрабатываемой системы.
Основными понятиями данной нотации являются понятия сущности и связи. При этом под сущностью (entity) понимается произвольное множество реальных или абстрактных объектов, каждый из которых обладает одинаковыми свойствами и характеристиками. В этом случае каждый рассматриваемый объект может являться экземпляром одной и только одной сущности, должен иметь уникальное имя или идентификатор, а также отличаться от других экземпляров данной сущности.
Примерами сущностей могут быть: банк, клиент банка, счет клиента, аэропорт, пассажир, рейс, компьютер, терминал, автомобиль, водитель. Каждая из сущностей может рассматриваться с различной степенью детализации и на различном уровне абстракции, что определяется конкретной постановкой задачи. Для графического представления сущностей используются специальные обозначения (рис. 2.8).
Рис. 2.8.
Графические изображения для обозначения сущностей
Диаграммы функционального моделирования
Начало разработки диаграмм функционального моделирования относится к середине 1960-х годов, когда Дуглас Т. Росс предложил специальную технику моделирования, получившую название SADT (Structured Analysis & Design Technique). Военно-воздушные силы США использовали методику SADT в качестве части своей программы интеграции компьютерных и промышленных технологий (Integrated Computer Aided Manufacturing, ICAM) и назвали ее IDEFO (Icam DEFinition). Целью программы ICAM было увеличение эффективности компьютерных технологий в сфере проектирования новых средств вооружений и ведения боевых действий. Одним из результатов этих исследований являлся вывод о том, что описательные языки не эффективны для документирования и моделирования процессов функционирования сложных систем. Подобные описания на естественном языке не обеспечивают требуемого уровня непротиворечивости и полноты, имеющих доминирующее значение при решении задач моделирования.
В рамках программы ICAM было разработано несколько графических языков моделирования, которые получили следующие названия:
Нотация IDEF2 никогда не была полностью реализована. Нотация IDEF1 в 1985 году была расширена и переименована в IDEF1X. Методология IDEF-SADT, нашла применение в правительственных и коммерческих организациях, поскольку на тот период времени вполне удовлетворяла различным требованиям, предъявляемым к моделированию широкого класса систем.
В начале 1990 года специально образованная группа пользователей IDEF (IDEF Users Group), в сотрудничестве с Национальным институтом по стандартизации и технологии США (National Institutes for Standards and Technology, NIST), предприняла попытку создания стандарта для IDEFO и IDEF1X. Эта попытка оказалась успешной и завершилась принятием в 1993 году стандарта правительства США, известного как FIPS для данных двух технологий IDEFO и IDEF1X. В течение последующих лет этот стандарт продолжал активно развиваться и послужил основой для реализации в некоторых первых CASE-средствах.
Диаграммы потоков данных
Основой данной методологии графического моделирования информационных систем является специальная технология построения диаграмм потоков данных DFD. В разработке методологии DFD приняли участие многие аналитики, среди которых следует отметить Э. Йордона (Е. Yourdon). Он является автором одной из первых графических нотаций DFD [10]. В настоящее время наиболее распространенной является так называемая нотация Гейна-Сарсона (Gene-Sarson), основные элементы которой будут рассмотрены в этом разделе.
Модель системы в контексте DFD представляется в виде некоторой информационной модели, основными компонентами которой являются различные потоки данных, которые переносят информацию от одной подсистемы к другой. Каждая из подсистем выполняет определенные преобразования входного потока данных и передает результаты обработки информации в виде потоков данных для других подсистем.
Основными компонентами диаграмм потоков данных являются:
Внешняя сущность представляет собой материальный объект или физическое лицо, которые могут выступать в качестве источника или приемника информации. Определение некоторого объекта или системы в качестве внешней сущности не является строго фиксированным. Хотя внешняя сущность находится за пределами границ рассматриваемой системы, в процессе дальнейшего анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы модели системы. С другой стороны, отдельные процессы могут быть вынесены за пределы диаграммы и представлены как внешние сущности. Примерами внешних сущностей могут служить: клиенты организации, заказчики, персонал, поставщики.
2.3. Основные этапы развития UML
Отдельные языки объектно-ориентированного моделирования стали появляться в период между серединой 1970-х и концом 1980-х годов, когда различные исследователи и программисты предлагали свои подходы к ООАП. В период между 1989-1994 гг. общее число наиболее известных языков моделирования возросло с 10 до более чем 50. Многие пользователи испытывали серьезные затруднения при выборе языка ООАП, поскольку ни один из них не удовлетворял всем требованиям, предъявляемым к построению моделей сложных систем. Принятие отдельных методик и графических нотаций в качестве стандартов (IDEF0, IDEF1X) не смогло изменить сложившуюся ситуацию непримиримой конкуренции между ними в начале 90-х годов, которая тоже получила название «войны методов».
К середине 1990-х некоторые из методов были существенно улучшены и приобрели самостоятельное значение при решении различных задач ООАП. Наиболее известными в этот период становятся:
Каждый из этих методов был ориентирован на поддержку отдельных этапов ООАП. Например, метод OOSE содержал средства представления вариантов использования, которые имеют существенное значение на этапе анализа требований в процессе проектирования бизнес-приложений. Метод ОМТ-2 наиболее подходил для анализа процессов обработки данных в информационных системах. Метод Booch'93 нашел наибольшее применение на этапах проектирования и разработки различных программных систем.
История развития языка UML берет начало с октября 1994 года, когда Гради Буч и Джеймс Румбах из Rational Software Corporation начали работу по унификации методов Booch и ОМТ. Хотя сами по себе эти методы были достаточно популярны, совместная работа была направлена на изучение всех известных объектно-ориентированных методов с целью объединения их достоинств. При этом Г. Буч и Дж. Румбах сосредоточили усилия на полной унификации результатов своей работы. Проект так называемого унифицированного метода (Unified Method) версии 0.8 был подготовлен и опубликован в октябре 1995 года. Осенью того же года к ним присоединился А. Джекоб-сон, главный технолог из компании Objectory AB (Швеция), с целью интеграции своего метода OOSE с двумя предыдущими.