Альберт Эйнштейн

Львов Владимир Евгеньевич

Это книга о жизни и научных открытиях одного из величайших физиков нашего времени. Альберт Эйнштейн, мужественный ученый, смело пролагавший новые пути в науке, творец теории относительности, коренным образом изменившей научные взгляды на законы природы, выдающийся борец за мир, изображен автором на широком историческом фоне, в окружении близких ему людей, в борьбе с научными противниками. Рассказывая о сложном и противоречивом жизненном пути ученого, книга в общедоступной форме знакомит читателя с существом замечательных открытий Эйнштейна.

Глава первая. От Мюнхена до Берна

1

Весной зацветают луга в предгорьях Швабских Альп. Швабия — древний угол Европы, плавильный горн народов, разноязычных людских толп: кельты и франки, легионы Цезаря и галлы Верцингеторикса. Здесь говорят по-немецки с певучим эльзасским акцентом. Дунай бежит по скалистому ложу — горная, узкая быстрая речка. Но вот Ульм, и, выйдя на простор Баварской равнины, приняв в себя воды Иллера и Блау, Дунай течет уже спокойно и широко — голубой Дунай.

Весной 1879 года в Ульме родился Альберт Эйнштейн.

Они считали себя немцами, Германн Эйнштейн и его брат Якоб, совладельцы мелкой фабрички, и жена Германна — фрау Эйнштейн-Кох. Они любили эту землю, они говорили на языке ее народа. К старозаветным обычаям своих предков Германн Эйнштейн относился равнодушно. Не талмуд, а «Вильгельм Телль» Шиллера был его настольной книгой. То, чем для отца был Шиллер, для матери был Бетховен. Она сидела у рояля, а пятилетний неразговорчивый Альберт стоял и сосредоточенно слушал.

— Пойди, Альберт, побегай в саду, — предлагала мать.

Нет, он не хотел бегать в саду, он слушал Бетховена.

2

Дела Германна Эйнштейна пошатнулись, и фабричка (на ней выделывались и чинились электрические приборы) перестала приносить доход. На семейном совете было решено переселиться в Италию, Это был тяжелый шаг. Люди не легко расстаются с землей, где родились, где выросли. «Германия — наша родина, — сказал Германн Эйнштейн. — Пусть Альберт кончает гимназию в Мюнхене. А дальше — дальше будет видно…»

Альберт остался в Мюнхене. Он продолжал идти первым по математике, он справлялся кое-как и с другими предметами. К прочитанным книгам прибавилось теперь многотомное собрание рассказов о природе, принадлежавших перу популяризатора Арона Бернштейна. Там говорилось о звездах и метеорах, о землетрясениях и грозах. Альберт читал эти рассказы с таким же интересом, как и «Германа и Доротею» Иоганна-Вольфганга Гёте. Нашелся среди педагогов добрый человек, который давал ему читать все эти книги. Но происходило тут же рядом и еще что-то, чего по рассеянности он не замечал. На уроках математики — их вел теперь новый учитель, сменивший, прежнего, ушедшего на пенсию, — разыгрывались представления, потешавшие всех, кроме двоих — Эйнштейна и учителя. Эйнштейн чистосердечно и серьезно задавал учителю вопросы, на которые тот не мог дать ответа. В классе реял веселый шум. Случались странности и в неурочное время. Однажды Альберт заговор и с одноклассником о своем отрицательном отношении к религии. Тот дико посмотрел и отошел, буркнув что-то невнятное. Другому он рассказал вычитанный им анекдот про великого короля Фридриха (того самого, что был побит русскими при Кунарсдорфе). Чтобы отвязаться от некоего померанского помещика, который докучал ему просьбами о звании «советника» — мечта каждого благонамеренного немца стать хоть каким-нибудь советником, — Фридрих велел дать ему звание «скотского советника». Вытирая слезы от смеха, Альберт добродушно поглядывал на собеседника. Тот не смеялся. Он был сыном тайного советника…

Альберт понял все. Занятый своими теоремами, он не замечал происходящего. Он был слеп. Теперь он все увидел. Ощущение было такое, как в раннем детстве, когда его оставили нечаянно одного в темной комнате. Темной комнатой, вспоминал он потом, был мелкий и тщеславный мирок мюнхенских купцов и чинуш, «гонка за желудочными благами, которая прикрывалась тщательнее, чем теперь, лицемерием и красивыми словами». Участие в этой гонке «могло привести к удовлетворению желудка, но никак не к удовлетворению человека, как мыслящего и чувствующего существа». Решение было принято. Он не останется здесь больше ни одного дня, он поедет в Милан, к родителям. Надо было обзавестись справкой от врача, свидетельствовавшей, что ученик Эйнштейн нуждается в шестимесячном отпуске. Справка не понадобилась. Когда он собирался уже идти к доктору, его остановил на лестнице куратор.

— Вам просили передать, чтобы вы покинули гимназию не откладывая. Ваше присутствие действует неблагоприятно на других учащихся.

— Но мне остался только год до выпуска…

3

Он смотрел на Италию, проносившуюся мимо окна вагона. Он видел оборванных людей, энергично жестикулировавших и шедших куда-то с выражением решимости. Они вели под уздцы маленьких лопоухих осликов, нагруженных жалким скарбом. «Куда идут эти люди?» — спросил он у попутчика. «Искать счастья за океаном», — отвечали ему. «Странно, — думал он. — Они направляются за счастьем за океан, а я еду сюда. Разве нельзя сделать так, чтобы за счастьем не надо было ехать никуда, чтобы оно было с нами?»

Оборванные люди, шедшие за далеким счастьем, не казались несчастными, нет, они пели песни своего народа и подыгрывали себе, не замедляя шага, на инструментах, отдаленно напоминавших скрипку. Он ощупал футляр со своей скрипкой. Она была с ним. И «Крафт унд Штофф» Бюхнера тоже были с ним. И еще тетрадь, куда он заносил свои мысли. Его занимал в последнее время вопрос, на который не так-то легко было ответить: что случится, если приемник лучей света (например, фотоаппарат или человеческий глаз) будет мчаться вслед за световым лучом с быстротой, равной скорости самого света? Тогда световая волна по отношению к такому приемнику перестанет быть бегущей в пространстве волной, а словно бы застынет на месте, как застывают фигуры на экране, когда испортится киноаппарат.

Ничего подобного никогда не наблюдалось в природе и не может наблюдаться с точки зрения теории. Это значило, что в цепь рассуждений вкралась какая-то ошибка. Но какая? Он раздумывал над этим.

Отец встретил его на вокзале. Он сказал отцу, что намерен отказаться от германского подданства и решил также покинуть еврейскую религиозную общину. Он не намерен исповедовать никакой религии…

— Я не препятствую, — сказал отец. — Тебе шестнадцать лет. Теперь я скажу тебе то, что не знает еще твоя мать: я разорен. Промышленный подъем, о котором мне писали отсюда, оказался химерой. Закрываются мастерские, фабрики, лавки. Теперь это называется «спад». Изучали ли у вас в гимназии, почему происходят эти подъемы и спады? Не изучали? Я не смогу поддерживать тебя долго, — продолжал отец. — Скорее приобретай специальность. Как ты догадываешься сам, астрономы и скрипачи не так-то уж до зарезу нужны в наше время! Инженеры с хорошим дипломом и учителя нужнее…

4

Осенью девяносто пятого года он подал свои бумаги в цюрихскую «Тэхнише Хохшулэ», называвшуюся кратко: «Политехникум».

Это был известный рассадник научных знаний в Центральной Европе. Нейтральная Швейцария притягивала учащихся-иностранцев. Преследуемые реакцией революционные эмигранты, социал-демократы из Германии и Австрии — разноязычный студенческий интернационал — заполняли аудитории и коридоры. В шестидесятых годах в Цюрихском университете — по соседству с политехникумом — училось немало русских. В девяностых слушала лекции Роза Люксембург. Ленин, посещавший вое библиотеки Цюриха, захаживал сюда не раз…

Возможно, что, переступая через этот порог, семнадцатилетний Эйнштейн питал сначала некоторые иллюзии по поводу того, что ожидает его на каменистом пути в науку. Иллюзии рассеялись очень скоро, и, вспоминая об этом в старости, он не нашел для себя слов снисхождения:

«Я был своевольным, хотя и ничем не выделяющимся молодым человеком, самоучкой, набравшимся (с большими пробелами) некоторых специальных познаний… С жаждой более глубоких знаний, но с не достаточными способностями к усвоению, и к тому же обладая неважной памятью, приступал я к нелегкому для меня делу учения. С чувством явной неуверенности в своих силах я шел на приемные испытания…»

Экзамен по математике прошел не вполне обычно. Решение геометрической задачи (Эйнштейн применил способ, программой отнюдь не предусмотренный) вызвало смятение. Обнаружилось, что экзаменующийся знаком с основами высшего анализа, с аналитической геометрией, — знания, приобретенные самоучкой, вперемежку с игрой на скрипке в мюнхенские гимназические годы. «В возрасте двенадцати-шестнадцати лет, — припомнил он в старости, — на мое счастье, мне попадались книги, в которых обращалось не так уж много взимания на строгость доказательств, но зато хорошо выделялась главная мысль. Это было поистине увлекательно… Были взлеты, не уступавшие по силе впечатления чуду элементарной геометрии — понятие дифференциала и интеграла, идея аналитической геометрии, бесконечные ряды…»

5

Жизнь шла двумя потоками.

В одном русле были занятия по официальной программе, участие в обязательных лабораториях, переход с курса на курс, наконец диплом, о котором так беспокоился Германн Эйнштейн-старший. Все шло своим чередом. Он станет гражданином Швейцарской республики. Он выполнит для этого все формальности, в том числе и такую нелегкую, как взнос тысячи франков в казначейство страны.

Он поделился своими планами с Милевой Марич. Девушка с абсолютно серьезным выражением лица одобрила этот проект.

Летом 1900 года, в последний год века, привлекая по-прежнему любопытство профессоров своими мате-, мэтическими познаниями, он получил, наконец, долгожданный диплом. Через год он поздравил себя с швей-, царским гражданством. Чтобы скопить тысячу франков, понадобилось откладывать каждый месяц большую часть из ста франков, что посылались ему родными из Италии. Он свел свои жизненные потребности до скромнейшего уровня — отказывал себе в пище и одежде, — но главные невзгоды, как скоро стало ясно, были впереди. О помощи родных больше не могло быть и речи, да он и не допустил бы этой помощи. Надо было становиться на собственные ноги. Диплом и документы гражданина города Цюриха давали право, во всяком случае, на должность гимназического учителя. Он мог рассчитывать, наконец, на оставление при политехникуме для подготовки к профессуре.

Ему не удалось ни то, ни другое.

Глава вторая. Загадка эфира

1

Он думал неотступно об эфире и о многих других важных для него вещах. Шел 1905, знаменательный в истории физики год. Столетие, оставшееся позади, было столетием механики, эрой металла, машин и механической картины мира.

Классическая механика — великолепное творение Галилея, Ньютона, Лагранжа — шла от успеха к успеху. Ее расчетами пользовались инженеры и строители, физики и астрономы. Ей повиновалось движение пылинок и звезд. Кто мог бы усомниться в ее неограниченной и абсолютной власти?

Это сомнение закралось еще на заре механического века.

Картина мира классической механики образуется, как известно, из двух основных слагаемых: «пустого» (от материи) пространства и перемещающихся в нем прерывных материальных тел.

Математические расчеты, производимые в рамках этой картины, могли быть вполне практически удобными, но с теоретико-познавательной точки зрения в картине обнаруживались немедленно зияющие пробелы.

2

Картина мира, составленного из «пустоты» и материальных тел, влекла за собой еще нечто, столь же неправомерное и уродливое — идею взаимодействия тел на расстоянии, через пустоту.

Солнце, для примера, «притягивает» к себе Землю, хотя оба небесных объекта разделены промежутком в 150 миллионов километров. Но как может тело действовать там, где оно не находится? В машинах или в станках, правда, зубчатые колеса и валы зацепляются, трутся друг о друга — пустот в машинах нет. Но если учесть, что и колеса, и валы, и вся машина в целом состоят из частиц — из мельчайших атомов, разделенных хоть малыми, но «пустыми» промежутками, — если вспомнить это, окажется, что мы остаемся на прежнем месте…

Чтобы исправить это положение — на словах по крайней мере — ньютоновская физика ввела понятие «силы». Роль передатчика действия между Землей и Солнцем была возложена на «силу тяготения», посредником межатомных влияний сделалась «сила молекулярного сцепления», и так далее. Неполноценность такой словесной подстановки хорошо понимал и сам Ньютон. С предельной ясностью охарактеризовал это положение вещей Энгельс: «Мы ищем… прибежище в слове «сила» не потому, что мы вполне познали закон, но именно потому, что мы его не познали… Прибегая к понятию силы, мы этим выражаем не наше знание, а

недостаточность

нашего знания о природе закона и о способе его действия…» И дальше: «Ни один порядочный физик не станет называть электричество, магнетизм, теплоту просто силами… Сказать: теплота обладает силой расширять тела — это простая тавтология,, избавляющая от необходимости всякого дальнейшего изучения явлений теплоты… И уж лучше сказать, что магнит (как выражается Фалес) имеет

душу,

чем говорить, что он имеет силу притягивать…»

Все это, отмечал Энгельс, не исключает, конечно, возможности пользоваться в физике величинами «силы» как удобным математическим приемом вычисления, как средством расчетного аппарата науки.

Размышляя над слабыми сторонами учения о «силе» и о «действии на расстоянии», Рене Декарт в середине XVII века предложил возобновить древнюю идею о непрерывной материальной среде, заполняющей всю вселенную. Вихри и воронки, невидимо клубящиеся в такой среде — эфире, могли бы, думал Декарт, передавать «действие» от одного тела к другому.

3

Одним из важнейших физических открытий XIX столетия было доказательство электромагнитной природы света. Световые волны расшифровались как колебания электрического и магнитного полей, распространяющиеся со скоростью 300 тысяч километров в секунду, присущей всем электромагнитным процессам.

Носителем световых волн на первых порах должен был стать тот же самый эфир, о котором шла речь в опытах с электричеством и магнетизмом. И это означало — если придерживаться идей механической физики, — что для световых колебаний в эфире могут быть воспроизведены все те явления, которые характерны для обыкновенных упругих волн.

Нашу планету окружает воздушная оболочка, изборождаемая как раз такими — звуковыми волнами. Согласно принципу относительности движение планеты не оказывает, разумеется, ни малейшего влияния на ход звуковых волн в атмосфере. Не так ли точно должно обстоять дело и со световым эфиром, если таковой существует вокруг Земли?

Независимо от того, сводятся или нет электрические и магнитные явления к механике, естественно, было ожидать, что принцип относительности распространяется и на эти явления. Что дело обстоит именно так, свидетельствовали уже самые первые, знакомые сегодня каждому школьнику опыты Фарадея над индукцией тока. Известно, что если двигать виток проволоки по отношению к находящемуся вблизи магниту, то в проволоке возникает ток. Но в точности такой же ток появляется и в том случае, если виток оставить в покое, а двигать магнит! Законы индукции зависят, следовательно, от относительного перемещения проводника и магнита и вовсе не зависят от того, какую из этих двух «площадок» считать покоящейся. О справедливости принципа относительности говорила и неудача попыток заметить движение Земли с помощью любых вообще электрических и магнитных опытов. Если бы это было не так, движение Земли можно было бы попытаться обнаружить посредством электрических и магнитных опытов.

Вот идея простейшего из таких опытов. Пусть имеется электрический заряд, сосредоточенный, скажем, на поверхности стеклянного шара. Двигаясь вместе с Землей, неподвижный заряд, казалось бы, тотчас превращается в электрический ток. Ведь ток есть не что иное, как поступательный перенос заряда. А всюду, где текут электрические токи, присутствует магнитное поле, так что действие его на железную стрелку сразу же могло бы быть замечено на опыте.

4

В 1851 году французский физик Ипполит Физо демонстрировал в Парижской Академии наук экспериментальную установку, которая, по его мнению, могла бы прояснить вопрос о взаимосвязи между эфиром и движением материальных тел. Вот упрощенная схема этого опыта. Световой пучок от источника света С пропускался через трубу Т, наполненную водой. Вода сначала оставалась неподвижной, а затем прогонялась вдоль по трубе в том же направлении, что и свет. Сравнивались скорости света (относительно стенок трубы) в неподвижном и в движущемся столбе воды.

Исследователи, размышлявшие над идеей опыта Физо, учитывали возможность двух различных ответов на задачу. Первый вариант: скорость света относительно стенок трубы равна скорости света относительно воды плюс скорость самой воды. Это было бы равносильно тому, что световой эфир «увлекается» водой, и дело обстояло бы приблизительно так, как в разобранном ранее примере со звуком в закрытой кабине самолета: воздух и звук переносятся вместе с самолетом, и скорости (звука относительно самолета и самолета относительно земли) просто складываются. Но даже если бы опыт Физо завершился именно так, оставалась бы неясной небольшая, но существенная деталь: в то время как звуковой колокол предполагается движущимся вместе с самолетом, источник света в опыте Физо находится вне столба воды! И это значит, что, складывая скорости, мы сейчас же пришли бы в противоречие с законом независимости скорости света от состояния движения светильника. В самом деле: складывать скорости (света в воде и самой воды) можно лишь при молчаливом допущении, что быстрота света (относительно воды) одна и та же в движущейся воде, как и в покоящейся. А это означало бы, что по отношению к светильнику свет в потоке воды (уходящем прочь от светильника) движется быстрее, чем в неподвижной воде…

Что ж, раз так, можно было переключиться на второй возможный прогноз исхода опыта.

Второй вариант состоял в том, что обе скорости (в покоящейся и в движущейся воде) равны между собой. Это сразу привело бы к картине неподвижного эфира, и закон независимости скорости света от движения источника оказался бы выполненным автоматически. Хуже обстояло бы дело зато с принципом относительности. Ведь если движение воды никак не сказывается на быстроте распространяющегося в ней света

5

В восьмидесятых годах американский физик Альберт Майкельсон указал еще на одну возможность экспериментального подхода к этому вопросу.

Если, рассуждал Майкельсон, земной шар движется сквозь абсолютно неподвижный мировой эфир, тот да луч света, пущенный с поверхности Земли, при определенных условиях будет неизбежно подхвачен и отнесен назад «эфирным ветром», дующим навстречу движению Земли. «Ветер», о котором идет речь, должен возникать исключительно благодаря перемещению Земли относительно эфира. Так, высунув руку из окна вагона на ходу поезда, пассажир всегда ощущает ветер, хотя бы воздух вокруг поезда сам по себе был совершенно спокоен! Дым из трубы паровоза по этой же причине стелется назад, параллельно движению поезда…

Представим себе теперь луч света, пущенный от источника С вдоль направления перемещения Земли. (Смотри рисунок, изображающий схему опыта Майкельсона в горизонтальном плане.) Луч проходит сначала путь СА до полупрозрачной, полузеркальной пластинки А, поставленной под углом 45°. Тут луч раздваивается. Часть света идет дальше к зеркалу Б и, отразившись от него, возвращается к А, после чего, испытав вторичное отражение, на этот раз «под прямым углом попадает в наблюдательную трубку Т. Маршрут второй части светового пучка иной: после двукратного отражения, сперва в А, потом в В, пронизав пластинку А, луч финиширует в той же трубке Т.

Сойдясь вместе на отрезке пути AT, обе части расщепившегося светового пучка должны наложиться друг на друга. Подобное наложение (интерференция) световых волн, как известно из оптики, дает чередование светлых и темных «полос. Размещение их в поле зрения трубки зависит от величины сдвига одной вереницы волн по сравнению с другой. Что можно было ожидать в данном случае?