Черные дыры — самые загадочные космические объекты из числа предсказываемых общей теорией относительности. В этой обзорной статье мы остановимся на некоторых интересных свойствах классических черных дыр. Если дополнить общую теорию относительности квантово-механическими представлениями, черные дыры перестают быть абсолютно черными. На самом деле, они испускают тепловое излучение. Существование этого теплового излучения приводит к ряду парадоксов. Если же использовать дополнительно еще и теорию струн в качестве квантовой теории гравитации, часть парадоксов разрешается. Это приводит к некоторым интересным изменениям в нашем концептуальном понимании пространства-времени.
Черные дыры и структура пространства-времени
Черные дыры и структура пространства-времени
1. Черные дыры
2. Черные дыры и квантовая механика
3. Разрешение загадок
4. Структура пространства-времени
1. Черные дыры
Черные дыры — один из самых необыкновенных объектов, предсказываемых общей теорией относительности Эйнштейна. У черных дыр интересная история, поскольку они преподнесли теоретикам немало сюрпризов, приведших к лучшему пониманию природы пространства-времени.
Давайте начнем с теории всемирного тяготения Ньютона. Силу гравитационного притяжения мы испытываем прямо здесь, на поверхности земли. Если подбросить камень, он упадет под действием земного притяжения. А можно ли подбросить камень с такой скоростью, чтобы он на Землю не вернулся? Можно. Если запустить камень со скоростью выше второй космической скорости (около 11 км/с), он покинет гравитационное поле Земли. Эта «скорость выхода» зависит от массы и радиуса земного шара. Если бы Земля при ее нынешнем радиусе была массивнее или имела бы меньший радиус при ее нынешней массе, скорость выхода была бы выше. Возникает вопрос: что будет, если плотность и масса космического тела настолько велики, что скорость выхода из его гравитационного поля выше скорости света? Ответ: такое тело будет представляться внешнему наблюдателю абсолютно черным, поскольку свет его покинуть не может. Например, звезда с радиусом меньше, чем
2. Черные дыры и квантовая механика
Следующий сюрприз ждал ученых, когда они занялись изучением квантовых эффектов. В квантовой механике вакуум — это не просто полное отсутствие элементарных частиц. Вакуум — это весьма интересное состояние пространства, в котором постоянно возникают и тут же аннигилируют пары «частица-античастица». В спрямленном пространстве чистого выхода в виде возникших из вакуума частиц мы не имеем в силу закона сохранения энергии. То есть, фактически, частицы взаимно аннигилируются, даже не успев родиться. В 1974 году всё тот же Стивен Хокинг доказал, что вблизи горизонта это не так. Имеется ненулевая вероятность рождения пары частиц, сразу же оказывающихся по разные стороны бесконечно тонкого горизонта, причем закон сохранения энергии не нарушается, поскольку частица снаружи горизонта обладает, с точки зрения стороннего наблюдателя, положительной энергией, а частица внутри горизонта — отрицательной (при этом с точки зрения наблюдателя внутри сферы Шварцшильда всё выглядит с точностью до наоборот). Тепловое распределение испускаемых частиц соответствует температуре, которая обратно пропорциональна массе черной дыры. Даже для черных дыр звездной массы эта температура настолько близка к абсолютному нулю, что этот эффект зарегистрировать фактически невозможно. Однако, если черная дыра достаточно долго пробыла бы в полном вакууме, то за счёт эффекта Хокинга она постепенно бы теряла массу через излучение рождающихся на поверхности частиц. Теряя массу, черная дыра разогревается. Черная дыра с массой порядка 10
19
кг (масса большого горного хребта) разогреется до температуры в несколько тысяч градусов и будет вылядеть белой. Однако мощность такого излучения будет составлять не больше милливатта, и зарегистрировать его по-прежнему практически невозможно. Но, чем меньше становится масса изолированной черной дыры, тем выше становится её температура, и тем быстрее она «испаряется», пока, вероятно, не испарится полностью. Фактически, если бы нам удалось сжать до плотности черной дыры всего несколько килограммов вещества (на практике нам этого, конечно, не дано!), такая черная дыра испарилась бы меньше, чем за одну миллисекунду, а энергии при этом выделилось бы больше, чем при взрыве водородной бомбы.
Наличие такого теплового излучения у черных дыр сразу создает две головоломки:
1) причины повышения энтропии черной дыры
2.1. Энтропия черных дыр
В классической физике тепловые свойства вещества обусловлены движением составляющих его материальных частиц. Например, температура воздуха связана со среднеквадратичной скоростью теплового движения его молекул. Родственное температуре понятие называется энтропия. Энтропия дает количественное выражение степени хаотичности движения составляющих системы. Законы термодинамики позволяют связать энтропию с температурой, массой и объемом, благодаря чему её можно рассчитать, не зная микроскопических деталей строения системы. Хокинг и Бекенштейн (Bekenstein) показали, что энтропия черной дыры пропорциональна площади её горизонта, деленной на квадрат т. н. гравитационной длины Планка
l Planck
= 10
–33
см. Для черной дыры макроскопических размеров значение энтропии получается просто чудовищным. Однако законов термодинамики в данном случае, похоже, ничто не отменяет, и они продолжают действовать даже с учетом, по сути, бесконечного «вклада» невидимых недр черной дыры в её энтропию. Результаты эти крайне озадачивают, прежде всего, потому, что совершенно не ясно, из чего «складывается» энтропия черной дыры, поскольку никаких явных компонентов, которые своим хаотичным движением могли бы способствовать беспредельному увеличению энтропии, внутри черной дыры нет. По крайней мере, мы не можем усмотреть их «снаружи», поскольку нам видится только по-настоящему «черная» дыра — бездонный провал в ткани пространства-времени, и чтобы понять, из каких «компонентов» она реально состоит, необходимо найти какие-то самые фундаментальные составные элементы, на которые можно разложить саму геометрию пространства-времени.
Крайне интересно еще и то, что энтропия черной дыры пропорциональна её площади (квадрату радиуса), а не объему (кубу радиуса). В начале 1990-х годов Хофт ('t Hooft) и Зюскинд (Susskind) предположили, что в теории, объединяющей квантовую механику и гравитацию, число элементарных компонентов, необходимых для исчерпывающего описания системы, пропорционально площади окружающей поверхности, в которую она заключена. А это означает, что структура пространства-времени в корне отличается от структуры твёрдого тела, в котором число таких элементарных компонентов (материальных точек или атомов) возрастает пропорционально её объему, а отнюдь не площади. С практической точки зрения такое ограничение энтропии поверхностью сферы не кажется чересчур принципиальным, однако, с теоретической точки зрения, оно приводит к коренному изменению представлений о мире, поскольку оказывается возможным описать замкнутую пространственно-временную область исключительно по поведению компонентов, расположенных на её внешней границе.
2.2. Информационный парадокс
Мы уже отмечали, что происхождение чёрной дыры может быть различным, однако свойства самой дыры от этого не меняются. Обычно в физике при фазовом переходе или ином преобразовании от исходного состояния вещества зависит и конечное состояние вещества. Иногда различия едва заметны, но они присутствуют. Позвольте привести пример. Возьмём две абсолютно одинаковые тарелки, напишем на одной из них букву А, а на другой — букву Б, после чего разобьём ту и другую на мелкие кусочки. На первый взгляд результат идентичен — две груды мелких осколков на полу. Однако, тщательно изучив обе кучи битого фарфора, мы рано или поздно сумеем разобраться, на какой из исходных тарелок какая буква значилась.
А теперь предположим, что одну из этих тарелок мы бросили в чёрную дыру. Судя по всему, что мы знаем на сегодняшний день, рано или поздно всё вещество этой черной дыры вместе с остатками тарелки испарится в виде излучения Хокинга. Согласно теории Хокинга это будет чисто тепловое излучение, не зависящее от исходного состояния ни самой черной дыры, ни, тем более, попавшей в неё тарелки. То есть, мы, судя по всему, никогда не восстановим информацию о том, какая буква была изначально написана на тарелке.