Системное программное обеспечение. Лабораторный практикум

Молчанов Алексей Юрьевич

В книге рассматриваются базисные теоретические основы, необходимые для построения компиляторов, основные технологические приемы и методы их реализации. В ней приведены различные варианты заданий для выполнения лабораторного практикума по курсу «Системное программное обеспечение», а также примеры выполнения этих заданий. В каждом примере подробно рассматриваются все особенности его выполнения, как на этапе подготовки необходимой математической базы, так и на этапе программной реализации. В лабораторных работах автор обращает внимание на основные сложности, связанные с ее выполнением, а также на возможные типичные ошибки и недочеты, дает рекомендации по возможностям программной реализации, отличным от кода, приводимого в примерах.

Книга ориентирована на студентов, обучающихся в технических вузах по специальностям, связанным с вычислительной техникой. Но она будет также полезна всем, чья деятельность так или иначе касается разработки программного обеспечения.

Введение

Эта книга является логическим продолжением и дополнением учебника «Системное программное обеспечение»,

[1]

вышедшего в свет в 2003 году. Главной целевой аудиторией книги «Системное программное обеспечение» были студенты технических вузов, обучающиеся по специальности «Вычислительные машины, комплексы, системы и сети» и родственным с ней направлениям, поэтому материал книги был подобран исходя из требований стандарта этой специальности для курса «Системное программное обеспечение». Программа этого курса предусматривает практические занятия в виде лабораторных работ, а также выполнение курсовой работы по итогам курса. Поэтому автор посчитал разумным добавить к сухим теоретическим выкладкам необходимый живой практический материал, проиллюстрированный конкретными примерами реализации.

Некоторая часть материала, касающаяся базовых теоретических основ, в этой книге перекликается с уже опубликованным материалом книги «Системное программное обеспечение». Но автор посчитал необходимым кратко привести здесь только те теоретические выкладки, без которых невозможно построить логическое изложение материала. Подразумевается, что читатели уже знакомы с основами курса «Системное программное обеспечение», поэтому в соответствующих местах всегда даются ссылки на литературу – в основном на базовые книги курса [1–3, 7], а также на книги по курсу «Операционные системы» [3, 5, 6]. Поскольку оба курса («Системное программное обеспечение» и «Операционные системы») тесно взаимосвязаны, читателям этой книги необходимо знать их основы, чтобы понять и практически применять изложенный в книге материал (совсем недавно, в старой редакции образовательного стандарта, оба этих курса составляли единое целое [3]).

Книга может оказаться полезной не только студентам, но и специалистам, чья деятельность напрямую связана с созданием средств обработки текстов и структурированных текстовых команд. Некоторые практические приемы, описанные в книге и проиллюстрированные в примерах программного кода, будут полезны не только тем, кто создает или изучает трансляторы, компиляторы или любые другие распознаватели для формальных языков, но и вообще всем разработчикам программного обеспечения.

Для понимания практических примеров необходимо знание языка программирования Object Pascal и хотя бы общее представление о системе программирования Delphi, а также знание языка ассемблера процессоров типа Intel 80x86. В ряде случаев для сравнения и понимания примеров синтаксических конструкций рекомендуется знать язык программирования C. Соответствующие сведения можно почерпнуть в дополнительной литературе, приведенной в конце книги [13, 23–25, 28, 31, 32, 37, 39, 41, 44].

Все практические примеры созданы автором в системе программирования Delphi 5 на языке Object Pascal с использованием примитивных классов из библиотеки VCL. Но автор приложил все усилия, чтобы они не были привязаны ни к версии системы программирования, ни к особенностям исходного языка. Поэтому желающие без проблем могут перенести их под любую версию Delphi, а при необходимости переписать, например на C++, для чего требуются только самые элементарные знания языка.

От издательства

Ваши замечания, предложения и вопросы отправляйте по адресу электронной почты

[email protected]

(издательство «Питер», компьютерная редакция).

Мы будем рады узнать ваше мнение!

Подробную информацию о наших книгах вы найдете на веб-сайте издательства:

http://www.piter.com

.

Лабораторная работа № 1

Организация таблиц идентификаторов

Цель работы

Цель работы: изучить основные методы организации таблиц идентификаторов, получить представление о преимуществах и недостатках, присущих различным методам организации таблиц идентификаторов.

Для выполнения лабораторной работы требуется написать программу, которая получает на входе набор идентификаторов, организует таблицы идентификаторов с помощью заданных методов, позволяет осуществить многократный поиск произвольного идентификатора в таблицах и сравнить эффективность методов организации таблиц. Список идентификаторов считать заданным в виде текстового файла. Длина идентификаторов ограничена 32 символами.

Краткие теоретические сведения

Назначение таблиц идентификаторов

При выполнении семантического анализа, генерации кода и оптимизации результирующей программы компилятор должен оперировать характеристиками основных элементов исходной программы – переменных, констант, функций и других лексических единиц входного языка. Эти характеристики могут быть получены компилятором на этапе синтаксического анализа входной программы (чаще всего при анализе структуры блоков описаний переменных и констант), а также дополнены на этапе подготовки к генерации кода (например при распределении памяти).

Набор характеристик, соответствующий каждому элементу исходной программы, зависит от типа этого элемента, от его смысла (семантики) и, соответственно, от той роли, которую он исполняет в исходной и результирующей программах. В каждом конкретном случае этот набор характеристик может быть свой в зависимости от синтаксиса и семантики входного языка, от архитектуры целевой вычислительной системы и от структуры компилятора. Но есть типовые характеристики, которые чаще всего присущи тем или иным элементам исходной программы. Например для переменной – это ее тип и адрес ячейки памяти, для константы – ее значение, для функции – количество и типы формальных аргументов, тип возвращаемого результата, адрес вызова кода функции. Более подробную информацию о характеристиках элементов исходной программы, их анализе и использовании можно найти в [1, 3, 7].

Главной характеристикой любого элемента исходной программы является его имя. Именно с именами переменных, констант, функций и других элементов входного языка оперирует разработчик программы – поэтому и компилятор должен уметь анализировать эти элементы по их именам.

Имя каждого элемента должно быть уникальным. Многие современные языки программирования допускают совпадения (неуникальность) имен переменных и функций в зависимости от их области видимости и других условий исходной программы. В этом случае уникальность имен должен обеспечивать сам компилятор – о том, как решается эта проблема, можно узнать в [1–3, 7], здесь же будем считать, что имена элементов исходной программы всегда являются уникальными.

Таким образом, задача компилятора заключается в том, чтобы хранить некоторую информацию, связанную с каждым элементом исходной программы, и иметь доступ к этой информации по имени элемента. Для решения этой задачи компилятор организует специальные хранилища данных, называемые таблицами идентификаторов, или таблицами символов. Таблица идентификаторов состоит из набора полей данных (записей), каждое из которых может соответствовать одному элементу исходной программы. Запись содержит всю необходимую компилятору информацию о данном элементе и может пополняться по мере работы компилятора. Количество записей зависит от способа организации таблицы идентификаторов, но в любом случае их не может быть меньше, чем элементов в исходной программе. В принципе, компилятор может работать не с одной, а с несколькими таблицами идентификаторов – их количество и структура зависят от реализации компилятора [1, 2].

Принципы организации таблиц идентификаторов

Компилятор пополняет записи в таблице идентификаторов по мере анализа исходной программы и обнаружения в ней новых элементов, требующих размещения в таблице. Поиск информации в таблице выполняется всякий раз, когда компилятору необходимы сведения о том или ином элементе программы. Причем следует заметить, что поиск элемента в таблице будет выполняться компилятором существенно чаще, чем помещение в нее новых элементов. Так происходит потому, что описания новых элементов в исходной программе, как правило, встречаются гораздо реже, чем эти элементы используются. Кроме того, каждому добавлению элемента в таблицу идентификаторов в любом случае будет предшествовать операция поиска – чтобы убедиться, что такого элемента в таблице нет.

На каждую операцию поиска элемента в таблице компилятор будет затрачивать время, и поскольку количество элементов в исходной программе велико (от единиц до сотен тысяч в зависимости от объема программы), это время будет существенно влиять на общее время компиляции. Поэтому таблицы идентификаторов должны быть организованы таким образом, чтобы компилятор имел возможность максимально быстро выполнять поиск нужной ему записи таблицы по имени элемента, с которым связана эта запись.

Можно выделить следующие способы организации таблиц идентификаторов:

• простые и упорядоченные списки;

• бинарное дерево;

Простейшие методы построения таблиц идентификаторов

В простейшем случае таблица идентификаторов представляет собой линейный неупорядоченный список, или массив, каждая ячейка которого содержит данные о соответствующем элементе таблицы. Размещение новых элементов в такой таблице выполняется путем записи информации в очередную ячейку массива или списка по мере обнаружения новых элементов в исходной программе.

Поиск нужного элемента в таблице будет в этом случае выполняться путем последовательного перебора всех элементов и сравнения их имени с именем искомого элемента, пока не будет найден элемент с таким же именем. Тогда если за единицу времени принять время, затрачиваемое компилятором на сравнение двух строк (в современных вычислительных системах такое сравнение чаще всего выполняется одной командой), то для таблицы, содержащей N элементов, в среднем будет выполнено N/2 сравнений.

Время, требуемое на добавление нового элемента в таблицу (T

д

), не зависит от числа элементов в таблице (N). Но если N велико, то поиск потребует значительных затрат времени. Время поиска (T

п

) в такой таблице можно оценить как T

п

= O(N). Поскольку именно поиск в таблице идентификаторов является наиболее часто выполняемой компилятором операцией, такой способ организации таблиц идентификаторов является неэффективным. Он применим только для самых простых компиляторов, работающих с небольшими программами.

Поиск может быть выполнен более эффективно, если элементы таблицы отсортированы (упорядочены) естественным образом. Поскольку поиск осуществляется по имени, наиболее естественным решением будет расположить элементы таблицы в прямом или обратном алфавитном порядке. Эффективным методом поиска в упорядоченном списке из N элементов является бинарный, или логарифмический, поиск.

Алгоритм логарифмического поиска заключается в следующем: искомый символ сравнивается с элементом (N + 1)/2 в середине таблицы; если этот элемент не является искомым, то мы должны просмотреть только блок элементов, пронумерованных от 1 до (N + 1)/2 – 1, или блок элементов от (N + 1)/2 + 1 до N в зависимости от того, меньше или больше искомый элемент того, с которым его сравнили. Затем процесс повторяется над нужным блоком в два раза меньшего размера. Так продолжается до тех пор, пока либо искомый элемент не будет найден, либо алгоритм не дойдет до очередного блока, содержащего один или два элемента (с которыми можно выполнить прямое сравнение искомого элемента).

Построение таблиц идентификаторов по методу бинарного дерева

Можно сократить время поиска искомого элемента в таблице идентификаторов, не увеличивая значительно время, необходимое на ее заполнение. Для этого надо отказаться от организации таблицы в виде непрерывного массива данных.

Существует метод построения таблиц, при котором таблица имеет форму бинарного дерева. Каждый узел дерева представляет собой элемент таблицы, причем корневым узлом становится первый элемент, встреченный компилятором при заполнении таблицы. Дерево называется бинарным, так как каждая вершина в нем может иметь не более двух ветвей. Для определенности будем называть две ветви «правая» и «левая».

Рассмотрим алгоритм заполнения бинарного дерева. Будем считать, что алгоритм работает с потоком входных данных, содержащим идентификаторы. Первый идентификатор, как уже было сказано, помещается в вершину дерева. Все дальнейшие идентификаторы попадают в дерево по следующему алгоритму:

1. Выбрать очередной идентификатор из входного потока данных. Если очередного идентификатора нет, то построение дерева закончено.

2. Сделать текущим узлом дерева корневую вершину.

Хэш-функции и хэш-адресация

В реальных исходных программах количество идентификаторов столь велико, что даже логарифмическую зависимость времени поиска от их числа нельзя признать удовлетворительной. Необходимы более эффективные методы поиска информации в таблице идентификаторов. Лучших результатов можно достичь, если применить методы, связанные с использованием хэш-функций и хэш-адресации.

Хэш-функцией F называется некоторое отображение множества входных элементов R на множество целых неотрицательных чисел Z:

Сам термин «хэш-функция» происходит от английского термина «hash function» (hash – «мешать», «смешивать», «путать»).

Множество допустимых входных элементов R называется областью определения хэш-функции. Множеством значений хэш-функции F называется подмножество М из множества целых неотрицательных чисел Z:

Требования к выполнению работы

Порядок выполнения работы

Во всех вариантах задания требуется разработать программу, которая может обеспечить сравнение двух способов организации таблицы идентификаторов с помощью хэш-адресации. Для сравнения предлагаются способы, основанные на использовании рехэширования или комбинированных методов. Программа должна считывать идентификаторы из входного файла, размещать их в таблицах с помощью заданных методов и выполнять поиск указанных идентификаторов по требованию пользователя. В процессе размещения и поиска идентификаторов в таблицах программа должна подсчитывать среднее число выполненных операций сравнения для сопоставления эффективности используемых методов.

Для организации таблиц предлагается использовать простейшую хэш-функцию, которую разработчик программы должен выбрать самостоятельно. Хэш-функция должна обеспечивать работу не менее чем с 200 идентификаторами, допустимая длина идентификатора должна быть не менее 32 символов. Запрещается использовать в работе хэш-функции, взятые из примера выполнения работы.

Лабораторная работа должна выполняться в следующем порядке:

1. Получить вариант задания у преподавателя.

2. Выбрать и описать хэш-функцию.

Требования к оформлению отчета

Отчет по лабораторной работе должен содержать следующие разделы:

• задание по лабораторной работе;

• описание выбранной хэш-функции;

• схемы организации таблиц идентификаторов (в соответствии с вариантом задания);

• описание алгоритмов поиска в таблицах идентификаторов (в соответствии с вариантом задания);

Основные контрольные вопросы

• Что такое таблица символов и для чего она предназначена? Какая информация может храниться в таблице символов?

• Какие цели преследуются при организации таблицы символов?

• Какими характеристиками могут обладать лексические элементы исходной программы? Какие характеристики являются обязательными?

• Какие существуют способы организации таблиц символов?

• В чем заключается алгоритм логарифмического поиска? Какие преимущества он дает по сравнению с простым перебором и какие он имеет недостатки?

Варианты заданий

В табл. 1.1 перечислены методы организации таблиц идентификаторов, используемые в заданиях.

Пример выполнения работы

Задание для примера

В качестве примера выполнения лабораторной работы возьмем сопоставление двух методов: хэш-адресации с рехэшированием на основе псевдослучайных чисел и комбинации хэш-адресации с бинарным деревом. Если обратиться к приведенной выше табл. 1.1, то такой вариант задания будет соответствовать комбинации методов 2 и 7 (в табл. 1.2 среди вариантов заданий такая комбинация отсутствует).

Выбор и описание хэш-функции

Для хэш-адресации с рехэшированием в качестве хэш-функции возьмем функцию, которая будет получать на входе строку, а в результате выдавать сумму кодов первого, среднего и последнего элементов строки. Причем если строка содержит менее трех символов, то один и тот же символ будет взят и в качестве первого, и в качестве среднего, и в качестве последнего.

Будем считать, что прописные и строчные буквы в идентификаторах различны.

[2]

В качестве кодов символов возьмем коды таблицы ASCII, которая используется в вычислительных системах на базе ОС типа Microsoft Windows. Тогда, если положить, что строка из области определения хэш-функции содержит только цифры и буквы английского алфавита, то минимальным значением хэш-функции будет сумма трех кодов цифры «0», а максимальным значением – сумма трех кодов литеры «z».

Таким образом, область значений выбранной хэш-функции в терминах языка Object Pascal может быть описана как:

(Ord(0 )+Ord(0 )+Ord(0 ))..(Ord('z')+Ord('z')+Ord('z'))

Описание структур данных таблиц идентификаторов

В первую очередь необходимо описать структуру данных, которая будет использована для хранения информации об идентификаторах в таблицах идентификаторов. Для обеих таблиц (с рехэшированием на основе генератора псевдослучайных чисел и в комбинации с бинарным деревом) будем использовать одну и ту же структуру. В этом случае в таблицах будут храниться неиспользуемые данные, но программный код будет проще. В качестве учебного примера такой подход оправдан.

Структура данных таблицы идентификаторов (назовем ее TVarInfo) должна содержать в обязательном порядке поле имени идентификатора (поле sName: string), а также поля дополнительной информации об идентификаторе по усмотрению разработчиков компилятора. В лабораторной работе не предусмотрено хранение какой-либо дополнительной информации об идентификаторах, поэтому в качестве иллюстрации информационного поля включим в структуру TVarInfo дополнительную информационную структуру TAddVarInfo (поле pInfo: TAddVarInfo).

Поскольку в языке Object Pascal для полей и переменных, описанных как class, хранятся только ссылки на соответствующую структуру, такой подход не приведет к значительным расходам памяти, но позволит в будущем хранить любую информацию, связанную с идентификатором, в отдельной структуре данных (поскольку предполагается использовать создаваемые программные модули в последующих лабораторных работах). В данном случае другой подход невозможен, так как заранее не известно, какие данные необходимо будет хранить в таблицах идентификаторов. Но разработчик реального компилятора, как правило, знает, какую информацию требуется хранить, и может использовать другой подход – непосредственно включить все необходимые поля в структуру данных таблицы идентификаторов (в данном случае – в структуру TVarInfo) без использования промежуточных структур данных и ссылок.

Первый подход, реализованный в данном примере, обеспечивает более экономное использование оперативной памяти, но является более сложным и требует работы с динамическими структурами, второй подход более прост в реализации, но менее экономно использует память. Какой из двух подходов выбрать, решает разработчик компилятора в каждом конкретном случае (второй подход будет проиллюстрирован позже в примере к лабораторной работе № 4).

Для работы со структурой данных TVarInfo потребуются следующие функции:

Организация таблиц идентификаторов

Таблицы идентификаторов реализованы в виде статических массивов размером HASH_MIN..HASH_MAX, элементами которых являются структуры данных типа TVarInfo. В языке Object Pascal, как было сказано выше, для структур таких типов хранятся ссылки. Поэтому для обозначения пустых ячеек в таблицах идентификаторов будет использоваться пустая ссылка – nil.

Поскольку в памяти хранятся ссылки, описанные массивы будут играть роль хэш-таблиц, ссылки из которых указывают непосредственно на информацию в таблицах идентификаторов.

На рис. 1.3 показаны условные схемы, наглядно иллюстрирующие организацию таблиц идентификаторов. Схема 1 иллюстрирует таблицу идентификаторов с рехэшированием на основе генератора псевдослучайных чисел, схема 2 – таблицу идентификаторов на основе комбинации хэш-адресации с бинарным деревом. Ячейки с надписью «nil» соответствуют незаполненным ячейкам хэш-таблицы.

Рис. 1.3. Схемы организации таблиц идентификаторов.

Текст программы

Кроме перечисленных выше модулей необходим еще модуль, обеспечивающий интерфейс с пользователем. Этот модуль (FormLab1) реализует графическое окно TLab1Form на основе класса TForm библиотеки VCL. Он обеспечивает интерфейс средствами Graphical User Interface (GUI) в ОС типа Windows на основе стандартных органов управления из системных библиотек данной ОС. Кроме программного кода (файл FormLab1.pas) модуль включает в себя описание ресурсов пользовательского интерфейса (файл FormLab1.dfm). Более подробно принципы организации пользовательского интерфейса на основе GUI и работа систем программирования с ресурсами интерфейса описаны в [3, 5, 6, 7].

Кроме описания интерфейсной формы и ее органов управления модуль FormLab1 содержит три переменные (iCountNum, iCountHash, iCountTree), служащие для накопления статистических результатов по мере выполнения размещения и поиска идентификаторов в таблицах, а также функцию (procedure ViewStatistic) для отображения накопленной статистической информации на экране.

Интерфейсная форма, описанная в модуле, содержит следующие основные органы управления:

• поле ввода имени файла (EditFile), кнопка выбора имени файла из каталогов файловой системы (BtnFile), кнопка чтения файла (BtnLoad);

• многострочное поле для отображения прочитанного файла (Listldents);